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Abstract

The increasing capabilities of large language
models (LLMs) have unlocked transformative
potential for medical applications, but privacy
constraints limit access to high-quality train-
ing data from electronic health records (EHRs).
In response, we propose a framework to gen-
erate synthetic EHRs by instruction-tuning an
LLM using descriptions of diagnosis codes. We
show that this framework overcomes problems
of prior approaches, such as diversity reduction
and medical incoherence, while maintaining
strong privacy protections. Utility was mea-
sured by training models to predict diagnosis
codes for EHRs. Real data still has higher util-
ity, but synthetic data approaches real data re-
sults with increasing dataset size. The differ-
ences in utility were most likely due to noise in
the synthetic data. A user study involving med-
ical professionals confirmed no significant loss
in readability or medical coherence compared
to the real EHRs, even though inter-annotator
agreement is low. These findings establish syn-
thetic EHRs as a viable alternative for privacy-
preserving and scalable clinical NLP applica-
tions. We release our code on GitHub.1

.

1 Introduction

Healthcare faces growing challenges, including
staff shortages, medical errors, and unequal ac-
cess – issues that artificial intelligence applications,
particularly with recent advances in deep learning
(DL), can help address (Goldberg et al., 2024). A
critical requirement for building such systems is
access to electronic health records (EHRs), which
serve as a rich data source (Häyrinen et al., 2008).
EHRs contain, alongside structured patient infor-
mation, large amounts of unstructured text, making
natural language processing (NLP) techniques par-
ticularly valuable for medical applications such as

1https://github.com/uds-lsv/
synthetic-ehr-notes

automated diagnosis coding (Huang et al., 2022),
clinical text mining (Dalianis, 2018), and clinical
decision support (Häyrinen et al., 2008). However,
privacy concerns and strict regulations (Budu et al.,
2024) often limit access, hindering the develop-
ment and evaluation of medical applications.

To address this data sparsity challenge, synthetic
data generation has emerged as a solution (Murtaza
et al., 2023), producing artificial data that mimics
the statistical properties of real EHRs while pre-
serving patients’ privacy. Hence, such data must
meet two key criteria: privacy and utility.
However, balancing these objectives remains chal-
lenging – even with powerful large language mod-
els (LLMs) – due to issues such as limited data
diversity (Libbi et al., 2021) and insufficient medi-
cal coherence (Melamud and Shivade, 2019).

In this work, we investigate synthetic data gen-
eration to address the question: ”How can LLMs
balance privacy and utility for EHRs?”. To answer
this question, we propose a framework based on
LLaMA-3.1-8B (Dubey et al., 2024) for generating
synthetic medical notes in English and Swedish.
By instruction-tuning the model with ICD-10 code
descriptions, we improve content controllability
and enhance diversity. We evaluate the gener-
ated data along four key dimensions: fidelity,
privacy, utility, and coherence.

Our findings show that while real medical notes
still yield better downstream performance, syn-
thetic notes can also effectively train complex
multi-label classification models for medical cod-
ing. The synthetic notes exhibit a richer vocabulary
than real data, addressing common diversity issues.
A user study with medical professionals found no
significant loss in coherence, and privacy analyses
show minimal leakage risk. These results high-
light our framework’s potential to generate high-
quality, privacy-preserving medical notes, provid-
ing a strong foundation toward developing reliable
medical NLP tools that respect patient privacy.

https://github.com/uds-lsv/synthetic-ehr-notes
https://github.com/uds-lsv/synthetic-ehr-notes
https://github.com/uds-lsv/synthetic-ehr-notes


558

Figure 1: Example of ICD-10 structure

2 Background and Related Research

2.1 Electronic Health Records and Medical
Coding

EHRs are digital repositories that securely store
and share patient health data across healthcare
providers, supporting clinical decision-making
(Häyrinen et al., 2008). Among the structured el-
ements, such as lab results, or diagnosis codes,
EHRs also include unstructured components like
discharge summaries that document a patient’s hos-
pital stay, reasons for admission, diagnoses, and
treatments in free-text form (Wimsett et al., 2014).

EHRs typically have ICD-10 codes assigned by
the physician. ICD-10 stands for the 10th version of
the International Classification of Diseases (World
Health Organization, 2016) and is a globally used
coding system, comprising approximately 155,000
codes for diagnoses and procedures (Hirsch et al.,
2016). The coding scheme follows a hierarchical
structure consisting of four to seven characters as
illustrated in an example in Figure 1. This structure
allows for an organization into 22 distinct chapters
(based on the first three characters) specifying the
nature of the condition.

Assigning ICD-10 codes to medical notes is vi-
tal for administrative and analytical tasks (Edin
et al., 2023) but known to be labor-intensive and
error-prone due to the high amount of individ-
ual codes (Burns et al., 2012). Automating this
process via multi-label classification of discharge
summaries offers a scalable solution (Huang et al.,
2022). However, large code sets, data scarcity, long
document length, and class imbalance pose major
challenges (Edin et al., 2023).

2.2 Synthetic Data Generation

Since EHRs contain sensitive patient data known
as protected health information (PHI), including
names, birth dates, or social security numbers, ad-
ditional measures are needed to protect privacy
when using it for research or development. De-
identification addresses this by masking or remov-

ing PHI (Vakili et al., 2022). While it lowers pri-
vacy risks and retains utility for some tasks (Vakili
et al., 2022), limitations remain, such as the po-
tential for re-identification via quasi-identifiers and
utility loss (Yogarajan et al., 2020).

As an alternative, synthetic data, generated by
computational models, has gained significant at-
tention due to its potential to address challenges
related to privacy concerns, data sparsity, and bias
mitigation when used for model training (Jordon
et al., 2022). This work explores the emerging field
of synthetic free-text medical note generation that
became increasingly popular with advances in lan-
guage modeling (Rankin et al., 2020). The quality
of synthetic data is typically evaluated by fidelity
(realism), utility (usefulness for model training),
and privacy (protection from data leakage) (Budu
et al., 2024).

Several approaches have been explored for gen-
erating medical notes, starting with less complex
neural networks such as GANs (Guan et al., 2018),
LSTMs (Melamud and Shivade, 2019), and vanilla
transformers (Amin-Nejad et al., 2020), and pro-
gressing to more advanced transformer models
with hundreds of millions of parameters, including
decoder-only LLMs like LLaMA (Baumel et al.,
2024) and GPT variants (Kumichev et al., 2024;
Falis et al., 2024). There is not always a clear win-
ner; for instance, LSTMs have shown effectiveness
for downstream tasks such as named entity recogni-
tion (NER) when generating medical notes, while
LLMs were better at producing more fluent text
(Libbi et al., 2021). However, there is a clear trend
toward leveraging pretrained state-of-the-art LLMs
showing potential for a variety of different down-
stream tasks (Litake et al., 2024; Kumichev et al.,
2024; Vakili et al., 2025).

However, findings vary; for example, Falis et al.
(2024) highlight the limitations of zero-shot gen-
erations, noting lack of diversity and unnatural
phrasing that impaired performance in medical cod-
ing. Such discrepancies often reflect differences
in evaluation setup. For instance, the dataset used
by Kumichev et al. (2024) contained substantially
fewer unique codes than that in Falis et al. (2024).
The highly inconsistent choice and setup of down-
stream evaluation tasks complicates direct compar-
isons. Moreover, strong task performance does
not guarantee high data quality or generalizabil-
ity. Notably, synthetic data has proven useful for
training NER models despite being linguistically
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or clinically incoherent (Libbi et al., 2021), rais-
ing questions about the validity of using simple
downstream tasks as proxies for data quality. Fur-
thermore, privacy evaluation is often overlooked or
deferred due to difficulties in measurement. When
included, privacy is typically measured via disclo-
sure metrics (Belkadi et al., 2025), distance metrics
(Hiebel et al., 2023), or manual review (Libbi et al.,
2021). Establishing consistent benchmarks and
evaluation procedures is critical for progress and
meaningful comparison in future work.

Three recurring challenges emerge across stud-
ies. First, there is a privacy-utility trade-off: in-
creasing privacy often comes at the cost of reduced
utility, with synthetic data typically underperform-
ing on tasks involving real data (Melamud and Shiv-
ade, 2019; Baumel et al., 2024). Second, synthetic
notes often suffer from reduced diversity, charac-
terized by limited vocabulary that can impair per-
formance on downstream tasks (Libbi et al., 2021;
Hullmann and Hansson, 2024). Third, manual re-
views frequently identify clinical inconsistencies in
the generated text, indicating issues with coherence
(Libbi et al., 2021; Falis et al., 2024).

Hence, in this work, we focus on understanding
these challenges in the era of LLMs. To address
them, we present a new generation framework that
uses diagnosis code descriptions to instruction-tune
an LLM for producing high-quality synthetic notes.
Most similar to our work is the generation frame-
work MedSyn by Kumichev et al. (2024) that relies
on the incorporation of disease-specific symptoms
into the prompt. Unlike MedSyn, which relies on a
medical knowledge graph and is limited to a Rus-
sian dataset with few unique codes and one code
per note, our simpler, scalable approach avoids
external resources, enabling broader multilingual
applicability and support for more codes per note.
We conduct a thorough assessment of the synthetic
data to evaluate this approach on two languages.

3 Data and Methods

The main goal of this work is to generate synthetic
medical notes that ensure high utility and robust pri-
vacy protection, aiming at replacing real data and
analyzing how well they preserve these properties.

To achieve this, we propose a novel frame-
work (Figure 2) for conditional text generation, by
instruction-tuning LLaMA-3.1-8B on ICD-10 code
descriptions to produce versatile synthetic notes.
We employ this framework on both English and

Swedish data to test its effectiveness for both high-
and comparatively lower-resourced languages. The
evaluation involves four key components: compar-
ing synthetic and real notes for similarity, assessing
privacy preservation, evaluating utility in medical
downstream tasks, and analyzing readability and
medical coherence through a user study.

3.1 MIMIC-IV

This is an English dataset sourced from the Medical
Information Mart for Intensive Care IV (MIMIC-
IV) (Johnson et al., 2023),2 comprising 524,000
admissions from over 257,000 patients at Beth Is-
rael Deaconess Medical Center. It includes struc-
tured data and pseudonymized unstructured medi-
cal notes. Following Edin et al. (2023), discharge
summaries were filtered, and ICD-10 codes occur-
ring fewer than 10 times were excluded, yielding
122,279 documents and 7,942 unique codes. The
dataset was then divided, also in line with Edin et al.
(2023), ensuring broad code representation across
three subsets: a large training subset (MIMIC-L,
n=89,098, 72.9%), a small training subset (MIMIC-
S, n=13,378, 10.9%), and an evaluation subset
(MIMIC-E, n=19,802, 16.2%). To put the data in
a format suitable for LLMs, highly structured sec-
tions (e.g., lab results, medication lists) and repet-
itive or less informative content (e.g., discharge
instructions) were removed during preprocessing.

3.2 SEPR Corpus

This Swedish dataset is based on the Stockholm
EPR Gastro ICD-10 Pseudo Corpus II (SEPR II),3

derived from the Health Bank Infrastructure (Dalia-
nis et al., 2015) by Lamproudis et al. (2024). It
comprises 317,971 records from Karolinska Uni-
versity Hospital from 113,174 individual patients,
all related to gastrointestinal conditions and an-
notated with 415 unique ICD-10 codes. Again,
the data was split into the three subsets SEPR-L
(n=237,968, 76%), SEPR-S (n=47,783, 15%), and
SEPR-E (n=32,027, 10%). As the Swedish notes
consist solely of concise free-text entries, no addi-
tional preprocessing was conducted.

SEPR and MIMIC-IV differ significantly in
scope and granularity: MIMIC-IV covers many
medical domains, whereas SEPR is restricted to

2A training program must be completed to obtain creden-
tialed access to MIMIC IV.

3This research has been approved by the Regional Ethical
Review Board in Stockholm under permission no. 2007/1625-
31/5.
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Figure 2: Overall approach employed in this work

gastrointestinal conditions. Additionally, Swedish
discharge summaries are markedly more concise,
averaging just 12.5% of the token length of English
notes, and contain far fewer codes per document
(1.09 vs. 15.65) and unique ICD-10 codes overall
(415 vs. 7,942). Thus, cross-language comparison
can only be made subject to these disparities.

3.3 Synthesizing Medical Notes
We used LLaMA-3.1-8B as base model for gener-
ating synthetic medical notes, chosen for its strong
performance and computational efficiency. The
model was instruction-tuned using ICD-10 code
descriptions as prompts to enable:

(i) Content control: Ensuring generated notes
align with specified medical domains.

(ii) Diversity: Producing varied notes by altering
ICD-10 inputs.

(iii) Automatic labeling: Using ICD-10 annota-
tions for supervised learning.

We followed the Alpaca instruction-tuning tem-
plate (Taori et al., 2023), using English and
Swedish prompts based on ICD-10 code descrip-
tions as input, with outputs corresponding to dis-
charge summaries.

The ICD-10 codes from MIMIC-L and SEPR-
L were converted into descriptive texts serv-
ing as input and paired with real medical notes
as output to form the training dataset. Fine-
tuning was performed within the Axolotl frame-
work (OpenAccess-AI-Collective, 2024), apply-
ing QLoRA 4-bit quantization (Dettmers et al.,
2023) to reduce memory usage, and DeepSpeed
ZeRO Stage 3 (Rajbhandari et al., 2020; Rasley
et al., 2020) for efficient multi-GPU training. The
Swedish data followed the same workflow with
language-specific adjustments.

For inference, LoRA adapters were merged into
the base model. Generation was accelerated us-
ing vLLM (vllm-project, 2024), which optimizes

memory handling. Synthetic data was generated
using ICD-10 sequences from the large and small
MIMIC and SEPR datasets, leaving the evaluation
datasets aside for testing.

3.4 Fidelity Evaluation

Fidelity is measured by comparing statistical fea-
tures of synthetic and real MIMIC-S and SEPR-S
datasets to assess alignment in data distribution
and diversity. Additionally, a manual review of
MIMIC-S synthetic notes was conducted to eval-
uate structural and linguistic similarity to real dis-
charge summaries.

3.5 Privacy Evaluation

Following Libbi et al. (2021), we assess re-
identification risk in English data using ROUGE-
5 to quantify 5-gram overlaps between synthetic
and real MIMIC datasets, using the overlap be-
tween real MIMIC-S and real MIMIC-L as a base-
line. For Swedish, we apply the 8-gram overlap
method from Hiebel et al. (2023), comparing syn-
thetic SEPR-S to real SEPR-L. Real-real overlap
provides a baseline, and results are contextualized
using Hullmann and Hansson (2024), who also
used the SEPR corpus for synthetic note genera-
tion.

Both similarity metrics are designed to assess
memorization risks by determining whether the
synthetic data is excessively similar to real data,
beyond the typical overlap observed between two
real datasets.

3.6 Utility Evaluation

We evaluated the synthesized notes through the
medical coding task. This task was chosen due to
its complexity and its importance in clinical analy-
sis. With a high number of granular labels, accurate
coding demands capturing interrelated clinical de-
tails, making it a strong proxy for note quality. Fur-
thermore, the task can be seen as an inverse of the



561

generation process, already providing the ICD-10
annotations needed for supervised learning.

We employed the PLM-ICD framework (Huang
et al., 2022), which leverages domain-specific
BERT (Devlin et al., 2019) models with segment
pooling for long inputs and label-aware attention
(Vu et al., 2021) for fine-grained, label-specific
representations. Following Edin et al. (2023), we
used RoBERTa-PM (Lewis et al., 2020) for English
(with inputs truncated to 4000 tokens) and adapted
the setup for Swedish using SweDeClin-BERT
(Vakili et al., 2022). Each configuration was trained
three times to report mean performance, with sta-
tistical significance tested using two-sample t-tests.

Models were trained on both large (MIMIC-L,
SEPR-L) and small (MIMIC-S, SEPR-S) subsets in
real and synthetic form, using MIMIC-E and SEPR-
E for testing. To assess the suitability of model
choice within our framework, we compared syn-
thetic training sets from the base LLaMA-3.1-8B
model with those produced by domain-specific vari-
ants, namely OpenBioLLM-8B (Ankit Pal, 2024)
adapted to the biomedical domain and AI Sweden’s
LLaMA-3-8B (AI Sweden Models, 2024) adapted
to Nordic languages.

3.7 User Study

To evaluate readability and clinical plausibility,
medical professionals rated English and Swedish
synthetic and real notes on a bipolar 1–5 scale
across two dimensions: readability (from not natu-
ral at all to completely natural: could be written by
a doctor) and medical coherence (from not coher-
ent at all to Perfectly coherent: Symptoms, diagno-
sis, procedures, etc. fit together perfectly). Notes
were presented randomized to mitigate bias, and
raters were unaware that some texts were synthetic,
resulting in a blind test. High coherence ratings
would indicate that the synthetic notes effectively
capture ICD-10 content, demonstrating successful
content control via instruction-tuning.

For English, three real-synthetic pairs were sam-
pled based on matching ICD-10 sequences, result-
ing in six samples with each ranging from 300–600
words for manageability. Ten German medical pro-
fessionals participated as evaluators. None were
native English speakers, which should be taken into
account in the interpretation of the results.

For Swedish, four document pairs (100–200
words) were sampled and evaluated by four medi-
cal professionals, all native Swedish speakers.

Total
Docs

AVG
Sent/Doc

AVG
Token/Doc

AVG
Token/Sent

Total
Tokens

Unique
Tokens

Statistical Comparison real vs. synthetic MIMIC-S

Real 13,378 72 1,286 18 17,197,361 96,380
Synth 13,378 79 1,639 21 21,923,740 233,845

Statistical Comparison real vs. synthetic SEPR-S

Real 47,783 13.96 200 14 9,553,204 191,578
Synth 47,783 13.88 252 18 12,056,615 391,152

Table 1: Statistical comparison of the real and synthetic
MIMIC-S and SEPR-S datasets.

4 Results

In the following subsections, we present the evalu-
ation results of the synthetic data.4

4.1 Fidelity: Do synthetic and real data match
statistically?

Table 1 displays the results of the statistical compar-
ison. Synthetic MIMIC-S notes are longer, contain
more and longer sentences, and show significantly
higher lexical diversity than real notes by exceeding
137,000 more unique tokens, resulting in a type-
token ratio (TTR) almost twice as high. This is par-
ticularly notable since TTR typically decreases as
text length increases (Tweedie and Baayen, 1998).
Thus, the combination of high TTR and larger cor-
pus size indicates a high degree of lexical diversity
and contrasts prior findings that synthetic data tends
to be lexically limited (Libbi et al., 2021; Hullmann
and Hansson, 2024). Similarly, synthetic SEPR-S
notes are more verbose and diverse, with increased
token and sentence length and a 1% higher TTR.
Average sentence counts per document remain con-
sistent with the real dataset. These trends indicate
that instruction-tuning LLaMA results in the gener-
ation of varied content, even exceeding the lexical
range of the real data.

A manual review of MIMIC-S synthetic notes
confirmed strong structural and stylistic alignment
with real discharge summaries. The synthetic data
replicates real-world features such as medical ab-
breviations, typos, and pseudonymization practices.
However, some typical LLM artifacts were ob-
served, including repetitions, pronoun mismatches,
and occasional hallucinations. Although these arti-
facts were relatively rare, they reflect known LLM
limitations and might hinder its utility. Overall,
the synthetic notes closely mirror real datasets in
structure and style while offering increased lexi-
cal diversity, and decoding settings could further
control document length and verbosity if needed.

4Synthetic note examples are provided on GitHub.

https://github.com/uds-lsv/synthetic-ehr-notes/tree/main/data/synthetic_samples
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All Real/Synthetic Pairs Highest 122 Real/Synthetic Pairs

AVG Median Min Max AVG Median Min Max

MIMIC-S real 0.138 0.088 0.006 1.000 0.794 0.779 0.727 1.000

MIMIC-S synth 0.097 0.052 0.001 1.000 0.760 0.748 0.690 1.000

Table 2: ROUGE-5 Recall Scores: Real MIMIC-S and
Synthetic MIMIC-S vs. Real MIMIC-L, reported for
the full dataset and the 122 document pairs with the
highest scores.

Model 8-Gram Overlap
Hullmann and Hansson (2024) 0.02442
Synthetic SEPR-S 0.00179
Baseline 0.00488

Table 3: 8-gram overlap between synthetic SEPR-S and
real SEPR-L in comparison to baseline and Hullmann
and Hansson (2024)

4.2 Privacy: Are the synthetic notes overly
similar to the training set?

Table 2 compares ROUGE-5 recall scores across
real and synthetic datasets. Real MIMIC-S notes
were more similar to the training set (MIMIC-
L) than their synthetic counterparts, with average
scores nearly twice as high. Among the top 122
most similar pairs, the gap narrows but remains
consistent. Similarly, the 8-gram overlap between
synthetic SEPR-S and real SEPR-L was well below
the baseline and prior work by Hullmann and Hans-
son (2024) as shown in Table 3. This supports the
notion that our method produces outputs with low
memorization risk, likely driven by the increased
lexical variety of the synthetic data.

Overall, the synthetic datasets show low similar-
ity to training data; nevertheless, occasional long
overlaps may still persist and necessitate additional
safeguards, like differential privacy (Baumel et al.,
2024) or post-generation filtering, when working
with non-pseudonymized data.

4.3 Utility: Are the synthetic notes useful to
train a medical coding model?

Medical coding model performance across datasets
are presented in Table 4. Reproducing Edin et al.
(2023) with MIMIC-L training data, our results
closely match previous metrics, validating our pre-
processing strategy. The stable performance sup-
ports the idea that discharge summaries contain
redundant information for certain tasks.

To create a smaller real-data baseline, we trained
on MIMIC-S. As expected, its performance was
lower than MIMIC-L, but still achieved a micro
F1 of 48.2%, providing a benchmark for synthetic

data models.
Models trained on synthetic data underper-

formed compared to real-data models overall. Still,
the synthetic MIMIC-L model outperformed the
real MIMIC-S model, suggesting that synthetic
data scales well with size.

For SEPR data, the trend mirrors English re-
sults: real data outperforms synthetic, but the per-
formance gap remains moderate, with the PLM-
ICD model trained on synthetic SEPR-L perform-
ing better than the one trained on real SEPR-S.

Metric differences across languages, such as
higher EMR and lower Precision@k for Swedish,
likely stem from SEPR’s fewer codes per docu-
ment. Nonetheless, the relative performance gap
between real and synthetic data remained consis-
tent, supporting the generalizability of our frame-
work across languages.

Training on synthetic data from domain-adapted
LLaMA models did not lead to performance gains
for either medical or Swedish language adaptation.
These results suggest that fine-tuning LLaMA-3.1-
8B on discharge summaries alone is sufficient for
effective adaptation to both the domain and lan-
guage, reinforcing the validity of our framework
and model choice. Although additional domain-
or language-specific pretraining did not yield im-
provements in our experiments, exploring further
adapted models remains important, as adaptation
effectiveness might depend on the quality of data
and methods used for adaptation (Lu et al., 2024).

Overall, while synthetic data is currently out-
performed by real data in absolute performance, it
shows strong promise, especially as dataset size
increases. Given the ability to generate unlimited
synthetic data, this highlights significant potential
for synthetic data to replace real data in clinical
NLP applications eventually.

4.4 Error Analysis: What errors are in the
synthetic notes?

We analyzed errors on the MIMIC dataset to high-
light limitations when training medical coding mod-
els with synthetic data. Table 5 compares correct
predictions and error types between real and syn-
thetic MIMIC-L models. We differentiate between
within-family (WF) errors, where the wrong predic-
tions still belong to the same ICD-chapter as the tar-
get, and out-of-family (OOF) errors, where the pre-
diction falls within a different chapter. Both models
show a high proportion of WF errors (79.4% for
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Classification Ranking

AUC-ROC F1 EMR Precision@k R-precision MAP
Training Data Micro Macro Micro Macro 8 15

Edin et al. (2023) 99.2±0.0 96.6±0.2 58.5±0.7 21.1±2.3 0.4±0.0 69.9±0.6 55.0±0.6 57.9±0.8 61.9±0.9

Real MIMIC-L Short 99.2±0.0 96.6±0.1 58.7±0.4 22.8±1.8 0.4±0.0 70.0±0.3 55.1±0.4 58.0±0.4 62.0±0.5
Synth MIMIC-L **98.9±0.0 **94.8±0.0 *54.8±0.8 *15.9±0.7 0.3±0.1 **65.5±1.0 *50.9±1.1 *53.9±0.8 *56.9±1.0

Real MIMIC-S Short 96.9±0.4 83.5±1.7 48.2±1.7 3.8±0.8 0.1±0.0 59.7±1.7 45.1±1.7 46.0±1.9 46.4±2.3
Synth MIMIC-S 95.4±0.2 *77.0±0.9 *37.6±0.6 2.1±0.3 0.1±0.0 *48.3±0.6 *35.5±0.6 *35.8±0.7 *34.8±0.7

Real SEPR-L 99.3±0.1 97.0±0.2 60.2±0.9 23.4±1.1 48.8±0.7 12.3±0.1 6.9±0.0 60.4±0.7 71.9±0.7
Synth SEPR-L 98.8±0.2 **95.3±0.1 **54.7±0.6 ***14.3±0.7 *44.1±0.8 **11.7±0.1 **6.6±0.0 **54.5±0.5 *66.3±0.9

Real SEPR-S 98.5±0.0 92.2±1.2 52.4±0.5 15.0±0.9 40.5±1.2 11.5±0.0 6.6±0.0 52.1±0.8 64.4±0.6
Synth SEPR-S *98.1±0.1 89.7±0.8 **45.9±1.1 *8.2±1.3 *30.5±2.6 *10.9±0.1 **6.3±0.0 **45.3±1.4 **58.4±1.2

Medical Pretrained 95.7±0.6 80.8±5.0 36.3±0.7 1.7±0.1 0.0±0.0 45.6±0.7 33.5±0.7 34.2±0.6 33.1±0.9
Swedish Pretrained 98.3±0.0 92.0±0.3 48.8±0.1 10.8±0.2 36.4±0.2 11.2±0.0 6.4±0.0 48.2±0.2 61.0±0.2

Table 4: Results of medical coding models trained on different MIMIC datasets. Significance: *p < 0.05,
**p < 0.01, ***p < 0.001.

Real MIMIC-L Synth MIMIC-L

Correct Wrong WF OOF Correct Wrong WF OOF

176,270 107,514 85,356 22,158 162,939 116,232 94,733 21,499
62.1% 37.9% 79.4% 20.6% 58.4% 41.6% 81.5% 18.5%

Table 5: Counts of overall correct and wrong predic-
tions as well as WF and OOF family errors alongside
percentages for the real-data and synthetic-data MIMIC-
L models.

Figure 3: H1: Macro F1 vs. code frequencies in training
data of real MIMIC-S containing 20% noise in each doc-
ument (blue) and synthetic MIMIC-S (green) models.

real, 81.5% for synthetic), suggesting they capture
disease categories but struggle with fine-grained
distinctions. This might reflect code imbalances
and a lack of detailed clinical information in dis-
charge summaries. While the synthetic model
makes more errors in general, error patterns look
similar between models.

One possible reason for the synthetic model’s
lower performance is noise in the data. Two hy-
potheses were tested: (H1) noise is spread across
all synthetic notes, and (H2) only a subset is highly
noisy. To simulate noise, random word substitu-

tions were applied to real MIMIC-S data according
to each hypothesis. This was done for varying
percentages of noise, and the resulting data was
used to train medical coding models. To identify
the best-fitting noise pattern, F1 scores were plot-
ted against code frequency, a factor known for its
strong influence on performance (Edin et al., 2023),
and compared to synthetic model curves. The clos-
est match was found with 20% random substitution
across all documents as shown in Figure 3.

This speaks in favor of H1 and indicates that the
synthetic data carries a distributed level of noise ex-
plaining utility loss. This noise is likely stemming
from LLM artifacts like hallucinations, repetitions,
and differences in clinical phrasing. It also implies
that the high TTR may reflect noise rather than true
desired lexical diversity, highlighting the need for
more robust diversity metrics. Future work should
aim to reduce these artifacts while preserving di-
versity and privacy to enhance data quality.

4.5 User Study: Are the synthetic notes
medically coherent?

Figure 4 shows the ratings of all three English
document pairs. Real documents scored generally
slightly higher than synthetic documents in both
metrics, with an average score of 3.7 vs. 3.3 for
readability and 3.5 vs. 3.3 for medical coherence.
However, these differences were not statistically
significant (p ≥ 0.05), neither for the single docu-
ment pairs, nor on average.

As Figure 4 shows, evaluator ratings varied
widely, resulting in low agreement with mean pair-
wise inter-rater Cohen’s Kappa scores of 0.03 (read-
ability) and 0.06 (coherence), likely reflecting dif-
ferences in medical specialties, experience, and
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Figure 4: Comparison of readability and medical coherence scores averaged across participants for single document
pairs in the MIMIC study. Boxes show the interquartile range (IQR), with the black line as the median and whiskers
at 1.5× IQR. None of the differences are statistically significant with (p ≥ 0.05).

English proficiency. Still, all documents averaged
above 3 in both metrics, indicating acceptable qual-
ity. A strong correlation between readability and
coherence (Pearson: 0.76) indicates shared quality
factors. Swedish user study results mirrored the En-
glish study, with no significant difference in overall
ratings between real and synthetic notes.

Comparable ratings and moderate scores suggest
that synthetic notes are of decent quality and reflect
effective content control, coherently capturing ICD-
10 codes. Future work should involve a larger, more
diverse evaluator pool to confirm these findings and
better explain the observed disagreement.

5 Discussion and Future Direction

We present a framework for generating synthetic
medical notes that aims at balancing privacy and
utility by instruction-tuning LLaMA-3.1-8B on
ICD-10 codes. Compared to previous methods,
our approach stands out for its high privacy-
preservation and improved vocabulary richness.

Synthetic data consistently falls short of real
data in training medical coding models. However,
non-significant differences in medical coherence
evaluations and low memorization risk suggest its
potential as a general substitute. Larger evaluator
samples are needed to validate these findings and
clarify the observed low agreement. We hypothe-
size that the noise contained in the synthetic data,
which likely contributes to reduced utility, can be
offset by increasing training set size, potentially
matching real-data performance. We propose fu-
ture work to investigate and mitigate this noise by
minimizing distortions from real data and reducing
LLM-generated artifacts.

The simplicity of the framework makes it at-

tractive for adaptation to other models and lan-
guages. While our results demonstrate its effective-
ness across languages, further multilingual eval-
uation is needed, particularly given the lack of
transparency from recent open-source LLM cre-
ators regarding the inclusion and extent of specific
languages in the model’s pretraining data.

6 Conclusion

This work presents a scalable and privacy-
conscious framework for generating diverse syn-
thetic notes in both English and Swedish. By in-
struction tuning on ICD-10 codes, we address key
challenges in synthetic clinical data generation, no-
tably improving lexical diversity without compro-
mising coherence. Despite some loss in utility com-
pared to real data, our findings indicate that this
gap can be narrowed through larger training sets
and noise reduction strategies. Crucially, the model
performs well without explicit domain or language-
specific pretraining, underscoring its adaptability.
These results mark a step toward replacing sensi-
tive data with high-quality synthetic alternatives,
paving the way for safer, more accessible, and mul-
tilingual clinical NLP research.

7 Limitations

Key limitations of this work include the need for
deeper medical expert involvement, broader utility
evaluation, and critical assessment of biases in real
and synthetic data. Model comparisons were lim-
ited, and further work should explore alternative
architectures, fine-tuning strategies, and privacy-
preserving techniques. Developing standardized
benchmarks for synthetic medical data evaluation
remains an essential step.
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