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Abstract

We address the 2025 Blizzard Challenge for Bildts, a low-
resource West Frisian language variety, using ZMM-TTS, a
modular multilingual TTS model with separate text-to-vec and
vec-to-waveform modules. We fine-tune the model on ap-
proximately 7 hours of Bildts data and explore the three input
types supported by ZMM-TTS: raw characters, IPA characters,
and phoneme representations. We also compare systems built
by fine-tuning two pre-trained ZMM-TTS multilingual check-
points. To enable multi-speaker synthesis for Bildts, we hy-
pothesize that multilingual training will be beneficial; hence, we
augment training with data from a selection of ZMM-TTS pre-
training languages as well as geographically related languages
(Dutch, German, English, French, Portuguese, and Spanish).
Due to the lack of native speakers for evaluation, we rely pri-
marily on objective metrics to select the final system.
Index Terms: Bildts, Text-to-speech, Low-resource, Multilin-
gual

1. Introduction
Recent advancements in neural text-to-speech (TTS) systems
have achieved remarkable performance in high-resource lan-
guages, enabling the generation of natural and intelligible
speech from text [1, 2, 3, 4]. However, developing TTS models
for low-resource languages remains a significant challenge due
to the scarcity of high-quality audio and textual data [5], lim-
iting accessibility and representation for many linguistic com-
munities [6]. Considering these realities, we explore how high-
quality TTS systems can be built with minimal reliance on ex-
tensive data or linguistic resources from the target language by
leveraging multilingual frameworks and transfer learning, using
datasets and pre-trained models that include multiple languages
geographically close to the target.

In this work, we specifically address the 2025 Blizzard TTS
challenge for Bildts, a low-resource West Frisian language vari-
ety spoken in the Netherlands, by leveraging ZMM-TTS [7],
a multilingual, multi-speaker TTS model. ZMM-TTS con-
sists of two independently trained modules: a text-to-discrete-
representations model (txt2vec) and a discrete-representations-
to-waveform model (vec2wav). Using adaptive fine-tuning, we
customize the model for Bildts with a 7-hour dataset provided
by the challenge committee. Given the limited availability of
Bildts linguistic resources, we augment our training data with
related and previously supported languages in the pre-trained
ZMM-TTS, including Dutch, German, English, French, Por-
tuguese, and Spanish. By combining data from these geograph-
ically and linguistically proximate languages, and comparing
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Figure 1: Schematic overview of the ZMM-TTS.

ZMM-TTS models trained on varying numbers of languages,
we aim to optimize TTS performance for Bildts.

In our first experiment, we built three variants of the Bildts
TTS system: a character-based model, an IPA-based model us-
ing an existing multilingual grapheme-to-phoneme (G2P) con-
verter, and a model using a multilingual phoneme representa-
tion. As is common in low-resource settings, Bildts is not sup-
ported by either the multilingual G2P model or the multilingual
phoneme representation model. In a second experiment, we
evaluated the impact of different pre-trained models by build-
ing Bildts TTS systems based on two distinct ZMM-TTS check-
points, and additionally trained variants that incorporated data
from one or more geographically close languages with the aim
of improving performance, particularly for zero-shot synthesis.

Evaluating TTS quality for low-resource languages is par-
ticularly challenging due to the difficulty of recruiting native
listeners. Consequently, our team, composed primarily of non-
speakers of Bildts, relied mainly on objective evaluation metrics
to select the final system for submission.

2. System Description
In this section, we describe our TTS model, which is built us-
ing ZMM-TTS [7] through adaptive fine-tuning. ZMM-TTS
is a multilingual, multi-speaker TTS system composed of two
independently trained components that can be combined to-
gether for end-to-end inference as shown in Figure 1. These
components are: (1) a text-to-discrete-speech-representations
module (txt2vec), and (2) a discrete-speech-representations-to-
waveform module (vec2wav).

The txt2vec module follows an encoder-decoder architec-
ture. It takes text input in the form of characters, IPA phonemes,
or pre-trained phoneme representations and converts it into dis-
crete speech units. The vec2wav module then transforms these
discrete speech representations directly into audio waveforms.
At training time, the discrete representations are obtained from
the codebook of XLSR-53 [8], a multilingual speech encoder
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Lang. Gender Source #Spk Dur (hrs) # Sent

Bildt Male Blizzard 1 7.0 6,006

Dutch (nl) Female CML-TTS 5 5.0 2,027Male 1 1.0

English (en) Female LibriTTS 28 7.0 10,805Male 28 7.0

French (fr) Female CML-TTS 3 3.0 3,834Male 7 7.0

German (de) Female CML-TTS 7 7.0 5,150Male 7 7.0

Portuguese (pt) Female CML-TTS 2 2.0 2,015Male 4 4.0

Spanish (es) Female CML-TTS 7 7.0 4,839Male 7 7.0

Table 1: Dataset statistics used in our experiments for training
and evaluating the ZMM-TTS models.

that includes several high-resource languages, including Dutch.
However, Bildts is not covered. Despite this, existing work
has shown that ZMM-TTS performs well for low-resource lan-
guages [7, 9].

2.1. Data

The challenge committee provided a 7-hour dataset of the Bildts
language, consisting of recordings from a single male speaker.
This dataset includes 6,023 sentences along with their corre-
sponding transcriptions. Bildts, a low-resource language, can
be categorized under the “Left-Behind” group in Joshi’s clas-
sification [10], meaning it has minimal or no digital linguistic
resources available online.

To address this limitation, we consider using data from
other languages geographically close to Bildts, specifically
Dutch and German, as well as those previously used in train-
ing the original ZMM-TTS models. In total, we collected ad-
ditional data for six languages: Dutch, English, French, Ger-
man, Portuguese, and Spanish. Due to the ease of data collec-
tion, we used English data from LibriTTS [11], and sourced
Dutch, French, German, Portuguese, and Spanish data from
CML-TTS [12]. Although Dutch was not included in the orig-
inal training of ZMM-TTS, we incorporate it due to its geo-
graphic closeness to Bildts. The remaining five languages were
part of the original ZMM-TTS training corpus.

2.2. Data Preprocessing

We followed data pre-processing pipeline similar to those in [7],
including resampling all audio to a 16 kHz sampling rate and
applying amplitude normalization using SV56 [13]. However,
we included only audio clips shorter than 15 seconds in our
training dataset. Hence, we filtered out 17 utterances (311.0
seconds) from the shared Bildts data and sampled 10 minutes
for in-house evaluation.

Table 1 highlights the statistics of the selected data per lan-
guage. For English, we selected 28 speakers, each with 10 min-
utes of speech, balanced across both genders. For the other lan-
guages, we aimed to extract 70 minutes of speech per speaker,
targeting seven speakers per gender. However, not all languages
had sufficient data to meet this requirement.

For the seen-speaker evaluation, we randomly selected 10
minutes of speech per language, except for English, where we
selected only 5 minutes, from the data listed in Table 1. Hence,

for all languages except English, each speaker contributes ap-
proximately one hour of speech to the training data. For the
unseen-speaker (zero-shot) test, we collected 25 minutes of au-
dio per speaker per gender, with a maximum of two speakers
per gender. For English, we used a threshold of 12.5 minutes of
speech and doubled the number of speakers.

2.3. Limitations of the Blizzard Lexicon

Although the organizers provided a lexicon, its limitations hin-
der its direct applicability in our systems. The provided dic-
tionary contains 7,756 entries. In contrast, the training corpus
comprises 7,960 unique words, of which 6,296 are not cov-
ered by the lexicon, highlighting a substantial number of out-of-
vocabulary words. Therefore, instead of using the dictionary as
a grapheme-to-phoneme (G2P) resource, we treated it as stan-
dard Dutch text and processed it directly using Epitran [14].1 To
qualitatively assess phoneme-level consistency, we randomly
selected five words from the training corpus and compared the
IPA transcriptions generated by Epitran-Dutch with those pro-
vided in the official Bildts dictionary. The results are presented
in Table 2.

Words Epitran Lexicon

later la:tEr la:t@r
nummer nYmmEr nöm@r
dúdlik dÝtlIk düdl@k
him hIm hIm
humor hy:mOr hümOr

Table 2: The difference between the output of the official lexicon
and the Epitran.

Furthermore, we compared the phoneme transcriptions gen-
erated by Epitran with the reference annotations for all words
covered by the dictionary, resulting in a phoneme error rate
(PER) of 37.11%. Hence, we did not use the provided lexi-
con in our models; instead, where necessary, we used the Dutch
configuration of Epitran for Bildts.

2.4. Implementation and Training

For our experiments, we used the original implementation
of ZMM-TTS2 and fine-tuned two variants of the pre-trained
ZMM-TTS models. These include the MLS and GlobalPhone
variants, both of which were originally trained on English,
French, German, Portuguese, Spanish, and Swedish, using data
primarily from the Multilingual LibriSpeech (MLS) corpus [15]
and a combination of MLS and GlobalPhone (GLB) [16], re-
spectively. The MLS checkpoint is publicly available, while the
GlobalPhone checkpoint is private.3 We fine-tune each module
of ZMM-TTS for 50,000 steps on our collected dataset and use
character inputs unless otherwise stated. The final checkpoint
was used at inference time for synthesizing speech.

3. Experiment
The challenge includes two tasks: (1) supervised TTS, and (2)
zero-shot synthesis of sentences using audio references from
speakers unseen during training. We submited outputs only for

1https://github.com/dmort27/epitran
2https://github.com/nii-yamagishilab/ZMM-TTS
3The authors shared the checkpoint with us.
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the first task but describe our setup and research questions for
both tasks in the following sections.

3.1. Supervised TTS [BH]

This supervised TTS task involves building a speech synthesizer
from publicly available data. Because Bildts is low-resource
and absent from the original ZMM-TTS training, we fine-tuned
the model on the provided Bildts data to extend its coverage,
focusing on three questions.

What type of input is suitable for adaptation to Bildts?
The ZMM-TTS model supports three types of input representa-
tions: characters, IPA, and XPhoneBERT [17] phoneme repre-
sentation. However, the provided lexicon is limited, and Bildts
was not included in XPhoneBERT pretraining. Therefore, we
focus on investigating which input representation works best for
Bildts. Hence, we trained three variants of ZMM-TTS model
for Bildts using the three input representations.

Does the base ZMM-TTS model used matter? The
ZMM-TTS model was trained on two datasets, MLS and Glob-
alPhone, which include the same set of languages. Their differ-
ing sizes led us to investigate whether base-model choice im-
pacts adaptation to Bildts.

3.2. Zero-shot TTS [BS]

This task involves developing a speech synthesis system capable
of generating speech for unseen speakers of Bildts. No training
data was available for these speakers, and only a short refer-
ence speech sample was provided at test time for voice synthe-
sis. To address this challenge, we employ language augmenta-
tion, incorporating data from other languages during the contin-
ued pre-training of the ZMM-TTS model. Although ZMM-TTS
was originally designed to support unseen speakers, we aimed
to further improve its performance through multilingual train-
ing. We chose language augmentation due to its potential to
improve performance in low-resource speech synthesis. Specif-
ically, augmenting training data with geographically and lin-
guistically related languages can support shared phonetic and
acoustic features, enable improved representation learning, and
enhance the model’s ability to generalize to unseen speakers.
Hence, we focused on answering the question:

Which improves Bildts TTS more: one close language
or multiple? To investigate this question, we included all
languages originally used in ZMM-TTS, except Swedish, for
which no data were available. We trained six bilingual systems,
each combining Bildts with one of the remaining languages. We
also examined a multilingual setup that jointly incorporated all
available languages during training.

3.3. Evaluation

To evaluate the synthesized speech, we primarily used objec-
tive metrics, including speaker verification, word error rate
(WER), and mel cepstral distance (MCD). For speaker verifi-
cation, we extract speaker embeddings using UniSpeech-SAT-
Large [18, 19] and computed cosine similarity. For MCD,
we used the tool described in [20]. Also, we included auto-
matic mean opinion scores such as UTMOS [21], and NISQA-
MOS [22]. To calculate WER, we transcribed the speech using
Whisper-Large-v345 and compared the transcriptions against

4https://huggingface.co/openai/
whisper-large-v3

5We provided Whisper with the language names as generation pa-
rameter.

the ground truth text. Lastly, in a few cases, we conducted qual-
itative evaluations with a native speaker on a small sample of
utterances.

4. Results and Discussion
4.1. Supervised TTS: Input and Backbone Comparison

To evaluate the models trained on Bildts data, we compared the
outputs of the MLS-based systems using three input variants:
characters, IPA, and XPhoneBERT. As non-speakers, we lis-
tened to several examples from the test split but observed no
clear differences among the variants. Furthermore, we com-
pared models trained on character-based inputs using both the
MLS and GLB pre-trained ZMM-TTS models. Our evalua-
tion as non-speakers again indicates no significant differences
in output quality. To ensure a more accurate assessment, we
also shared the same samples with a native speaker at the end
of the challenge. We provide a summary of their response in
Section 4.6.

4.2. Supervised TTS: Bilingual vs Multilingual Augmenta-
tion

Table 3 presents metrics comparing the performance of ZMM-
TTS trained on Bildts paired with another language, as well
as in a multilingual configuration, where L1 corresponds to
the language in each row. For both Bildts and the six paired
languages, we observe that the speaker-similarity score (SEC)
for synthesized Bildts speech remains nearly constant, rang-
ing from 0.92 to 0.93, with the Dutch-paired model achieving
the highest SEC at 0.93. In contrast, the SEC for synthesized
speech in the other languages ranges from 0.95 to 0.98, consis-
tently higher than for Bildts.

The Dutch model also yields the lowest MCD for Bildts at
6.39, followed closely by the Portuguese model at 6.40, whereas
the remaining models exceed 6.50. For the other individual
languages, MCD values range from 6.21 to 6.99, with English
reaching the highest value at 6.99. However, when examining
objective quality metrics such as UTMOS and NISQA-MOS,
the bilingual English model performs best on Bildts. English
also achieves the highest MOS scores among the languages,
likely due to the backbone models being English-centric. The
multilingual model exhibits similar patterns to the bilingual sys-
tems, producing comparable results and showing no consistent
advantage on any metric.

The varying results on the other languages were also not in-
formative for selecting a single best model. For example, we
found the WER on English to be extremely high, exceeding
300%. From our observations, this is due to overgeneration and
repetition of words and phrases during transcription by Whis-
per. This is likely caused by quality issues in the large English
dataset, which included more speakers but less data per speaker
in our TTS adaptation dataset.

Overall, no single metric consistently favors any specific
language when paired alongside Bildts during training. These
mixed results highlight the difficulty using currently exist-
ing objective metric in evaluating synthesized speech in low-
resource languages. As non-speakers, we listened to a few sam-
ple cases and found no significant differences in output quality.

4.3. Zero-shot TTS

Table 4 show the metrics obtained when evaluating TTS mod-
els for in zero-shot setting in both bilingual and multilingual
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Languages
SEC WER MCD UTMOS NISQA-MOS

Bildts L1 L1 Bildts L1 Bildts L1 Bildts L1
B

ili
ng

ua
l

de 0.920.05 0.970.02 11.21 6.57 6.69 3.280.43 2.960.35 4.120.45 4.150.58

en 0.920.05 0.950.04 397.52 6.50 6.99 3.330.37 3.770.44 4.210.42 4.330.52

es 0.920.04 0.980.02 18.54 6.55 6.90 3.280.41 2.570.35 4.110.39 4.140.63

fr 0.920.05 0.980.02 13.42 6.50 6.99 3.200.48 2.720.45 4.020.50 4.210.44

nl 0.930.04 0.960.03 27.02 6.39 6.85 3.210.43 2.540.46 4.020.43 3.720.53

pt 0.920.05 0.980.02 15.02 6.40 6.21 3.290.39 2.770.43 4.100.41 3.930.58

M
ul

til
in

gu
al

de 0.920.05 0.970.02 11.04 6.74 6.80 3.340.35 3.010.38 4.080.53 4.180.57

en 0.940.04 441.99 7.36 3.800.39 4.340.48

es 0.980.03 17.55 6.99 2.600.36 4.150.66

fr 0.970.02 12.75 7.02 2.770.44 4.230.45

nl 0.960.03 32.33 7.36 2.960.37 3.720.54

pt 0.980.02 14.38 6.28 2.810.47 3.840.49

Table 3: Evaluation result for seen speakers.

Lang. SEC WER MCD UTMOS NISQA-MOS

B
ili

ng
ua

l

de 0.940.04 67.18 7.32 3.310.36 4.160.37

en 0.930.04 96.62 7.17 3.860.38 4.420.38

es 0.950.03 126.21 9.53 2.980.37 4.100.48

fr 0.940.05 97.11 8.59 2.730.49 3.900.48

nl 0.930.05 32.59 7.81 2.440.37 3.920.51

pt 0.880.05 164.14 9.56 2.640.44 3.750.50

M
ul

til
in

gu
al

de 0.940.04 67.25 7.29 3.340.35 4.230.38

en 0.930.04 86.6 7.23 3.820.37 4.360.38

es 0.950.04 120.84 9.32 3.060.35 4.100.50

fr 0.940.05 115.57 8.54 2.810.47 4.000.46

nl 0.950.04 26.18 8.02 2.880.38 4.400.25

pt 0.900.05 112.93 9.50 2.710.47 4.080.53

Table 4: Evaluation result for unseen speakers.

settings across six languages. Since we do not have evalua-
tion data for unseen speaker evaluation in Bildts, we focused
only on these six languages. Our results show little difference
in performance between the bilingual and multilingual models.
However, when comparing unseen speakers to seen speakers,
we observed a decrease in SEC and an increase in MCD. Mean-
while, UTMOS and NISQA-MOS scores remained similar to
those of seen speakers, which could suggest that overall speech
quality is maintained.

4.4. Final Submission

For the first subtask, we submitted outputs from our multilin-
gual system, as we expected it to be more robust. To generate
these, we randomly selected a single speaker embedding from
the training split of the Bildts data and used it for all synthesis.
Since we did not have a number-to-word converter for Bildts,
we used the publicly available tool num2words6 to convert num-
bers into Dutch, the closest available language. All texts were
then synthesized using our TTS model. As the audio was orig-
inally synthesized at 16 kHz, we upsampled it to 48 kHz using
AudioSR [23].

However, for the zero-shot task, the organizers provided
reference audio for six speakers. We did not submit results
for this task because, upon listening to the synthesized speech,
it resembled the original training speaker more than the tar-

6https://github.com/savoirfairelinux/
num2words

get voices. We hypothesize that this may be due to language-
speaker entanglement or interference. This issue could po-
tentially be addressed with more Bildts data, either additional
hours of speech, a greater number of speakers, or an improved
fine-tuning and adaptation regime. Future work should explore
this further, particularly within the ZMM-TTS architecture.

4.5. Our System vs. Other Submitted Systems

Based on the human evaluation results provided by the orga-
nizers for the supervised TTS setup, we observed that while
the synthesized speech from our multilingual system sounds
human-like and Dutch-like, it was not rated as Bildts-like by
the evaluators. Figure 2 illustrates these findings by comparing
our system (labeled C) with other submissions, showing ratings
from international, Dutch, and Bildts speakers across human-
likeness, Dutch-likeness, and Bildts-likeness.

Similarly, international speakers rated the synthesized
speech as competitive with other systems in terms of overall
quality. However, for appropriateness, Dutch speakers rated
it as moderate, while Bildts speakers rated it low, indicating
that the system is not competitive in appropriateness for Bildts
speakers. Furthermore, Figure 4 shows the top 12 words most
frequently mispronounced, as rated by Bildts speakers, across
the seven systems. As can be seen, our system is among the
models with the highest number of these mispronunciations,
which may explain the lower ratings we received from the Bildts
speakers. Since we are non-speakers and lack additional infor-
mation from the organizers, we are unable to provide further
interpretation of these results.

4.6. Qualitative Human Evaluation

To better understand the performance of our system relative to
other submissions, we conducted a small-scale qualitative hu-
man evaluation to collect additional feedback and more thor-
oughly assess the models we trained.

The human evaluation was carried out in two parts. In the
first part (part A), the evaluator was asked to rate the naturalness
and pronunciation of synthesized speech by comparing multiple
examples and selecting the best; it was possible to select more
than one. Five examples were selected from our test split of
the 7-hour Bildts dataset provided to us. For the comparison
of input types, characters, IPA, or XPhoneBERT, we provided
synthesized speech at both 16 kHz and 48 kHz.
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Figure 3: Overall quality and of appropriateness synthesized speech.

At 16 kHz, the evaluator rated the IPA-based synthesis as
more natural in 4 out of 5 examples and XPhoneBERT as more
natural in 2 out of 5; similar trends were observed for pronun-
ciation. At 48 kHz, XPhoneBERT was rated best in 3 out of 5
examples, characters were rated better in 1, and in one case no
system was preferred.

Although this evaluation was small, it suggests that when
adapting pre-trained models such as ZMM-TTS to low-resource
languages, using representations such as phonemes lever-
aging multilingual tools and models such as Epitran and
XPhoneBERT may be more effective than using characters.
We do not have a complete explanation for the inconsistency
between the ratings at 16 kHz and 48 kHz; however, these
differences may reflect the effects of super-resolution on low-
resource languages and should be further investigated.

We also compared synthesized speech from three character-
based models: (1) a model trained only on the provided Bildts
data, (2) a bilingual model trained on Bildts and Dutch, and
(3) a multilingual model, all upsampled to 48 kHz. Using the
same five examples as before, the evaluator rated naturalness
and pronunciation across systems. The results showed no clear
winner: the Bildts-only model was rated better once, the bilin-
gual model once, the multilingual model once, and all the three
systems were chosen equally good in two cases.

In the second part of the evaluation, the evaluator rated five
examples from our final outputs submitted to the organizers for
both naturalness and pronunciation, on a scale from 1 to 5 (with
5 being the best and 1 the worst). The results aligned with
the organizers’ evaluation of Bildts-likeness and overall qual-
ity. Our outputs were mostly rated 1 or 2, indicating poor qual-
ity; on average, naturalness scored 1.4 and pronunciation 1.2.
These results highlight pronunciation errors as a major weak-
ness in the synthesized speech. Future work will be needed to
better understand the influence of multilingual training on low-
resource languages like Bildts during adaptation.

Finally, when asked to compare the quality of Bildts speech
synthesized from our in-house evaluation split (used in part A)
of the provided dataset versus the final test set provided by the
organizers, the evaluator noted: “The clarity and articulation

of part A is better and less dull.” However, across both parts,
there were several cases of mispronunciation, poor articula-
tion, and incomplete pronunciations, which negatively impacted
our rankings, particularly those conducted by the native Bildts
speaker.

5. Conclusion
In this paper, we present details of our submission to the Bliz-
zard Challenge 2025, specifically for the supervised task [BH1
(MH1)], which focuses on Bildts, a low-resource language. Our
submission is based on a modular architecture and a pretrained
TTS model, ZMM-TTS. By adaptively fine-tuning a pretrained
ZMM-TTS model, we explored several relevant aspects, includ-
ing the choice of input format, the backbone model, and the ef-
fects of training on Bildts using either a closely related single
language or a multilingual setup.

We compared the final outputs using several metrics. While
we were unable to identify a single metric that reliably cap-
tured overall performance, we submitted our multilingual sys-
tem. According to human evaluation experiments conducted by
the challenge organizers, the system was rated as human-like
and Dutch-like, but not Bildts-like, highlighting issues with its
appropriateness for the target language.
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