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Abstract

Although masked language models are highly performant and widely adopted by NLP practi-
tioners, they can not be easily used for autoregressive language modelling (next word prediction and
sequence probability estimation). We present an LSTM-based autoregressive language model which
uses prefix embeddings (from a pretrained masked language model) via fusion (e.g. concatenation)
to obtain a richer context representation for language modelling. We find that fusion helps reliably in
lowering the perplexity (16.74 — 15.80), which is even preserved after a transfer to a dataset from a
different domain than the training data. We also evaluate the best-performing fusion model by corre-
lating its next word surprisal estimates with human reading times. Contradicting our expectation, and
despite the improvement in perplexity overall, the correlation remains the same as for the baseline
model. Lastly, while we focus on language models pre-trained on text as the sources for the fusion,
our approach can be possibly extended to fuse any information represented as a fixed-size vector into
an auto-regressive language model. These include e.g. sentence external information retrieved for a
knowledge base or representations of multi-modal encoders.

( ’ github.com/zouharvi/sentence-embd-fusion

1 Introduction

The task of masked language modelling is to predict a token (or multiple) under a mask in a
sequence: p(w;|wy ..., wi—1, Wit1, .. .w‘s‘). Masked language modelling as a training objective
is inspired by the cloze task [Taylor, 1953, Devlin et al., 2018] and has recently led to impressive
improvements in various natural language tasks [Zaib et al., 2020|. In contrast, autoregressive
LMs model the “sequence probability” p(wi, ..., wy,) as H'Zi'l p(w;|w<;). In practice, this allows
the model to be used for decoding and generating sequences. The equivalent in human experi-
ments is the word-level Shannon game [Shannon, 1951| (predicting the next word based on the
left context).

Autoregressive LMs are used in a plethora of places. The most intuitive and straightforward
application is text auto-completion |Jaech and Ostendorf, 2018]. Moreover, the ability of the
model to compute sequence probabilities and compare them is highly useful in many NLP
applications which make use of sequences of text either as an intermediate or final output.
These include machine translation |Brants et al., 2007, Gulcehre et al., 2017|, speech recognition
[Toshniwal et al., 2018] or free-form question answering [Dong et al., 2019]. A commonly used
part of these pipelines is the decoding for which an autoregressive LM is essential [Chorowski
and Jaitly, 2016].

On the other hand, masked LM has shown to be a very efficient training task that yields
encoder models which became widely used in the NLP community [Xia et al., 2020, Koroteev,
2021]. One commonality of both autoregressive and masked LMs is that the context represen-
tations they are forming for a given input, either a representation of the previous words in the
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sequence (autoregressive) or representations of the whole input sequence except the mask part
(masked LM), depend only on the training data of the model as well as its weights. It might
however be desirable to “enrich” this representation with information external to the model.
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Figure 1: Example architecture of an LSTM language model enhanced with fusion (early and
late) from a pretrained LM illustrated on a sample sentence. Knowledge of Moctezuma helps in
the next word prediction.

Zouhar et al. [2021] present a conceptual framework in which items retrieved from a per-
sistent storage, dubbed artefacts, are fused into a knowledge-intensive model to improve its
predictions. This can be applied to a range of tasks: prototypically question answering and fact
verification but to others as well, such as knowledgable dialogue or LM. We take this line of
thought further and use fusion to leverage both the strength of a pre-trained masked LM: rich
context representations for producing the artefacts, with the properties of an autoregressive LM:
easy decoding. Below we briefly summarize our main contributions:

e Design of a simple autoregressive LM with sentence embedding fusion.

e Comparison of various fusion modes.

Exploration of the dependency of the model on the artefact quality.

Evaluation of the models via correlation with human surprisal.

e Experiments with fusion to help with cross-domain performance.

2 Related Work

The Transformer architecture [Vaswani et al., 2017|, originally encoder-decoder and proposed
for machine translation, is ubiquitous in modern NLP [Wolf et al., 2020, Kalyan et al., 2021, Lin
et al., 2021]. Follow-up work produced encoder-only models, such as BERT |Devlin et al., 2018|,
RoBERTa |Liu et al., 2019] or SentenceBert [Reimers and Gurevych, 2019], which were successful
in providing dense representations of the input text [Liu et al., 2020] and tackling a variety of
challenging natural language understanding tasks [Wang et al., 2018, 2019a]. Opposed to that
are decoder-only models, such as GPT [Radford et al., 2018| and its variations [Radford et al.,
2019, Brown et al., 2020, Wang and Komatsuzaki, 2021|. They are capable of autoregressive LM
(i.e. prediction of the next word’s distribution).



MLM. There have been multiple approaches to enhancing masked LMs to gain some properties
of autoregressive LMs, namely word /sentence probability scoring and iterative text generation.
Liao et al. [2020] propose a probabilistically masked LM capable of text generation. Text gen-
eration can also be done with masked-language models, e.g. BERT [Su et al., 2021, Jiang et al.,
2021]. Apart from left to right text generation, estimating sentence/word probabilities from
masked language models is also useful for various NLP tasks. Salazar et al. [2020] mask individ-
ual words in the sentence independently to compute pseudo-log-likelihood scores. Wang et al.
[2019b] incorporate BERT into Markov Random Field structure which also makes it possible to
evaluate sequence probability.

Fusion. Khandelwal et al. [2019] proposed an LM which precomputed embeddings of LM
contexts + correct following word from the training data. During inference, the model would
compute the context which would be used for retrieval and the next word would be determined
by both the model’s actual prediction and the retrieved next word (convex combination of the
two distributions). This would be considered a super-late fusion because the artefact is not used
in any computation and the combination weight is a hyperparameter. This was improved by
Yogatama et al. [2021] by computing the weights dynamically based on the current context. This
allows the model to use its own predictions for easy and predictable words, such as articles and
to fall back to retrieval for words which require memorization, such as named entities. Named
entities are the focus of Logan IV et al. [2019]. They build a local knowledge graph which is
used by the model for the prediction of named entities.

Multimodality. The artefacts used need not be limited to vectors or text. Multimodal set-
tings, such as images or video, have also been used successfully to leverage the extra information
[Anand et al., 2021, Mogadala et al., 2021].

Memory augmentation. Fusion is a specific mechanism used in memory augmented models.
Zhong et al. [2022] distinguish between local memory, long-term memory and external memory
and uses them in prediction via super-late fusion. The pointer-sentinel mixture model by Merity
et al. [2016] computes a distribution based on all the input words so far and combines it using
a gate. A similar approach to using recent history is also used by Grave et al. [2016] in the
continuous cache.

3 Methods

3.1 Data

We use the WikiText-103 [Merity et al., 2016] corpus for training and evaluation. Additionally,
we make use of BookCorpus [Zhu et al., 2015] and CC-News [Mackenzie et al., 2020| for eval-
uation of cross-domain performance. Natural Stories [Futrell et al., 2021] are used solely for
evaluation of reading time correlation. Although modern large LMs are trained on corpora with
1-100M sentences |[Kaplan et al., 2020, Martin et al., 2020], this work is limited by available
computational resources. It is partly justified by using an order of less parameters (13M for our
LSTM-based LM, 110M for BERT-base) and Section 4.3 which explores the effect of limited
training data on fusion behaviour.

3.2 Model

Our autoregressive language model is intentionally small and composed of: (1) input embed-
ding layer which maps from the vocabulary to 512 dimensions, (2) LSTM with hidden state
dimensionality of 256, (3) linear projection layer which maps back to 512 dimensions, (4) output



Train Dev/Eval

WikiText-103 100k 10k
BookCorpus — 10k
CC-News — 10k
Natural Stories — 430

Table 1: Number of sentences in splits in used datasets.

embedding layer to 8192 dimensions (the size of our vocabulary). The artefact vector is pro-
vided by a pretrained MLM which is not fine-tuned and described in greater detail in Section 4.5.
Batches are constructed from individual sentences, i.e. a sentence of 10 words creates a batch
of 11 examples for next word prediction (the first input it <BOS> and the last one the whole
sentence based on which <E0S> should be predicted).

The fusion happens either by the initial LSTM hidden state being the artefact (in 2) or by
either concatenation or an arithmetic operation with the last hidden state of the LSTM (in 3).
Unless specified otherwise, we concatenate the representation of the BERTBase-Uncased CLS-token
(the artefact) with the last hidden state. The artefact for the word w; is computed as &(w<¢),
therefore our autoregressive LM is a function p(w;|w<¢, &(w<¢)). Both early and late fusion use
the same artefact.

For experiments in Section 4.5 we use three dense layers of 768 dimensionalities separated
with ReLU. All models use the same hyperparameters, and are optimized with the Adam op-
timizer [Kingma and Ba, 2014] using a learning rate of 107¢, a batch size of |S| and a BPE
vocabulary of size 8196. For all experiments, we use Byte-Pair-Encoding [Shibata et al., 1999]
with a vocabulary size of 8192. The perplexity is evaluated on the subword level.
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Figure 2: In-detail scheme of using MLM to provide artefacts for both early (top) and late
(bottom) fusion.?
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4 Experiments

4.1 Fusion Modes

We make use of two groups of fusion, based on at which point in the computation the artefact
is presented to the model:

e Late fusion: the sentence embedding vector is fused with the final hidden state vector used
for prediction via either (1) concatenation (changes the dimensionality to 768 + 768), (2)
addition, or (3) multiplication.

2Qriginal quote by Robert Frost: Poetry is what gets lost in translation.



e Early fusion: the sentence embedding vector becomes either (1) the initial hidden state hg
of the LSTM, (2) the initial cell state ¢y of the LSTM or (3) both.

The comparison of fusion modes is shown in Figure 3. An immediately noticeable difference
is that most fusions outperform the model without fusion (blue). This means that the sentence
embedding information is being utilized and helpful for predicting the next word. Next, the early
fusion reaches its minimum earlier (i.e. fewer training steps) than the other fusion methods and
the multiplication fusion takes much longer to converge. The graph is cropped at a point of
convergence. In theory, the sooner the model has access to the artefact, the larger should be its
impact on the computation performed by the model. In practice, sometimes this is not necessary,
such as in the nearest-neighbour language models [Khandelwal et al., 2019] and it may hurt the
optimization or the information may get lost.
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Figure 3: Model performance during training of models with and without fusion of sentence
embeddings. First epoch cropped for increased resolution.

4.2 Artefact Context Size

Recomputing the sentence prefix embeddings is expensive and needs to be done after every
newly generated token. Because the vectors become more and more similar, we can experiment
with providing “imperfect prefix embeddings” (smaller than the full prefix) as artefacts to the
model to speed up the inference. We compute the vector similarity between (1) embd(w.;—1)
and embd(w.;) and (2) embd(w.;—1) and embd(w.jas) using the the inner product on normalized
vectors and show the results in Figure 4.

We limit the context in which we compute the sentence representation in two modes: right
crop and left crop, as illustrated in Table 2. Note that the representation is computed strictly
from the left context of the token to be predicted. They correspond to the prefix of the prefix
or suffix of the prefix.

Model performance for the various cropped artefact modes is shown in Figure 5. Both curves
for the left and the right crop (blue and red) are naturally bounded between fusion (bottom)
and no fusion (top). Using the left part of the prefix (right crop) seems to provide more useful
information. This is supported by the vectors being more similar to the full prefix than for
the left crop. It is therefore possible to avoid recomputing the prefix for the last tokens of the
sequence at the cost of a slight increase of perplexity.
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Figure 4: Normalized inner product similarity between (1) consecutive vectors and (2) current
and last embedding. The values are averaged and the x-axis is cropped for the counts to be at
least 10.

Khandelwal et al. [2018] suggest that LSTM LMs model distant past only as a rough semantic
field or topic instead of a detailed sequence of tokens. Having the artefact focus on the distant
context (sentence beginning) may therefore provide a more predictive signal in contrast to the
immediate context which is still well modelled by LSTM. It is unclear whether this improvement
is caused by the extra semantic information from BERT or by an appropriation of continuos
cache or attention architectures.

25% 50% 5% i 100%
Moctezuma was the son of the emperor Huitzilihuitl and
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Table 2: Consecutive dark grey rectangles indicate substring of which sentence representation
was computed and fused. The representation is not computed beyond the to-be-predicted token
(J ). Light grey words are cropped because they are not in the left context. Right crop 0% and
left crop 100% correspond to no fusion while right crop 100% and left crop 0% correspond to
full fusion without any cropping.

4.3 Limited Data

We further explore whether there is an effect of training data size on the performance of different
fusion modes. While the development set is kept the same, we trim the training data size and
report results in Figure 6. While the ordering remains similar (with the exception of multipli-
cation), the differences between the fusion modes become smaller and smaller with increasing
amounts of training data.
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Figure 5: Fusion model perplexity with restricted artefact acces (left or right crop) together
with average similarity of cropped representations to their full counterparts. If left & right crops
were equally informative, the graph would be symmetric and the lines would cross in the middle.
Right crop yields lower complexity.

The benefit of fusion diminishes with more data (in absolute differences). This finding
offers several applications, for example in case of training an autoregressive language model for
which there is little training data but there exists a multi-lingual MLM, such as XLM-RoBERTa
[Conneau et al., 2020].
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Figure 6: Model perplexity evaluated on the same dev dataset with varying training data size
(single run). Note the log-scaled x-axis. Order of fusion performance remains the same for most
of the time, with multiplication performance worsening w.r.t. others with more data.

4.4 Wean-off

Depending on prefix representations computed by a large pre-trained model is not ideal because
of the need to run all input through the pre-trained model first. We attempted to reduce this
dependency by gradually restricting access to the artefacts via dropout. In Figure 7 we show
(1) a baseline without any fusion, (2) a baseline with fusion and no dropout, (3) a “wean-off”
model with gradual 0 to 100% dropout and (4) a reverse model with 100% to 0% artefact
dropout. The dropout for the last two models changes every 15 epochs in the following sequence
(0%, 25%, 50%, 75%, 100%) or reversed.
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Figure 7: Performance during training of “wean-off” models with late concatenate fusion. First
5 epochs cropped for increased resolution.

The No — full dropout “wean-oft” model starts the same as the baseline fusion one. With each
change in dropout, however, its performance deteriorates and finally converges to the baseline
without any fusion. The opposite trend can be seen for the Full — no dropout “reverse wean-
off” model, which converges close to the no dropout (full fusion) model. It has a non-smooth
transition only with the change of dropout from 0% to 25% because until then, the weights
were unactivated and unoptimized. This shows that the information contained in the artefact
is helpful but with the downside that there is no pure optimization benefit to having access to
artefacts and it can not be removed.

4.5 Artefact Source

In this part, we examine the effect of the artefact origin on the autoregressive LM performance.
Specifically, we compare different pretrained LMs that provide the artefact: BERT [Devlin et al.,
2018] and SentenceBert [Reimers and Gurevych, 2019]. The artefact is extracted either as the
last layer representation at the [CLS] token or the average of tokens at the last layer. As shown
in the first section of Table 3 the choice of the pre-trained LM and artefact extraction method
seems to have a small effect on the actual model performance. The usefulness of a dense sentence
representation is demonstrated by the poor performance of bag of words and TF-IDF baselines.

Full sentence embeddings. We additionally compare to fusing the full sentence represen-
tations (including the to-be-predicted token) and full sentence representations with the to-be-
predicted token masked. When used as a fusion for the LSTM LM, they both lower the perplexity
by a large margin. However, the full sentence without masking artefact is not applicable dur-
ing inference because it includes the token that is being predicted. The masked full-sentence
representation can not be used for autoregressive LM because of the dependency on the right
context.

Artefact-only model. We also attempt to do language modelling based solely on the artefact
(and not the currently predicted left context) using a simple non-recurrent feed-forward model
described in Section 3.2. This is done in order to measure the amount of information stored
in the artefacts alone. We employ language modelling instead of standard statistical methods
(e.g. mutual information) for easy comparison with the full models. Using the full sentence
as an artefact for the artefact-only model performs poorly because the non-recurrent network



Model

Artefact source Fusion Artefact-only
BERT-CLS 15.80 38.55
BERT-Avg 15.96 48.34
SentenceBert-CLS 16.08 53.01
SentenceBert-Avg 16.01 53.31
Zero artefact (no fusion) 16.74 75.40
Bag of Words 16.71 65.30
TF-IDF 16.67 65.47
BERT-CLS full sentence* 12.45 55.43
BERT-CLS full sentence, masked*  12.52 37.87

Table 3: Dev perplexity of an autoregressive LM fused with various artefact sources. Artefact
sources marked with * can not be used for autoregressive LM because they access right context.

does not have access to the current position in the sentence. One input (z) to the model is
matched with multiple outputs (y) based on the sentence length. It is still better than no fusion
because based on the sentence representation, the model can shift the vocabulary distribution to
fit the sentence topic. Table 4 shows the differences in predictions (based only on the artefact) of
two sentences. Similar changes in vocabulary distribution were observed also for the prefix-only
model. Finally, simply masking the currently predicted word position improves the artefact-only
model performance substantially.

Sentence Selected top token predictions

Moctezuma finally faced the conquistadors. battle, returned, death
The actor finally faced the camera. story, episode, character

Table 4: Top non-stopword predictions of the artefact-only model with full-sentence artefacts.

The zero-artefact represents no fusion but for fair comparison (same architecture), it is
a constant artefact of zeroes. Training of the artefact-only model with zero artefact means
estimating the unigram distribution. Bag of words and TF-IDF baselines are only slightly
better than using no artefact at all. It is still noteworthy because creating these artefacts is
lightweight and does not require any more data than those used for the model training.

4.6 Cross-Domain

The sentence representations from BERT are based on a much larger dataset, which could help
the LSTM model in cross-domain transfer. We therefore investigate the effect of fusion on other
domains, which were not part of the training set. The extra datasets, introduced in Table 1, are
from the book and news domains. We still train on WikiText but then report results on the two
other domains with and without fusion. Table 5 shows that the gains from fusions still apply
even outside of the training domain.

5 Surprisal Correlation

We examine the intuitive hypothesis that better LMs, as measured by perplexity, with richer
context representations, will have higher correlations with human surprisal. We replicate the
experiment design by Aurnhammer and Frank [2019] in measuring the correlation by our LM
surprisal with human surprisal proxied via self-paced reading times. We do not use the same



WikiText Books News Natural Stories

No fusion 16.74 18.10 21.52 18.10
Fusion (concat.) 15.80 17.59 20.49 16.98
Difference/Perc. change  0.94/5.95%  0.51/2.90% 1.03/5.02% 1.12/6.60%

Table 5: Dev perplexity of an autoregressive LM on out-of-domain data with and without fusion
(concatenate). Last row shows difference between the two.

data because of their unavailability. The model output is turned into a probability-like variable
via softmax, however, it is not calibrated.® Similarly, the surprisal is measured via the proxy
of reading times, which may be a non-linear function that obfuscates the underlying variable,
making measuring the actual correlation between surprisals more difficult. We extract the true
class probability [Corbiére et al., 2019] and, following Wilcox et al. [2020], correlate (Pearson)
negative log-likelihoods from the language model with reading times. We use the mean per-word
reading times from Natural Stories [Futrell et al., 2021] with probabilities from a model trained
on WikiText (concatenate fusion). The probability of a word which is composed of multiple
subword units is computed as the product of probabilities (chain rule).

Despite the improvement in perplexity through the fusion, as shown in Table 5, the correla-
tion with reading times remained largely unaffected: 0.352 (no fusion) — 0.349 (concatenate).
Notably, the correlations peaked earlier (~ epoch 20) than best perplexity (~ epoch 50), reject-
ing the original intuitive hypothesis. This further shows that the tasks of LM and mimicking
human surprisal are not identical.

6 Summary

In this paper, we presented a small autoregressive LSTM-based LM which makes use of fusion
of sentence embeddings provided by a large masked LM. The exploration of fusion in general
can be used for enhancing model performance but also measuring the helpfulness of external
information for specific tasks. We explored multiple fusion modes with late concatenate fusion
being better than early or no fusion.

It plays little role which pre-trained LM was used to provide the sentence embeddings. The
prefix vectors were increasingly similar and a tradeoff can be made between speed and lower
perplexity by not recomputing the prefix embedding for later tokens in the sentence. The
improved model performance through fusion was preserved even when evaluated on a different
domain (books and news instead of Wikipedia text).

This research showed the ease with which extra information, represented as a vector, can be
fused into a LM but also that other NLP tasks should be explored from the same perspective as
well.

Future work. More fusion modes could be explored (e.g. intermediate fusion of token embed-
dings or embedding of the previous sentence) together with means of speeding up the inference
by limiting the number of calls to the masked LM, such as recomputing the artefact only every
k steps. This can be further extended to other architectures (e.g. Transformers) and different
artefact sources, such as dense representation of spans retrieved based on the prefix.

An in-depth analysis of the effect of the artefact on the LM inference should be made to
determine how exactly it affects the computation. This can be done e.g. by examining the
distances in the intermediate vector spaces between computations with and without artefacts.

3The numeric output distribution does not follow the actual distribution of tokens in the text.
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Importantly, comparisons with larger baselines should be done, such as GPT-2, to establish
the usefulness of this method. A manual examination of the output could determine whether
the improvement in perplexity is due to the disambiguation, as motivated in Figure 1.

Limitations. A clear limitation of this research is the relatively small model and data size
used for experiments, which could be remedied in further studies. The lack of better correlation
of an enhanced LM also documents a limitation to its applications for alignment with some
aspects of human reading experience and warrants further investigation.
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