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ABSTRACT
Transformer neural networks have shown remarkable success
on standard automatic speech recognition (ASR) benchmarks.
However, they are known to be less robust against domain
mismatch, particularly with air traffic control (ATC) speech
data. In the ATC domain, transformer-based ASR systems
do usually not transfer across different datasets. The reasons
for poor transferability across ATC datasets remain unclear.
Our study investigates the influence of acoustic variability
and lexical differences on the ASR performance across vari-
ous ATC datasets. By fine-tuning and evaluating wav2vec 2.0
on synthetic ATC datasets, we examine the effect of acoustic
variability on the model performance. Furthermore, we as-
sess the effect of lexical differences by correlating language
model perplexity with performance. Our findings reveal that
a combination of acoustic and lexical mismatch causes the
bad inter-dataset transferability and give insights on how to
improve future ASR models for ATC.

Index Terms— noise, lexical differences, air-traffic con-
trol, ASR, wav2vec 2.0

1. INTRODUCTION

Automatic speech recognition (ASR) is the first step in a
speech-processing pipeline for air-traffic control (ATC) com-
munication. ATC communication consists of instructions
from an air-traffic controller (ATCO) to a specific pilot and
read-back from that pilot 1. In recent years, several corpora
for ATC-ASR have been gathered [1]. But apart from the
ATCOSIM corpus [2] and an one-hour chunk of the ATCO2
corpus [3], datasets are either not available without a fee or
not publicly available at all. Since ATC communication is
formalized and has a unique phraseology [4], out-of-domain
(OOD) trained ASR models transfer poorly to ASR data
[5, 6]. Despite these challenges, some ATC-ASR models have
been developed in recent years. While earlier models rely on
Kaldi [7], newer approaches are based on pretrained trans-
former models like wav2vec 2.0 [5]. Although those models
are build on several hours of training data, that even incorpo-
rate non-publicly available data, high word error rate (WER)
variations in-between different ASR benchmark corpora have

1Communication examples: https://wiki.flightgear.org/ATC phraseology

been observed [7, 1, 5]. Previous works on ATC-ASR focused
therefore on using newer or more parameter-rich models to
increase the overall performance on the benchmark datasets.
In contrast to these works, we will explore the causes for the
poor transferability across the different ATC datasets at the
example of wav2vec 2.0. This will not only give a better
understanding on how to interpret the WERs reached on the
individual benchmark datasets, but also allow to develop bet-
ter ATC-ASR models in the future. In the following sections,
we analyze the influence of the acoustic variability. Further-
more, we model the acoustic variability by adding Gaussian
noise of different levels to text-to-speech (TTS) generated
versions of the datasets. Regarding the lexical differences,
we analyze intra and cross-dataset perplexities and out-of-
vocabulary (OOV) rates. To get a better understanding of the
wav2vec 2.0 adaptation to the ATC corpora, we additionally
analyze the internal changes of the wav2vec 2.0 architecture
during finetuning on the different ATC corpora. In the next
section, we will elaborate related studies in the fields of ATC
and explainability of transformer-based ASR.

2. RELATED WORK

Zuluaga-Gomez et al. have trained wav2vec 2.0 and XLS-R
for ATC speech recognition and provide results over differ-
ent ATC datasets [5], the resulting WERs of their best model
still show a significant variation over the test datasets. One
way to make wav2vec 2.0 more robust has been introduced
by Zhu et al. [8]. They force the feature encoder to gener-
ate speech representations for a noisy speech input, that re-
semble representations for clean speech. The resulting model
has a superior noise tolerance in comparison to the baseline
wav2vec 2.0 model. This shows on the other hand the sensi-
tivity of the standard transformer-based ASR models to noise.
Hu et al. [9] have build on this work to develop a wav2vec
2.0 based model, that does speech enhancement without in-
troducing artifacts that deteriorate the ASR performance. A
method to deal with the low availability of labeled in-domain
data has been proposed by Hsu et al. [10]. They have shown,
that if there is no in-domain data available for finetuning,
using unlabeled in-domain data during pretraining can give
a significant performance improvement. For our wav2vec
2.0 feature analysis, we build on the following two previous
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Table 1: Word and character error rates across the different ATC datasets depending on the training set. All scores are generated
by finetuning and testing wav2vec2-base on the datasets, except for the last row, where wav2vec2-base-960h is used, which is
already finetuned on LibriSpeech. Intra-dataset scores are marked blue.

Training Data ATCO2 ATCOSIM LiveATC
WER (%) CER (%) WER (%) CER (%) WER (%) CER (%)

ATCO2 33.4 20.4 36.6 16.8 61.2 40.3
ATCOSIM 91.9 61.5 2.67 1.00 101.9 67.8
LibriSpeech 99.6 64.6 71.0 32.0 103.4 70.5

works. Phang et al. [11] have shown, that the centered kernel
alignment (CKA) similarity scores of text-based transformer
models show same-similarity clusters along the diagonal af-
ter they are fine-tuned. Choi et al. [12] have shown that the
information encoded in an wav2vec feature encoder is analog
to a spectrogram and that closer latent representations imply
acoustic similarity.

3. EXPERIMENTAL SETUP

The ATC datasets used in the following experiments are
listed in Table 2. The ATCOSIM corpus [2] consists of
simulated conversations between air-traffic controllers and
pilots. Since the recordings were done in a controlled en-
vironment, the speech is less noisy than for the following
two corpora. The ATCO2 corpus [3] contains real ATC con-
versations from various, mostly European airports and was
recorded during the ATCO2 project with VHF-receivers 2.
The LiveATC corpus consists of two subcorpora, LiveATC1
and LiveATC2 [13], both gathered during the ATCO2 project
from the LiveATC web-page 3, a web-page broadcasting live
ATC conversations. Finetuning wav2vec 2.0 on ATC data

Table 2: Dataset splits used for the experiments. The mean
utterance length for each dataset is roughly four seconds. In
the last column, the mean SNR over the full dataset is given.

Dataset Train Val Test SNR
ATCO2 2739 342 343 13.1
ATCOSIM 2286 286 286 29.4
LiveATC 512 - 518 7.2

is done by training wav2vec2-base 4 for 40 epochs on
the train-split of the datasets in Table 2. After finetuning,
the checkpoint model with the lowest WER score on the
validation set is used for testing.

To generate the text-to-speech (TTS) versions of the
aformentioned datasets out of the transcripts, we use the

2Receiver guide: https://ui.atc.opensky-network.org/intro
3LiveATC webpage: https://www.liveatc.net/
4Wav2vec 2.0 model: https://huggingface.co/facebook/wav2vec2-base

VITS model (Variational Inference with adversarial learn-
ing for end-to-end Text-to-Speech) [14] from the Coqui-AI
library 5. The model can be described as conditional vari-
ational autoencoder and produces natural sounding speech
from text. The male speaker 226 is chosen out of the list of
speakers, since it produces the most realistic ATC speech.
To generate our synthetic noisy ATC data, we add Gaussian
noise to the TTS versions of the datasets.

To overcome the problem of missing clean versions of the
ATC datasets to calculate the signal-to-noise ratio (SNR),
we use the WADA-SNR approach introduced by Kim et al.
[15] to get a robust estimate for the SNR. To ensure consis-
tency, all SNR values mentioned in this work are based on
this method. Experimental validations on the synthetic noisy
ATC datasets have shown that the WADA-SNR scores show
just small deviations from the actual SNR values.

To measure the wav2vec 2.0 feature similarities, when
finetuned on different datasets, we apply the centered kernel
alignment (CKA) method as similarity measure, since it is
well defined for small sample sizes, in contrast to other simi-
larity measures like CCA and pwCCA [16]. The output-layer
features of the convolutional blocks of the feature encoder and
the dense-layer features of the transformer encoder are mean-
pooled over the sentence length before comparison.

4. RESULTS

As already observed in previous works [7, 1, 5], the perfor-
mance of an ASR model varies depending on the target and
training dataset. Even if all datasets come from the same do-
main, namely air-traffic control, the word error rate and char-
acter error rate (CER) vary, as Table 1 shows.

However WER and CER correlate across all datasets and
there are no dataset specific WER/CER ratios. Without in-
cluding the intra-dataset scores, the lowest WER/CER ratios
are reached on ATCOSIM followed by ATCO2 and LiveATC.
This correlates inverse with the SNR values given in Table 2.
The last WER column of Table 1 shows the importance of
in-domain fine-tuning. Wav2vec 2.0 finetuned on ATCO2
reaches a WER 40-50% lower than the model finetuned on
the OOD LibriSpeech corpus. Surprisingly, if wav2vec 2.0 is

5Coqui-AI webpage: https://github.com/coqui-ai/TTS



(a) ATCO2 (b) ATCOSIM

Fig. 1: WER on the standard and TTS versions of the ATC
datasets. All scores are generated by fine-tuning and testing
wav2vec2-base on ATCO2 (a) and ATCOSIM (b) data. The
border to clean speech SNR>30 is marked [17].

finetuned on ATCOSIM, this difference is much smaller. In
the following, we will evaluate this and analyze which acous-
tic and lexical differences exist between the datasets and how
wav2vec 2.0 reacts to them.

4.1. Acoustic Differences

As already discussed above, there seems to be a correlation
between the noise level and the word error rate. To rule-out
the influence out-of-vocabulary (OOV) words or other lan-
guage, respectively lexical based features, we generate text-
to-speech (TTS) versions of the datasets, as described in sec-
tion 3, and compare the WERs reached on the datasets. Since
they share the same transcripts, all differences between the
TTS and non-TTS versions are due to acoustics. Figure 1
shows the WERs reached on the TTS and non-TTS versions
together with the SNR values of the non-TTS versions taken
from Table 1. For both training datasets, ATCO2 and AT-
COSIM, the difference of the WERs between the TTS and
non-TTS versions correlates inverse with the SNR value. This
shows, that noise is a major cause for the performance degra-
dation of the ASR models on ATC datasets.

In order to evaluate the effect of the noise over a broad
range, we add Gaussian noise of different levels to the TTS
versions of the datasets. The results are shown together with
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Fig. 2: WERs on the original and TTS data with Gaussian
noise of different levels applied. Wav2vec 2.0 is trained on
the original ATCO2 (left) or ATCOSIM (right) dataset.

(a) LibriSpeech (b) ATCO2 (c) ATCOSIM

(d) LiveATC Gauss (e) LiveATC (f) LiveATC TTS

Fig. 3: Overlay of spectrograms from 100 samples of the
the different ATC datasets and LibriSpeech as reference. The
LiveATC Gauss spectrogram is based on TTS data with Gaus-
sian noise with an average SNR of 6.5 dB, which is close to
the original noise level of LiveATC with 7.2 dB.

the WERs reached on the original datasets in Figure 2. There
are four main observations. Firstly, the higher the noise, re-
spectively the lower the SNR, the steeper is the gradient of the
curves. For SNR levels over 25, the effect of the noise is neg-
ligible, which agrees with the definition of clean speech for
SNRs>30 of Grimaldi et al. [17]. The second observation is,
that the training dataset not only influences the overall WER
reached on the test set, but also the noise sensitivity (gradi-
ent). The model trained on ATCO2 data (Figure 2 left) shows
a significant lower sensitivity to noise than the model trained
on the less noisy ATCOSIM data (Figure 2 right). The third
observation is that for high noise levels with a SNR<10, the
model trained on ATCO2 outperforms the ATCOSIM model
on the ATCOSIM test data. This indicates that for high noise
target datasets, matching the noise distribution during training
can become more important than lexical similarities between
the training and test set. The last observation is, that wav2vec
2.0 reaches slightly higher WERs on the non-TTS test sets of
ATCO2 and LiveATC than on the TTS versions with the same
noise level.

To examine this difference further, we overlay the spec-
trograms of 100 samples from each ATC dataset. To allow
an overlay, each recording is trimmed to the same length and
the spectrograms are normalized. Figure 3 shows the result-
ing spectrograms. The comparison of the datasets shows that



Table 3: Lexical diversity of the ATC datasets, measured with
the moving average type-token ratio (MATTR) and the mea-
sure of textual lexical diversity (MTLD)

Dataset MATTR MTLD
ATCO2 0.635 29.5
ATCOSIM 0.585 26.6
LiveATC 0.581 23.3

each dataset has a unique noise characteristic. In the ATCO2
dataset, the harmonics of the voice stand far less out against
the background noise than the harmonics in the ATCOSIM
dataset. Additionally, the LiveATC and ATCO2 dataset spec-
trograms show a low-pass characteristic, with a loss of signal
power over 4 kHz. Additionally the LiveATC dataset shows
a narrow-band signal loss exactly at 4 kHz. The spectro-
gram of the LiveATC TTS data with Gaussian noise (SNR
= 6.5), noticeably differs from the standard LiveATC spectro-
gram (SNR =7.2). Meaning that the WADA-SNR scores do
not reveal the complexity of the noise. This explains why the
WER curves on the TTS datasets in Figure 2 are lower bounds
for the WERs reached on the original datasets. To reproduce
the original noise for each dataset, more complex noise types,
like band-pass or low-pass filters must be included. In the
next section we will evaluate the lexical differences between
the datasets.

4.2. Lexical differences

We have shown that there exists a correlation between the
noise and the WER reached on the datasets. In this section,
we will evaluate if there is a similar correlation for the lexical
features. To get a better understanding for the complexity of
the datasets, the lexical diversity (LD) is measured via moving
average type-token ratio (MATTR) and the measure of tex-
tual lexical diversity (MTLD), which are better estimates for
the lexical diversity than other measures, as shown by Tager-
Flusberg et al. [18]. Table 3 shows the diversity scores of
the datasets. The LiveATC dataset has the lowest MATTR
and MTLD score, indicating that it has the lowest lexical di-
versity. But the small difference of just 9% to the highest
MATTR score, measured on the ATCO2 dataset, shows that
the three datasets have a quite similar lexical diversity.

Table 4: Cross (black) and intra-dataset (blue) perplexities. 4-
gram language models are generated for each training dataset.

Training Data Perplexity on test data
ATCO2 ATCOSIM LiveATC

ATCO2 24.8 138.0 88.2
ATCOSIM 417.2 4.8 276.5
LiveATC 144.6 120.4 25.6

Table 5: Cross and intra-dataset (blue) OOV rates in percent.

Training Data OOV rate on test data (%)
ATCO2 ATCOSIM LiveATC

ATCO2 2.05 7.24 5.20
ATCOSIM 27.0 0.65 18.02
LiveATC 11.17 12.90 3.23

To find more substantial lexical differences, we calcu-
late the cross and intra-dataset perplexities using 4-gram lan-
guage models (LM). All LMs are generated on the train-splits
and tested on the test-splits of the datasets, Table 4 shows
the results. The highest cross-dataset perplexities are found
on the ATCO2 test dataset, indicating the worst transferabil-
ity of an ASR model trained on the other datasets to this
dataset. For the intra-dataset perplexities, the LiveATC and
ATCO2 dataset have similar scores, while the ATCOSIM →
ATCOSIM perplexity is five times lower. This shows, that
the simulated scenarios in ATCOSIM do not have the vari-
ability of the operational recordings found in the ATCO2 and
LiveATC corpora. This could also be due to the case, that
the ATCO2 and LiveATC datasets cover multiple airspaces as
stated in section 3. If ATC conversations are recorded in dif-
ferent airspaces for different datasets, this has consequences
on the vocabulary. Each airspace has different waypoints, is
targeted by different airlines and uses different communica-
tion frequencies, to just name a few differences. This also
shows in the OOV rates, which can be seen in Table 5. The
comparison of Table 4 and Table 5 shows that the perplexi-
ties and the OOVs correlate, with one exception. On the AT-
COSIM test data, lower OOV rates are reached with ATCO2
source data, than with LiveATC source data, while it is the
other way around for the perplexity. An inspection of the
OOVs shows, that in the case LiveATC → ATCOSIM, the
OOVs contain many German words, like airline names, city
names and greetings. These OOVs are missing in the ATCO2
→ ATCOSIM case, likely due to the recordings from Swiss
airspaces in the ATCO2 dataset.

Since both, perplexity and OOV rates show a lexical mis-

Table 6: Relative WER drop in percent (%), when using a
4-gram LM generated on the train-split of the target dataset.
Testing is done on the test-splits of the target datasets. Mean
scores over all target-source dataset combinations are given
for TTS and non-TTS versions. The absolute difference is
given in brackets.

Source Data rel. WER drop on target data (%)
normal TTS

normal 21.6 (53.42-44.95) 27.6 (36.4-27.3)
TTS 11.9 (89.01-79.71) 22.8 (19.55-15.58)



Fig. 4: WER depending on the relative difference between
test and training SNR and the perplexity of a LM generated
from training data and evaluated on test data.

match, we want to quantify to which extend this can be fixed
by using a 4-gram LM trained on the train-split of the target
dataset. Table 6 shows the mean results over all source and
target dataset combinations, using ATCO2 and ATCOSIM as
source data and ATCO2, ATCOSIM and LiveATC as target
data. For both, source a target data, either TTS or non-TTS
versions of the datasets are used.

The resulting scores show that adding the LM on top of
wav2vec 2.0 results in the highest improvement for the non-
TTS (train) → TTS (test) setting. Interestingly, the relative
improvement for TTS → TTS and non-TTS → non-TTS is
nearly equivalent. This shows that even if there is an acoustic
mismatch, adaptation to the target airspaces via LM can bring
a big improvement. In the worst case scenario, TTS → non-
TTS, where wav2vec 2.0 has never seen noisy data during
training, there is still more than 11% improvement.

Since the influences of lexical differences and noise vari-
ability have been laid out, the question is, if there is an overall
clear dependency of the WER on the ratio between the lexical
differences and the noise differences. To evaluate this, we plot
the WER in dependence of the ratio between the source-target
LM perplexity and the source-target SNR-ratio. The resulting
Figure 4 shows, that the aforementioned dependency exists.
This explains the different WERs reached on the datasets, de-
pending on the selection of the training and test set. It fur-
thermore opens the door for future research on predicting the
WER for unknown (ATC) benchmark datasets. While we
have focused mostly on dataset features until now, we will
look also at wav2vec 2.0 features in the next section.

4.3. wav2vec adaption

To better understand how wav2vec 2.0 adapts to the lexical
differences and the acoustic variability between the different
ATC datasets, we use CKA to compare the features of the dif-
ferent parts of the model. We examine four different cases.

(a) pos. acoustic transfer (b) neg. acoustic transfer

(c) pos. lexical transfer (d) neg. lexical transfer

Fig. 5: CKA analysis on the adaptation of the wav2vec feature
encoder to acoustic and lexical changes. The CKA scores
in (a) are produced on ATCO2 TTS data and the scores on
(b) on ATCO2 data. The CKA scores in (c) are produced on
ATCOSIM TTS data and the scores in (d) ATCO2 TTS data.
All scores are given on the output layers of each convolutional
layer of the feature encoder.

In the first two cases, we look at the feature similarity be-
tween two models, when one of them encounters a dataset
with new acoustic properties during testing. For the positive
acoustic transfer, we compare the CKA scores of wav2vec
2.0 finetuned on ATCO2 and ATCO2 TTS data and tested
on ATCO2 TTS data. This is labeled as positive transfer
case since wav2vec 2.0 trained on ATCO2 reaches a WER of
21.5% on the unseen ATCO2 TTS data, which is a significant
decrease from the 33.4 % WER on ATCO2 test data. For the
negative acoustic transfer, the wav2vec 2.0 model finetuned
on ATCO2 TTS data encounters a new dataset. Wav2vec 2.0
trained on ATCO2 TTS reaches a WER of 5.6 % on ATCO2
TTS test data but the score increases about a factor of 17 to a
WER of 96.7% on the unseen ATCO2 dataset.

Figure 5 shows the CKA similarity scores of the wav2vec
2.0 feature encoder in the positive (a), respectively negative
acoustic transfer case (b). Interestingly, the initial and the
intermediate layers show even a higher similarity for the neg-
ative acoustic transfer case. But the similarity score on the
final layer of the feature encoder reaches 0.21 in the posi-
tive scenario, while for the negative scenario, the similarity



(a) pos. acoustic transfer (b) neg. acoustic transfer

(c) pos. lexical transfer (d) neg. lexical transfer

Fig. 6: CKA analysis: Adaptation of the wav2vec transformer
encoder layers to acoustic (a) and (b) and language changes
(c) and (d). The test datasets are equal to Figure 5.

score is considerably lower with just 0.09. This difference
also propagates through the dense transformer encoder lay-
ers as Figure 6 (a) and (b) show. Even in the first layer of
the transformer encoder, the scores differ already significantly
with 0.95 and 0.69. Towards the final layer, the difference
further increases. Additionally, the CKA plot of the negative
acoustic transfer does not show the typical clusters of similar
representations, which can be found along the diagonal after
finetuning, as observed by Phang et al. [11]. For the posi-
tive acoustic transfer, there are three non-symmetric clusters
visible. This higher similarity shows, that if wav2vec2.0 is
trained on noisier data, it is still able to produce good output
features on the cleaner dataset.

For the last two cases, we look at the similarity scores
for the case, that one model encounters a dataset with dif-
ferent lexical properties during testing. To exclude acoustic
influences, we purely use TTS data. For both, negative and
positive lexical transfer, we plot the CKA similarity scores
for wav2vec 2.0 finetuned on ATCOSIM TTS and ATCO2
TTS. If wav2vec 2.0 gets finetuned on ATCO2 TTS, the WER
on ATCO2 TTS is 5.6%, while the WER on ATCOSIM TTS
is 17.4%, which is an increase of a factor of 3, but still an
above average WER for an ATC dataset as Table 1 and Fig-
ure 1 show. We therefore use this scenario as positive lexical
transfer. In contrast, if wav2vec 2.0 gets finetuned on AT-

COSIM TTS, the WER on ATCOSIM TTS is 2.1%, while
the WER on ATCO2 TTS is 47.0%, which is more than 20
times higher. This case is therefore labeled as negative lexical
transfer. The comparison of the similarity scores of the fea-
ture encoder, Figure 5(c) and (d), shows that there is no sig-
nificant difference between the positive and negative case. In
other words, the feature encoder is agnostic to lexical differ-
ences. For the transformer encoder layers, there are evident
visual differences between the positive and negative lexical
transfer. The fact, that the differences are not as big as for
the acoustic transfer needs further investigation. The com-
parison between lexical and acoustic transfer however shows,
that without the presence of noise, a cluster of similar rep-
resentations in the intermediate layers of the transformer en-
coder is forming, which is more prominent for the positive
transfer case. Since this cluster is also partially forming in
the positive, but not in the negative acoustic transfer, it could
be a possible candidate to indicate a good lexical and acoustic
transferability.

5. CONCLUSION

Pretrained transformer-based speech recognition models, like
wav2vec 2.0 have shown a remarkable performance on low-
resource domains. But for the air-traffic control domain, a
highly variable transferability across different datasets has
been observed. In this paper, we have presented an empir-
ical study to identify the causes of this phenomenon. We
demonstrated that each ATC dataset has specific noise char-
acteristics. Nevertheless, adding Gaussian noise to clean
air-traffic control data can be used to get a lower WER bound
for different noise levels. This is an effective way to estimate
the robustness of the ATC-ASR model. We have furthermore
shown that there are significant lexical differences between
the datasets and that the transferability correlates with cross-
dataset language model perplexities as well as with the OOV
rates. Dominant OOV entities are airspace-dependent cities,
greetings and airlines. A target-dataset specific language
model on top of wav2vec 2.0 was identified as an effective
method to significantly reduce lexical mismatch and therefore
the WER, even for very noise target data. With various source
and target-dataset pairings, we have provided evidence for
the dependency of the WER on the ratio between the source-
target LM perplexity and the source-target SNR-ratio. A final
wav2vec 2.0 feature analysis demonstrated, that the feature
encoder is agnostic to lexical changes while adapting to dif-
ferent noise scenarios. Finally, we identified a same similarity
cluster between the intermediate-layer-transformer-encoder
features of the target and source-data-finetuned wav2vec 2.0
models as indicator for a good transferability of the source-
model to the target data. The insights of this work not only
allow the development of better ATC-ASR models, but also
better ASR models for other domains, where poor cross-
dataset transferability is observed.
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