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Abstract
In this work, we present AfriHuBERT, an extension of

mHuBERT-147, a compact self-supervised learning (SSL)
model pretrained on 147 languages. While mHuBERT-147 cov-
ered 16 African languages, we expand this to 1,226 through
continued pretraining on 10K+ hours of speech data from di-
verse sources, benefiting an African population of over 600M.
We evaluate AfriHuBERT on two key speech tasks, Spoken
Language Identification (SLID) and Automatic Speech Recog-
nition (ASR), using the FLEURS benchmark. Our results show
a +3.6% F1 score improvement for SLID and a -2.1% average
Word Error Rate (WER) reduction for ASR over mHuBERT-
147, and demonstrates competitiveness with larger SSL mod-
els such as MMS and XEUS. Further analysis shows that ASR
models trained on AfriHuBERT exhibit improved cross-corpus
generalization and are competitive in extremely low-resource
ASR scenarios.
Index Terms: Self-supervised learning, Multilingual speech
representation, Speech processing, African languages

1. Introduction
Self-supervised learning (SSL)-based speech representation
models such as HuBERT [1], XLS-R [2], and WavLabLM [3]
have become an important component in the development of
various speech-related applications, such as automatic speech
recognition (ASR) [4, 5, 6], speech synthesis [7], speech trans-
lation [8], and spoken language understanding (SLU) [9]. These
models, trained on vast amounts of unlabeled data, are designed
to capture the nuances of different languages, enabling robust
and accurate performance across diverse tasks.

Existing SSL models can be categorized as either monolin-
gual or multilingual. Most monolingual SSL models are trained
exclusively on English [1, 10], with only a few multilingual
SSL models available, such as mHuBERT [11], w2v-XLSR [2],
mHuBERT-147 [12], and MMS [13], which cover up to a thou-
sand languages. While these models include some African lan-
guages, English and a few other high-resource languages often
dominate the training data due to the abundance of available re-
sources. Despite Africa’s rich linguistic diversity, African lan-
guages remain relatively underrepresented. This lack of repre-
sentation creates significant challenges in the building of robust
speech-based dialog systems on the African continent, where
thousands of languages and dialects coexist.

Some of the recent multilingual SSL models, such as
MMS [13], w2v-BERT 2.0 [8], and XEUS [14], have demon-
strated strong performance across different languages and tasks.
However, these models tend to be large, with over 300 mil-
lion parameters— making them computationally expensive and
challenging to deploy in resource-constrained environments.

In contrast, mHuBERT-147, which is trained on 147 lan-
guages, including 16 African languages, offers a compact
yet competitive alternative. Although it is competitive on
benchmarks like ML-SUPERB [15], it lags behind on the
FLEURS [16] benchmark for most languages, including most
African languages. To address this gap, we introduce AfriHu-
BERT, the first massively multilingual and compact African-
centric SSL model, built by extending mHuBERT-147 (95M
parameters) through continued pretraining. AfriHuBERT is
trained on a diverse dataset of 1,226 African languages and
dialects, plus four widely spoken languages in Africa: Ara-
bic, English, French, and Portuguese. The pretraining dataset
is sourced from diverse domains, ensuring comprehensive pho-
netic and linguistic representation of the African context.

We evaluate our model on two downstream tasks, spoken
language identification (SLID) and ASR, using FLEURS. Afri-
HuBERT significantly outperforms existing small SSL mod-
els on both tasks, including for languages with adaptation data
solely from religious domains. This narrows the performance
gap between mHuBERT-147 and large SSL models for African
languages and, thereby highlighting the importance of tailored
pretraining for speech representation in African languages. Our
contributions are as follows.

1. We aggregate more than 10,000 hours of speech, covering
more than 1,200 African languages and dialects.

2. We introduce AfriHuBERT, a multilingual SSL model for
African languages, comparing continued pretraining and
training from scratch over one iteration.

3. We evaluate AfriHuBERT against other multilingual SSL
models on SLID and ASR, analyzing its predictions for both
tasks.

We have released the pre-trained models of AfriHuBERT,12

along with the codebase.3

2. Data and Pre-processing
2.1. Continued pretraining dataset

We aggregate data from various speech datasets across 1,230
languages, including 1,226 African languages and Arabic, En-
glish, French, and Portuguese. The four non-African lan-
guages are included to help preserve the model’s ability on
these languages and on their African-accented varieties. The
data is gathered from 11 major sources: BibleTTS [17], Con-
golese Speech Radio Corpus (CSRC) [18], Jesus Dramas [14],

1https://huggingface.co/ajesujoba/AfriHuBERT
2https://doi.org/10.5281/zenodo.15531766
3https://github.com/nii-yamagishilab/
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Table 1: Datasets used for training AfriHuBERT (after filtering and preprocessing the aggregated data), the amount of languages
covered, the total duration, the domain of the data, the speech type, and licenses.

Name #Languages Duration (h) Domain Type License
BibleTTS [17] 6 357.6 Religious Read CC BY-SA 4.0
CSRC [18] 3 0.1 General Radio CC-BY
Jesus Dramas [14] 88 99.6 Religious Read CC BY-NC-SA 4.0
Kallaama [19] 3 124.9 Agriculture Spontaneous CC BY-SA 4.0
MCV [20] 4 1606.1 General Read CC-0
MMS ulab v2 [13, 14] 1230 2835.4 Religious Read CC BY-NC-SA 4.0
NaijaVoices [21] 3 1873.9 General Read CC BY-NC-SA 4.0
NCHLT [22, 23] 10 1889.4 General Read CC BY 3.0
Nicolingua [24] 10 142.4 News Radio CC BY-SA 4.0
VoxLingua107 [25] 13 886.4 General Spontaneous CC BY 4.0
Zambezi Voice [26] 5 176.0 General Radio CC BY-NC-ND 4.0
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Figure 1: Language-wise duration distribution of the aggregated data after preprocessing. Nicolingua** is not a language, but a
collection of speech data for 11 languages, including ten from Guinea (a country in West Africa).

Kallaama [19], Mozilla Common Voice (MCV) [20],4 MMS
ulab v2 [13, 14], NCHLT [22, 23], Nicolingua radio cor-
pus [24], NaijaVoices [21] , VoxLingua107 [25], and Zambezi
voice [26]. We filter Jesus Dramas and MMS ULAB v2 for
African languages using GPT-4o5 and Glottolog,6 respectively;
the former uses language names, the latter ISO 639-3 codes.
Combining these data sources yields speech samples for 1,439
languages, including the four non-African languages. Table 1
summarizes the data sources and their properties.

2.2. Evaluation dataset

For downstream evaluation, we use the Sub-Saharan Africa
(SSA) subset of the FLEURS dataset, which includes 20 lan-
guages from our pretraining data. We also include Kinyarwanda
FLEURS,7 and Arabic, English, French, and Portuguese, total-
ing 25 languages. We focus on SLID and multilingual ASR as
downstream tasks.

2.3. Data preprocessing

All data including FLEURS were converted to single-channel
audio and downsampled to 16 kHz. CSRC, Jesus Dramas,
and MMS ulab v2 were segmented using WebRTC VAD.8 The
Kallaama dataset was split into manageable segments using
transcription files provided by the authors. The noise in VoxLin-
gua107 was filtered using the manifest from [12]. Additionally,
we removed audio segments shorter than 1 second or longer
than 30 seconds and excluded languages with less than 20 min-
utes of audio. As a result, the pretraining dataset contains over
10,000 hours of audio, covering 1,230 out of the 1,439 lan-

4version 17.0 hosted on Huggingface
5Version dated 2024-08-06.
6https://github.com/glottolog/glottolog
7https://huggingface.co/datasets/mbazaNLP/

fleurs-kinyarwanda
8https://github.com/wiseman/py-webrtcvad

guages originally gathered. Figure 1 shows a skewed duration
distribution, with Kinyarwanda accounting for over 10% of the
total, while many languages have less than 10 hours of speech.

3. AfriHuBERT: Setup and Training
We train AfriHuBERT by extending mHuBERT-147 with
the aggregated data, using multilingual adaptive finetuning
(MAFT) [27, 28], a process of continued pretraining on multiple
languages at once. Given the strong capabilities of mHuBERT-
147, we use a one-iteration adaptation strategy [29]. Our objec-
tive is to answer two questions (1) Can massively pre-trained
mHuBERT-147 effectively generalize to African languages? (2)
How effective is training AfriHuBERT from scratch using qual-
ity discrete targets from the pre-trained mHuBERT-147 without
refinement? Hence, we train three versions of AfriHuBERT.
The first two require MAFT on mHuBERT-147 using its orig-
inal discrete targets from the k-means model, while the other
trains the k-means model on African language datasets to ob-
tain AfriHuBERT-o and AfriHuBERT-n, respectively. Lastly,
we train AfriHuBERT-s from scratch for one iteration using the
new discrete targets. The new k-means model is trained using
representations from the 9th layer of mHuBERT-147 with Faiss-
based clustering [30]. We sampled up to 1 hour of speech data
from each language and merged all samples to train the cluster-
ing model.9

To address language imbalance and ensure the model learns
from underrepresented languages and dialects, we upsampled
the aggregated data using temperature sampling with a multino-
mial distribution:

qi =
pαi∑D
j=1 p

α
j

, where pi =
di∑D
j=1 dj

. (1)

Here d is each language duration, D is the total number of lan-
guages, p is the probability of the language, and α is a tempera-

9Note that loading the entire dataset into memory is infeasible.
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ture parameter that we set to 0.8.10 We exclude English, Arabic,
French, Portuguese, and audio data in Nicolingua.11 Before up-
sampling, we allocate 10 minutes of audio for languages with
less than 2 hours of data and 30 minutes for others as the val-
idation set. We also include the original Nicolingua validation
split. We train the models for 100K steps on upsampled data us-
ing the original HuBERT implementation within Fairseq [31].
Training uses a maximum of 128K tokens per batch, an update
frequency of 64, and is optimized with a learning rate of 5e−5

and 32K warm-up steps.12 The final models are selected based
on the checkpoint with the lowest validation loss. Each model
is trained using 4 NVIDIA A100 40GB GPUs.

4. Supervised Finetuning Setup
We evaluate AfriHuBERT models on SLID and multilin-
gual ASR via supervised finetuning with FLEURS. Alongside
mHuBERT-147, we evaluate a few other SSL models, including
SSA-HuBERT [32] (95M params, trained on 20 African lan-
guages/dialects). We also fine-tune larger SSL models: XLSR-
128 [2] and MMS [13] (316M), as well as w2v-BERT 2.0 [8]
and XEUS [14] (580M). The latter two are not directly compa-
rable due to their size and extensive pretraining; XEUS includes
FLEURS in its training data, while w2v-BERT 2.0’s pretraining
data is undisclosed.

For SLID, we fine-tune on 25 FLEURS languages using an
attentive static pooling layer, followed by a 512-D and 25-D
softmax layer. Models are trained for 20 epochs with 3 random
seeds; we report average F1 across all languages, both including
and excluding the 4 non-African ones. To address imbalance,
we cap each language at 1,030 samples, matching Afrikaans.

For multilingual ASR, models are fine-tuned jointly on all
languages using CTC loss, without an external language model.
The full fine-tuning setup uses a 3-layer FFN (1024 neurons,
and LeakyReLU activation). We apply a 432-size character vo-
cab from SentencePiece [33]. Training runs for 30 epochs with
3 random seeds, and we report the average overall WER. To
ensure balanced training, we sample three hours of audio per
language and merge the data across all 25 languages.

Following [12], we optimize fine-tuning for both tasks us-
ing Adam for the speech encoder, selecting the best learning
rate from 1e−3, 1e−4, 1e−5. For SLID, the FFN uses Adam
with a fixed learning rate of 0.001; for ASR, it uses Adadelta
with a learning rate of 1.0, as implemented within Speech-
Brain [34].13 All models are trained on a single NVIDIA
A100 GPU (40GB/80GB) with batch sizes of 32 (SLID) and
16 (ASR), using gradient accumulation as needed.

5. Results
Table 2 shows the SLID and ASR results, including average F1
and WER across all 25 languages and specifically for African
languages. The following paragraphs summarize our key find-
ings.

mHuBERT-147 is a strong, compact, multilingual
SSL baseline. Overall, mHuBERT-147 outperforms SSA-
HuBERT—a multilingual model of the same size—with a lower
average WER, while SSA-HuBERT performs better in SLID.

10It is computationally expensive to test all possible values of α.
11These exclusions were due to the inability to separate the audio data

into the ten respective languages including French.
12lr = 5e−3 when training from scratch.
13We adapted the IEMOCAP and VoxLingua107 SpeechBrain

recipes for SLID, and the DVoice recipe for ASR.

Table 2: Performance of SSL models on FLEURS. We report the
average F1 (%) and WER (%) scores for all languages (avg∗),
and only the 21 African languages (avg). Size refers to each
model’s parameters (millions), and Dur denotes their pretrain-
ing data size (million hours).

Models Size Dur SLID(F1)↑ ASR(WER)↓
(M) M(h) avg∗ avg avg∗ avg

Small SSL
mHuBERT-147 95 9e−2 88.0 85.8 50.4 52.1
SSA-HuBERT 95 6e−2 89.6 88.0 56.6 56.2
AfriHuBERT-s 95 1e−2 93.2 92.0 54.2 52.9
AfriHuBERT-o 95 1e−2 90.3 88.9 48.4 49.3
AfriHuBERT-n 95 1e−2 91.6 90.0 47.9 48.7

Large SSL
w2v-XLSR 317 4.4e−1 80.3 78.2 46.2 49.4
MMS 317 4.9e−1 86.3 85.6 45.6 48.0
XEUS 577 1.1e+1 96.2 95.5 46.5 49.5
w2v-BERT 2.0 580 4.5e+1 92.7 91.3 35.5 39.3

At the language level, we observed that SSA-HuBERT achieves
better F1/WER on Hausa and Swahili, perhaps benefiting from
pretraining on large datasets for both languages.

Performing MAFT on mHuBERT-147 led to improved
performance on African languages. On average, both
AfriHuBERT-o and AfriHuBERT-n outperform the other two
small SSL models on both tasks, while achieving comparable
performance. Compared to mHuBERT-147, both models per-
form better on all African languages except Arabic, English,
French, and Portuguese, which were dominant during pretrain-
ing but underrepresented during adaptation. Languages like
Luo and Kimbundu, which were not present during pretrain-
ing and introduced only during adaptation with a few hours of
religious data, show improvements over mHuBERT-147. Also,
AfriHuBERT-s outperforms all small models on SLID but is
not competitive to mHuBERT-147 or other AfriHuBERTs for
ASR. We hypothesize that training AfriHuBERT-s for longer
steps might improve its representation to the point that it can
match mHuBERT-147’s performance on African languages.

w2v-BERT 2.0 is a large competitive model. Among
large SSL models, w2v-BERT 2.0, trained on more than 4.5M
hours of audio, achieves the best overall performance on ASR
due to its size and data volume, while XEUS delivers the best
SLID performance but significantly lags behind w2v-BERT 2.0
in ASR. MMS and w2v-XLSR, with similar parameter counts
and pretraining data, perform competitively, with MMS show-
ing a slight improvement.

6. Analysis & Discussion
Going forward, we focus on AfriHuBERT-n, now called Afri-
HuBERT. We analyze its failure cases on both tasks, assess
cross-corpus ASR generalization, and evaluate its performance
in extremely low-resource and multi-dialect ASR, comparing it
to mHuBERT-147 and MMS.

SLID confusion matrix for AfriHuBERT: Inspecting
AfriHuBERT’s confusion matrix reveals that geographically
close languages are often misclassified as each other. For exam-
ple, 40% of the audio samples speaking Zulu, a South African
language, are misclassified as Xhosa on average. However, this
miss-classification does not occur in the reverse direction. We
hypothesize that this stems from training data artifacts or lin-
guistic similarities, which future work can explore. Similarly,
Fulfude, spoken in West and Central Africa, is misclassified as
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Hausa, Somali, or Wolof, which are languages from overlap-
ping regions.

Error analysis of the multilingual ASR output: Based
on the ASR results, we analyze system outputs, with a focus
on AfriHuBERT. Using Yorùbá (the language with the second-
highest WER) as a case study, we identify data quality issues,
likely due to error propagation from the FLORES-101 [35]
dataset, the source of FLEURS. A manual inspection of the
Yorùbá transcriptions shows that they did not follow the stan-
dard Yorùbá orthography with instances without diacritics, or a
mixture of diacritics and no diacritics. For example:

(1) Groundtruth transcription: won se ikede naa leyin ti
trumpi ba aare toki resep tayipi edogani lori ago
When diacritized: wó.n s.e ìkéde náà lé.yìn tí trumpi bá
ààre. toki resep tayipi edogani lórí ago
Translation: they made the announcement after trump
had president toki resep tayipi edogani on a phone call
AfriHuBERT: wó.n se ìkéde náà le.yìn tí tromp b are. toki
recept tayipà èdògáni lórí ago

Example 1 shows a ground-truth transcription that does
not follow Yorùbá orthography and is completely undiacritized,
while AfriHuBERT’s output is partially diacritized. These in-
consistencies, especially in the FLEURS training data, likely
contribute to the Yorùbá ASR models’ high WER. Beyond di-
acritics, the models also struggle with transcribing named enti-
ties. Future work should further audit FLEURS transcriptions
and correct these errors, similar to FLEURS-R [36], which fo-
cused on improving FLEURS’s audio quality.

Table 3: Cross-corpus generalization of ASR models on MCV.
afr amh hau ibo kin lug swh yor Avg

CER (%)
mHuBERT-147 15.2 46.2 17.4 21.1 24.6 18.1 19.6 38.8 25.1
AfriHuBERT 13.2 42.5 14.1 18.3 22.3 16.6 17.6 35.8 22.6
MMS 13.1 48.7 16.3 17.0 24.4 17.2 17.3 37.2 23.9
WER (%)
mHuBERT-147 53.1 85.8 59.4 62.3 72.4 71.3 59.0 86.9 68.8
AfriHuBERT 48.0 81.0 51.1 60.5 66.5 67.4 52.6 81.2 63.6
MMS 43.6 83.7 57.9 56.2 72.1 70.6 53.0 84.4 65.2

Cross-corpus ASR generalization of AfriHuBERT:
Next, we evaluate the ASR models from AfriHuBERT,
mHuBERT-147, and MMS—three multilingual HuBERT-style
models—on another ASR corpus to assess their cross-corpus
generalization. For this, we used the MCV [20] test split,14

which covers eight of the 21 African languages they were origi-
nally trained on. The CER and WER results presented in Ta-
ble 3 show that AfriHuBERT, on average, generalizes better
out-of-domain and outperforms mHuBERT-147 and MMS with
WERs of 68.8% and 65.2%, respectively. Specifically, Afri-
HuBERT achieves a WER of less than 60% in three languages
(Afrikaans, Hausa, Swahili) and of less than 70% for Igbo, Kin-
yarwanda and Luganda. In contrast, Amharic (using a non-
Latin script) and Yorùbá (using Latin script with diacritics) have
WERs of 81.0% and 81.2%, respectively.

Evaluating AfriHuBERT on low-resource multilingual
ASR: Furthermore, we evaluate the three SSL models in ex-
tremely low-resource settings. Using the experimental setup
from Section 3, we fine-tune the models for multilingual ASR
with 10 and 30 minutes of audio data per language, respectively,
and evaluate their performance on African languages only.

The results in Figure 2 show that, on average, AfriHu-
BERT outperforms mHuBERT-147 in both settings and remains

14version 17.0
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Figure 2: ASR performance in extremely low-resource ASR sce-
narios.

competitive with MMS. In the 10-minute setting, AfriHuBERT
achieved a WER of 65.7% and a CER of 20.5%, compared to
mHuBERT-147 ’s 73.0% and 23.1%, respectively. In the 30-
minute setting, WERs considerably decreased across all three
models. However, for most languages, WERs remained above
60%, with only a few exceptions, highlighting the need for more
data to improve ASR performance for these languages.

Table 4: Multi-dialect ASR performance comparison on
YORÙLECT (comparing three Yorùbá dialects).

Models Standard Ife Ilaje Avg

CER WER CER WER CER WER CER WER

mHuBERT-147 11.9 40.8 22.4 65.1 17.1 51.0 17.1 52.3
AfriHuBERT 11.2 37.7 21.4 62.9 16.4 48.8 16.3 49.8
MMS 11.4 38.2 21.6 62.5 15.8 47.5 16.3 49.4

Multi-dialect Yorùbá ASR evaluation: Lastly, given
the flaws identified in Yorùbá FLEURS, we address whether
our findings, particularly the observed improvements and
competitiveness by AfriHuBERT, can be trusted. We train
a multi-dialect Yorùbá ASR model on the well-curated
YORÙLECT [37] dataset using a similar setup as before but
with a sentencepiece character vocabulary of size 63. We focus
on three dialects: Standard Yorùbá, Ife, and Ilaje. Our results in
Table 4 show that, on average and across dialects, AfriHuBERT
outperforms mHuBERT-147, and is competitive to MMS. We
hypothesize that models perform best on the standard dialect
due to its abundant resources, while Ife is the most challenging
due to its scarcity. These results confirm that, despite AfriHu-
BERT’s compact size, it is still competitive.

7. Conclusion
In this work, we created AfriHuBERT by extending mHuBERT-
147 to 1,226 African languages via MAFT on speech data ag-
gregated from various sources, including these languages and
four widely spoken non-indigenous languages in Africa. We
evaluated both compact SSL models such as mHuBERT-147
and AfriHuBERT together with some other large multilingual
SSL models on both SLID and ASR tasks and found that
mHuBERT-147 is a strong multilingual SSL baseline. However,
AfriHuBERT which is an extension of mHuBERT-147, outper-
forms other SSL models on average for both tasks. In future
work, we plan to upscale AfriHuBERT, enhancing its general-
izability to better accommodate unseen African languages and
dialects.
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