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ABSTRACT

The challenge of generating coherent and novel MIDI
drumbeats conditioned on text prompts remains largely
unsolved, primarily due to the scarcity of well-annotated
datasets linking text and MIDI drumbeats. Existing mod-
els have made strides in AI-generated music, yet they often
fall short in producing high-quality drum beats that also
align well with textual prompts.

This study introduces a text-conditioned approach to gen-
erating drumbeats with Latent Diffusion Models (LDMs).
We use informative conditioning text extracted from train-
ing data filenames. By pretraining a text and drumbeat
encoder through contrastive learning within a multimodal
network we align the modalities of text and music closely.
Additionally, we examine an alternative text encoder based
on multi-hot text encodings. Inspired by music’s multi-
resolution nature, we train the MIDI autoencoder using a
novel LSTM variant, MultiResolutionLSTM (MRLSTM),
designed to operate at various resolutions independently.
In common with recent LDMs for image generation, we
also speed up the generation process and bring down the
generation time for a single drumbeat to 1.1 seconds 1 by
running diffusion in the autoencoder latent space.

We demonstrate the originality and variety of the gen-
erated drumbeats by measuring distance (both over bi-
nary pianorolls and in the latent space) versus the train-
ing dataset and among the generated drumbeats. We also
assess the generated drumbeats through a listening test fo-
cused on questions of quality, aptness for the text prompt,
and novelty. BERT model achieved quality and aptness
scores comparable to the dataset drumbeats (differences
of -1.99% and +5.64% respectively), while exhibiting a
22.26% improvement in novelty.

1. INTRODUCTION

Research in AI-generated music has seen fast progress in
recent years [1–6]. Some recent deep learning models
have successfully generated realistic-sounding music [7]
by training on large datasets like The Lakh MIDI Dataset

1 We used Intel(R) Core(TM) i7-7700 CPU @ 3.60/4.20GHz -
GeForce GTX 1050 Ti for generating a drumbeat.
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[8]. Although researchers have created models that can
generate drum accompaniments (see Section 2), creating
coherent and novel MIDI drumbeats conditioned on text
prompts remains a challenge due to a lack of a well anno-
tated dataset. In this research we show that such a model
can be trained by taking inspiration from state of the art
text-conditioned image generation models [9–12] and ex-
tracting descriptive tags from the folder structure.

Contrastive Language Image Pretraining (CLIP) jointly
trains a text encoder and an image encoder by aligning both
modalities in a common latent space. This latent space can
then be used for various downstream tasks, including zero-
shot and one-shot classification, as well as text-conditioned
image generation [9]. In the context of diffusion mod-
els, a text-conditioned Denoising Diffusion Probabilistic
Model (DDPM) utilizes text embeddings derived from the
CLIP-trained text encoder to guide the image generation
process. Specifically, the text prompt is first encoded into
a latent representation, which is subsequently integrated
into the denoising steps of the DDPM. This integration
helps to steer the reverse diffusion process, ensuring that
the generated images are semantically aligned with the in-
put text [12].

Recent advances in Text-Conditioned Image Generation
using diffusion models have laid the groundwork for gen-
erative systems, particularly when applied within latent
spaces as opposed to the more natural pixel space [12] in
the case of images. This shift to latent space has the ben-
efit of dealing with a more compressed representation of
data, which can lead to more efficient processing and the
pretrained encoder-decoder can lead to potentially supe-
rior generation outcomes using the compressed representa-
tions. The adoption of diffusion techniques in latent space,
along with conditioning diffusion on extraneous variables
like text, not only improves the model’s stability during
training but also enhances the quality and relevance of out-
puts. This paper builds upon these advantages for the case
of midi drumbeat generation.

Conditioning the deep learning generative model on text
in the case of music or drumbeat generation is not triv-
ial. As opposed to the case of images, which have rich
datasets linking text and images, music lacks such datasets.
Commonly used MIDI datasets such as The Lakh MIDI
Dataset [8] and the Magenta Groove MIDI Dataset [13]
do not offer the rich text required to train such a model. To
circumvent this issue, we work with the Groove Monkee
dataset which provides descriptive filenames for its MIDI
drumbeats (see Section 3). To deal with this text we in-
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Figure 1. Text conditioned MIDI file generation flow incorporating all elements of the model. The overall flow involves
converting text prompts to text embeddings. These text embeddings along with noise (𝑍0) are passed into a Latent Diffusion
Model, and decoded to produce the final drumbeat.

vestigate both a large language model (LLM) with CLIP-
like pretraining, and a multi-hot keyword-based approach
(see Section 4). Either approach gives a text encoding that
can be used to guide drumbeat generation. Figure 1 shows
the overall architecture of our system. The provided text
prompt is converted into text embeddings using the text
encoder described in Section 4.1. The random noise, de-
noted as 𝑍𝑡max

, along with these text encodings are autore-
gressively passed into the LDM that iteratively generates
𝑍𝑡max . . . 𝑍0. 𝑍0 is then passed into a pianoroll Decoder
that generates the final pianoroll, a real-valued matrix, rep-
resenting the drumbeat. This pianoroll is converted back
into a MIDI file.

2. RELATED WORK

LDMs have been used in the image domain with applica-
tions in the real world. Rombach et al. [12] have demon-
strated the generation of high-resolution images using a
similar architecture.

The translation of these methods into music is not trivial.
Firstly, music lacks such a rich dataset of text and sym-
bolic music. The Lakh MIDI dataset lacks textual con-
tent which is required to train such models. The Expanded
Groove MIDI Dataset [14] does offer annotations for each
drumbeat in the form of genre tags and bpm, it lacks more
detailed information about the parts of the drumset that
were used for each drumbeat.We address this by providing
a novel mechanism to take advantage of an implicit form
of labeling present in a previously unused dataset (see Sec-
tion 3), which we have found to be of higher quality than
the others.

Secondly, the data distribution of images and music is
very different. Symbolic music in the form of a pianoroll
is very sparse, in contrast to image data. The relevant
features in music span multiple bars, containing both lo-
cal rhythmic patterns and long-term cross-bar dependen-
cies. For instance, while note onsets and durations within a
bar represent local temporal features, musical phrases also
evolve across bars to give long-term dependencies. In con-
trast, computer vision is primarily driven by local features,
motivating architectures such as CNN [15]. We address
these issues by designing an LDM model based on RNNs
as opposed to CNNs in order to better capture temporal
features in music. We take this a step further by creat-
ing a novel feature-extracting LSTM layer which works at

multiple temporal resolutions. Thus, we demonstrate that
LDMs can work for a different data distribution other than
images, i.e. drumbeats.

While research has shown that a good lower-dimensional
latent representation of drumbeats can be learned by a Vari-
ational Autoencoder (VAE) [16–19] and used for drum-
beat generation by interpolation in the latent space, we
aim to go beyond this by introducing diffusion, sequence
modelling, and text-conditioning. In contrast to Beat
Blender [19] we also include drum velocity which greatly
expands expressivity.

Researchers have also used methods other than AEs
to generate novel drumbeats and drum accompaniments.
Both Kaliakatsos-Papakostas [20] and Hoover and Stan-
ley [21] use evolutionary algorithms to generate drums: in
one case to achieve conceptual blending, in the other for
interactive control taking a “scaffold” from existing instru-
mental tracks. Dahale et al. [6] generate drumbeats as ac-
companiments by conditioning them on other instruments
like string, bass, etc using the Lakh MIDI dataset. Their
model does not have a text conditioning element.

Makris et al. [22] address the challenge of text-
conditioned drumbeat generation using a novel text encod-
ing scheme and a sequence-to-sequence architecture that
utilizes a Bidirectional Long Short-Term Memory (BiL-
STM) Encoder and a Transformer-based Decoder. Other
methods like MuseCoco [23] generate symbolic music by
extracting music attributes from text. We diverge from
MuseCoco by also training a LLM based text encoder
which works with natural language rather than just key-
words and musical attributes. While their output contains
more than just drums, their generation time is much high
at 50 seconds for a 43 second music.

Other systems such as JukeDrummer [24] work with au-
dio signals instead of symbolic music, often using VQ-
VAE. We diverge from this research both from the per-
spective of output format and the underlying generation
method.

Yet other existing research focuses on pitched music as
opposed to drumbeats, e.g. [25]. These authors have shown
that the text encoder, learned by joint contrastive training
of a music encoder and text encoder, is meaningful for
downstream tasks. These results are consistent with the
image-text case [9]. We take advantage of these findings
for the drumbeat generation case.



Sample Paths of MIDI files
from the dataset

Extracted Keywords

Retro Funk GM/116 Say
It/Fills/116 Say It Ride Fill
11.mid

’Fills’, ’Funk’, ’Retro’,
’Ride’, ’Fill’, 116BPM

World Beats GM/Layered
Beats/4-4 Layered Beats/145
Latin Rock 02.mid

’4-4’, ’Latin’, ’Rock’,
145BPM

Progressive GM/5-4
Grooves/180 5-4 02 F1.mid

’Progressive’, 180BPM

Table 1. Example MIDI filepaths from the dataset along
with their extracted keywords.

3. DATASET

For the development and evaluation of our model, we use
the Groove Monkee 2 dataset, a collection of MIDI drum
loops. This dataset has a wide range of styles and genres
like Rock, Blues, Latin, African, Electronic, etc., and song
parts such as Verse, Chorus, and Fill. The dataset includes
a total of 37,523 MIDI drum loops, including a variety of
time signatures. The dataset is offered in a nested folder
structure with each folder along with the MIDI file labeled
accordingly. We use the 11,340 samples which are in sim-
ple time signatures as opposed to compound time signa-
tures.

3.1 MIDI Preprocessing

To use MIDI in a typical deep learning setting, we typi-
cally convert it to a pianoroll format as follows. We follow
a previously described lossy procedure [16]. We extract
metadata from the Groove Monkee MIDI files, such as the
file’s resolution, BPM, time signature, and track length in
both beats and ticks. We assume that 128 time-slices are
sufficient to represent 4 bars. Loops are tiled to give a stan-
dard length of 4 bars. We assume 9 drum channels (kick,
snare, closed hi-hat, open hi-hat, ride, crash, low-tom, mid-
tom, high-tom) are sufficient to represent the large majority
of tracks. All drum types (multiple kicks, snares, hi-hats,
bongos, etc.) are mapped into one of the 9 channels. We
create an array of 128× 9 float values. A value of zero in-
dicates no event, and a non-zero value indicates a note-on
event. Note-off events are not represented but are rarely
needed in drumbeats.

3.2 Text Processing

The textual metadata for our model was extracted from the
hierarchical folder structure of the Groove Monkee dataset,
which organizes MIDI files into folders and subfolders
based on genre and other descriptive characteristics. Each
MIDI file’s filepath includes information indicative of its
genre as well as specific attributes of the drumbeat it con-
tains (see Table 1 for examples). From this path, common
identifiers such as “Groove Monkee", “GM", “Bonus",
etc., were removed, resulting in a unique string for each
MIDI file. This approach allowed us to utilize the full path
names as a proxy for the musical genre and characteristics

2 See Ethics Statement.

of the drumbeats, under the assumption that the structured
naming convention and folder organization provide a rep-
resentative context for each MIDI file.

4. METHOD

We first train an AE model on drumbeat data, as described
in Section 4.2. The encoder maps from the data space to
a latent space, and the decoder later maps back. A large
language model (LLM) text encoder which embeds the
text information into text embeddings is described in Sec-
tion 4.1. We also hypothesized that due to the keyword-
type text in the dataset, an alternative, training-free text
encoder based on keyword multi-hot encoding could work
as an alternative to the LLM, and this is described also. The
DDPM model which runs the denoising process, guided by
text, is described in Section 4.4. The training algorithm is
as outlined in Algorithm 1.

Algorithm 1 Training Algorithm: Text-Conditioned MIDI
Drumbeat Generation

1: Construct the text representation 𝑇 (𝑤) for each input
text 𝑤 using either:

1: A pretrained BERT model to extract contextual
embeddings.

2: A multihot encoding indicating the presence of
predefined keywords in 𝑤.

2: Train a pianoroll encoder and decoder 𝐸 and 𝐷 using
reconstruction loss.

3: for each (pianoroll 𝑚𝑖, text 𝑤𝑖) in Dataset do
4: Get text embeddings 𝑇 (𝑤𝑖).
5: Get the latent vector 𝑍0 for 𝑚𝑖 using 𝐸(𝑚𝑖).
6: Add noise to 𝑍0 to give 𝑍1 . . . 𝑍𝑡max

.
7: Train the DDPM model to predict 𝜖𝑠 := (𝑍𝑡 −

𝑍𝑡−1), given 𝑍𝑡, 𝑇 (𝑤𝑖), and timestep 𝑡.
8: end for

4.1 Text Encoding

The text information corresponding to each drumbeat is
extracted by converting the path (including the filename)
for each MIDI file into a string that represents that particu-
lar MIDI file. Given that the text is more oriented towards
keywords rather than natural language, we chose to explore
and compare two alternative methods for generating text
embeddings.

4.1.1 Contrastive Language-MIDI Pretraining

As is the case with CLIP [9], we learn a multi-modal em-
bedding space by jointly training a MIDI encoder and a
text encoder. The model is trained to minimize the cosine
similarity between 𝑁2 −𝑁 contrasting pairs 𝑚𝑖 and 𝑡𝑗 (i
̸= j), while maximizing the cosine similarity between 𝑁
matching pairs 𝑚𝑖 and 𝑡𝑖. The loss function is a symmet-
ric cross entropy loss over the similarity scores, i.e. both
over 𝑁 MIDI embeddings given the text and 𝑁 text em-
beddings given the MIDI file. Figure 2 contains the over-
all architecture of this pretraining which is similar to the
original CLIP approach except for a few key differences,



Figure 2. Pretraining both Text and MIDI encoders to cre-
ate a shared latent space for text and MIDI pianorolls, sim-
ilar to CLIP [9]. The MIDI encoder is discarded after train-
ing and only the text encoder is used later.

i.e. we replace the image encoder with a MIDI encoder.
While the MIDI encoder is trained from scratch, the text
encoder consists of a single projection head over the pre-
trained ‘bert_uncased_L-4_H-512_A-8’ embeddings. The
weights for the BERT model are frozen at the time of train-
ing and only the projection head is trained.

4.1.2 Multi-hot text embedding

Since the nature of our text data is somewhat keyword-like
rather than complete sentences in natural language, we cre-
ated an alternative keyword-based method. We created a
curated list of 57 keywords by taking the 95% percentile
of musically-relevant keywords in the text data. For each
text input, we created a multi-hot binary vector, where a
position in this vector is hot/active if the corresponding
keyword is present in the text. We also append the bpm
as an integer if present in the text prompt in the form of
either a 3 digit number or the 3 digit number immediately
succeeded by “bpm”.

Similar to the text encoder trained in the previous sec-
tion 4.1.1, the denoising model (discussed in 4.4) ingests
the textual information in the form of a Multihot Text Con-
text Vector. This technique allows for the encoding of
multiple textual descriptors simultaneously, affording the
model a simple view of the textual context. Such an encod-
ing scheme makes it easier for the model to extract textual
clues required to guide the denoising process.

The limitations of this approach are that firstly, there is a
limited number of keywords that can be provided as text to
the generation model; secondly, the multi-hot vector does
not represent natural language, so for example, a text input
like “No Ride Cymbals” would yield a vector where the
“Ride Cymbal” position is hot.

4.2 Autoencoder

For LDM, we train a MIDI Auto-Encoder (AE) which can
create a compact representation of a drumbeat. Just like
a typical AE, the encoder transforms pianoroll drumbeats
into a latent variable 𝑍, which is then subsequently de-
coded back into the pianoroll space. The model is trained
on reconstruction loss. Note that the MIDI encoder in dis-
cussion is different from the MIDI encoder in section 4.1.1

Figure 3. We train an Autoencoder (AE) for pianoroll
drumbeats using reconstruction loss. The MIDI encoder
feature extractor consists of a novel 3-stacked MRLSTM
which looks at the MIDI file at different resolutions. While
the decoder uses 2 LSTMs with a linear layer.

which was not trained on reconstruction loss but rather to
link text and MIDI onto a common latent spaces using
contrastive loss. The AE operates on a 128×9 pianoroll
representation, where each entry is a continuous value be-
tween 0 and 1, indicating the velocity of a predicted note-
on event. During MIDI file generation, outputs below a
threshold of 5/128 are set to zero to remove low-intensity
activations. Figure 3 describes the architecture of our AE.

4.3 MultiResolutionLSTM

Motivated by the multi-resolution nature of music, we use
Multi-Resolution LSTM (MRLSTM) component as part of
the encoder. It is designed to analyze pianorolls at multi-
ple temporal resolutions. In our implementation, the MRL-
STM works at resolutions of 1:1, 1:2, and 1:4. The lowest
resolution (1:4) focuses on every fourth time-slice, which
in a typical simple-time rhythm will be of higher metric
weight. By using three LSTM networks to analyze the midi
files at different resolutions, the MRLSTM divides the mu-
sical information into segments which are more closely
aligned with musicology. The first LSTM assesses the en-
tire sequence of 128 timesteps to understand the finer mu-
sical structure. Subsequently, the second LSTM analyses
every other beat capturing the intermediate rhythmic pat-
terns. Lastly, the third LSTM focuses on every fourth beat
aligning with significant metric positions according to mu-
sic theory. Both 1:2 and 1:4 LSTMs work with a shifting
start position to ensure all beat positions are covered. This
approach allows our model to grasp both the macro and mi-
cro rhythmic and melodic nuances, ensuring a richer recon-
struction of midi drumbeats. We found that the Encoder
performed better both in training and test reconstruction
loss when using the MRLSTM. The generated midi files
had a tighter metric structure in terms of bass drums and
high hats using the MRLSTM as compared to a normal
LSTM. We provide the PyTorch module for MRLSTM as
a direct replacement of LSTM as part of our code 3 .

3 https://github.com/pushkarjajoria/Text-Conditioned-Drumbeat-
Generation/blob/main/Midi_Encoder/model.py#L10



4.4 Diffusion in Latent Space

To improve the stability and speed [12] of our diffusion
process, we implement diffusion within the latent space
created by our AE described above. The LDM is trained to
learn the conditional probability distribution

𝑝𝜃(𝜖|𝑍𝑡, 𝑡, 𝑤) (1)

where 𝜖 is the noise present in the noised latent variable
𝑍𝑡 after 𝑡 timestep of adding noise, with this process being
conditioned upon textual information in the form of text
embeddings 𝑤. This enables the iterative and autoregres-
sive denoising of a randomly sampled 𝑍𝑡, progressively
estimating 𝑍𝑡−1 through to 𝑍0, thus refining the generated
output with each step.

While at sampling time, 𝑍𝑡 is sampled from a Normal
Distribution, at training, we use the MIDI encoder dis-
cussed in Section 4.2 to generate 𝑍. This latent embedding
is then noised as per the noising schedule and by sampling
a 𝑡 between 1-1000 to create 𝑍𝑡. The loss for each step is
computed using the mean squared error between 𝜖 and the
predicted noise, 𝜖.

4.5 Model & Training Details

The denoising model consists of 3 linear layers with batch
normalization and ReLU activation. The input to the first
linear layer is the concatenation of 𝑍 along with sinusoidal
positional encoding of the timestep 𝑡 and the text embed-
dings (either using the multi-hot text embeddings or the
text embeddings as per Section 4.1.1). The autoencoder la-
tent encoding after 𝑡 timesteps of noising, 𝑍𝑡, is of 128 di-
mensions. We experimented with 64, 128 and 256 dimen-
sional latent vectors and found 128 dimensions suitable.
We also pass an empty text embedding for 5% of training
steps to encourage the model to predict the noise without
the text embeddings. This is especially useful when there
are no active musical tags in the text prompt as per our
curated list.

5. EXPERIMENTS AND RESULTS

In this section, we describe how we tested our drumbeat
generation deep learning model for creating MIDI drum-
beats.

Firstly, following [26] we have compared distributions of
inter-set and intra-set distances in different setups, visu-
alised as probability density functions with kernel smooth-
ing. We measure how dissimilar the generated drumbeats
are, both from other generated drumbeats for the same text
prompt (intra-set) and also from the most similar elements
of the dataset (inter-set).

Lastly, we evaluated the quality of the generated music
through a listening test. For this case, we avoid the prob-
lems associated with “musical Turing tests” [26] by focus-
ing on questions of quality, suitability for the text, and nov-
elty, rather than questions of artificiality.

While our model explicitly predicts note velocities rather
than binary activations, we do not evaluate them in iso-
lation. Instead, velocity variations are implicitly assessed

through the listening test and as part of latent space com-
parisons.

5.1 Experiments

We create 8 text prompts – namely, latin triplet, 4-4 elec-
tronic, funky 16th, rock fill 8th, blues shuffle, pop ride,
funky blues, and latin rock—designed to capture a di-
verse range of genres and rhythmic elements present in
our dataset. These prompts were selected based on pre-
liminary analyses that identified them as representative of
the most common rhythmic patterns and styles. For each
text prompt, 10 drumbeats are generated using our model.
We then compute the

(︀
10
2

)︀
= 45 pairwise distances us-

ing two metrics: Hamming Distance on the binarized pi-
anorolls and Euclidean Distance in the latent space of the
autoencoder (AE). The Hamming distance is applied to the
binary representations of the pianorolls to capture differ-
ences in rhythmic onsets and pattern structures, thereby
providing a measure of similarity or dissimilarity for pi-
anorolls. In contrast, the Euclidean distance in the AE
latent space quantifies similarity in a compressed feature
space that captures higher-level, abstract structural varia-
tions between drumbeats. It provides evidence that the en-
coder is learning meaningful representations and forming
clusters that reflect the inherent structural variations in the
drumbeats, rather than collapsing them irrespective of the
text input.

We also compute the distance of the generated drumbeats
from the closest 1% of the drumbeats in the dataset for
each text-prompt variant. The Hamming Distance when
computed with the dataset, helps in detecting overfitting;
if the model were simply reproducing training examples,
the pairwise distances would be very low. Also, the pair-
wise distances show that the generated drumbeats have va-
riety, i.e. the model does not always generate the same
beat for the same prompt. While the Euclidean distance in
the AE latent space quantifies the similarity in high-level
structural features. These measures enable the reader to
assess whether the generated outputs are similar to or de-
viate from the training data, thereby offering insights into
the balance between fidelity towards the text prompt and
novelty from the dataset. The results, summarized in the
third set of columns denoted by “Generated vs Dataset" in
Figure 5 indicate that the generated drumbeats are not mere
replications of the training data.

We also study the effects of text-conditioning by analyz-
ing the Hamming distances between drumbeats generated
from the same text prompts compared to those generated
from different text prompts. Notably, the final column of
Figure 5 reveals a crucial insight: even when utilizing iden-
tical text prompts to generate multiple drumbeats, the re-
sulting drumbeats exhibit differences. This variation high-
lights the variability inherent in the text-conditioned drum-
beat generation model.

Despite this variability, our further analysis, illustrated
in Figure 4, demonstrates a discernible impact of text-
conditioning on drumbeat generation while using the Ham-
ming distance. In the Euclidean space, while the same-text
drumbeats do not cluster as closely as one might antici-



Figure 4. Density plots comparing Hamming (top) and
Euclidean (bottom) distances of drumbeats generated from
identical versus different text prompts.

pate, given the autoencoder’s design and training objective
focused on just reconstruction loss, there remains a sub-
stantial difference between the distances achieved in the
same-text and different-text conditions. This outcome sug-
gests that, although the autoencoder does not explicitly en-
code genre-specific characteristics or ensure close cluster-
ing of similar genres in the latent space, text-conditioning
nonetheless exerts a subtle but significant influence on the
generated drumbeats.

5.2 Listening Test

While our empirical evaluation demonstrates that the gen-
erated drumbeats exhibit substantial variation and are not
mere replications of the training dataset, these quantitative
metrics alone are insufficient if the outputs do not exhibit
the qualities of authentic drumbeats. After all, even a ran-
domly constructed pattern could deviate from the dataset
while failing to sound musically convincing. To address
this aspect, we conducted a listening test to assess the qual-
ity and musical validity of the generated drumbeats. We
conducted a survey comprising 40 drumbeats created us-
ing 10 randomly selected text prompts from our dataset,
resulting in four variants for each prompt: (1) the original
dataset drumbeat which matches the prompt, (2) a drum-
beat generated by LDM via our multi-hot text encoding,
(3) a drumbeat generated by LDM via our BERT text en-
coding, and (4) a drumbeat generated by LDM with an
empty text encoding 4 , serving as a control example.

Each variant was randomly assigned an order between 1
and 4, with assignments varying for each text prompt to
prevent subjects learning the assignment. This ordering
was consistent between all participants. Participants were
allowed to go back to change their responses.

4 For empty text encoding, we use a zero tensor.

Figure 5. Comparison of Hamming and Euclidean dis-
tances across dataset and generated drumbeats. The first
two sets of columns are to provide a sense of scale. The
first set of column values are for drumbeats from the
dataset with the same text multi-hot vector (even though
the original full text may be different). For the second set
of column drumbeats are generated by randomly sampling
2 texts from the dataset. The third set of columns denoted
by “Generated vs Dataset” focuses on novelty or general-
ization, by comparing generated drumbeats with the clos-
est 1% of the dataset drumbeats. The last set of column
measures variety by comparing multiple drumbeats gener-
ated from the same text encoding.

Drumbeats ranged from 8 to 15 seconds in length, lead-
ing to an estimated survey completion time of 30 to 60
minutes. We recruited subjects both in-person and online.
Each participant was selected based on their experience in
at least one of the following areas: music performance,
music composition, or musicology. Subjects were blind
to the specifics of the drumbeat generation methods along
with the nature of each variant. There were three evalua-
tion criteria: quality, aptness to the given text prompt, and
novelty. These were each assessed using a Likert scale. To
mitigate subjective bias in our listening test, we provide
detailed descriptors for each Likert scale point, ensuring a
consistent evaluation framework. For quality, the ratings
range from Poor: Unfit for musical composition, to Excel-
lent: Perfectly suited for a musical composition as is. For
aptness, ratings range from Not at all: Completely irrele-
vant to the text, to Perfectly: Fully relevant and accurately
reflects the text. For novelty, the scale ranges from Not
novel at all: Very common and I have heard many similar
beats, to Extremely novel: Unique and I have never heard
anything similar. These descriptors help anchor partici-
pant judgments, reducing variability in subjective interpre-
tation. We received a total of 14 responses to our survey,
out of which 12 were fully completed. This makes a to-
tal number of questions answered across all categories to
be 480. These 480 answers (i.e. 120 answers for each of
the four categories) were used for all subsequent statistical
evaluations.

The results, depicted in Figure 6, indicate that partici-
pants generally perceived the Quality of each category of
drumbeats as comparable and satisfactory. Thus, generated
drumbeats were as good as professionally-recorded ones.
Concerning Aptness, as hypothesized the generated drum-
beats were much more apt to the text, versus the control
drumbeats which were generated by ignoring the text. The



Figure 6. The aggregated responses from N=12 participants of
the survey rating each category of drumbeat on Quality, Aptness
to the Text Prompt and Novelty. The y-axis shows the mean score
based on the Likert scale of 1-5, magnified between 2.5-4. The
error bars denote ±1 SEM. The results show that the Quality
across all categories is roughly the same, showing that the model
is able to generate high-quality drumbeats. The BERT model val-
ues for Aptness to text and Novelty are slightly better than those
for drumbeats directly from the dataset. The multi-hot text model
gives worse Aptness and Novelty.

Figure 7. Two drumbeats generated with different text prompts
“Rock slow 4-4” and “Rock slow 4-4 with fill”, as shown:
this illustrates that the adding the term “with fill” has the
expected effect. These drumbeats can be heard on https://
soundcloud.com/user-32049071/rock-slow-4-4
and https://soundcloud.com/user-32049071/
rock-slow-4-4-with-fills

BERT model’s outputs also received higher Aptness scores
than the drumbeats from the datatset, which was not ex-
pected, and is a strongly positive result for our model. The
BERT model, in particular, was noted for its ability to gen-
erate drumbeats that were perceived as high in Novelty.
It is also worth mentioning that the drumbeats originat-
ing from the dataset, which were created by human mu-
sicians, received the lowest scores for Novelty, along with
the multi-hot text encoder.

6. CONCLUSION AND FUTURE WORK

In this study, we developed a system for generating drum-
beats conditioned on textual prompts using Latent Diffu-
sion Models. We also presented MRLSTM, a new vari-
ant for LSTM that works at different resolutions which is
better suited for symbolic music. The results demonstrate
the system’s capability to produce high-quality, coherent

drumbeats that align with human expectations given a text
prompt. Analysis from both the Listening Test and the ex-
perimental data in Figure 5 confirms the system’s capabil-
ity to generate new drumbeats. Figures 4, 7, and 6 illustrate
that both experimentally and through human evaluation,
the generated drum beats are significantly impacted by the
input text and compete in aptness with professional drum-
beats. Participants in the listening test rated the quality
of these drumbeats as comparable to those in the Groove
Monkee dataset, underscoring our model’s ability to cre-
ate drumbeats that are as good as human-generated ones
across three criteria. The use of diffusion in the latent space
enhances the quality and generation speed and opens pos-
sibilities for real-time integration. We have made the code
along with some cherry-picked 5 generated samples avail-
able on GitHub 6 and SoundCloud 7 .

We suggest in the future the text prompt generation could
be improved by employing prompt augmentation tech-
niques to achieve better embeddings of the keyword-like
text in a musical context. LLMs models like BERT are
better suited for natural language and hence such augmen-
tation may also result in better text embeddings. This could
be done in a controlled manner using current LLMs to
convert the keyword like text into more free flow natural
language. Conducting a larger-scale study in a more con-
trolled environment will provide more reliable data, pro-
viding more insight into the human perceived capabili-
ties of the system. The MRLSTM shows great promise
and could benefit from an ablation study on different tasks
in Music Generation and Music Information Retrieval for
symbolic music to further comment on its efficacy. The ob-
served differences in the Latent space between the Same-
Text and Different-Text conditions warrants further inves-
tigation into how text prompts shape the musical output.
Investigating more by isolating the dimensions with high
variance might yield some meaningful insights about the
latent space and hence on the impact on text conditioning
in the latent space.
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product. A free demo version of the dataset is available
from Groove Monkee, enabling the reader to test our code.
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