
HUMAN: Hierarchical Universal Modular ANnotator

Moritz Wolf1∗, Dana Ruiter12∗, Ashwin Geet D’Sa3∗

Liane Reiners4, Jan Alexandersson1, Dietrich Klakow2

1DFKI GmbH, 2Spoken Language System Group, Saarland University
3Université de Lorraine, CNRS, Inria, LORIA

4Department of Communication, Johannes Gutenberg University Mainz
{moritz.wolf, jan.alexandersson}@dfki.de

{druiter, dietrich.klakow}@lsv.uni-saarland.de
ashwin-geet.dsa@loria.fr, liane.reiners@uni-mainz.de

Abstract

A lot of real-world phenomena are complex
and cannot be captured by single task annota-
tions. This causes a need for subsequent an-
notations, with interdependent questions and
answers describing the nature of the subject
at hand. Even in the case a phenomenon
is easily captured by a single task, the high
specialisation of most annotation tools can re-
sult in having to switch to another tool if the
task only slightly changes. We introduce HU-
MAN, a novel web-based annotation tool that
addresses the above problems by a) covering
a variety of annotation tasks on both textual
and image data, and b) the usage of an inter-
nal deterministic state machine, allowing the
researcher to chain different annotation tasks
in an interdependent manner. Further, the mod-
ular nature of the tool makes it easy to define
new annotation tasks and integrate machine
learning algorithms e.g. for active learning.
HUMAN comes with an easy-to-use graphi-
cal user interface that simplifies the annotation
task and management.

1 Introduction

Access to suitable annotated data constitutes a fun-
damental prerequisite for R&D of machine learning
algorithms and models. The demand for new an-
notated data is growing as new data is collected or
existing data is being re-annotated from a new per-
spective. In the area of natural language processing
(NLP) alone, there is a large variety of tasks that
require different types of annotations to be covered
by a tool. This includes named-entity recognition
or part-of-speech tagging, which require a tool to
cover sequence labeling (Kiesel et al., 2017), co-
reference and dependency parsing requiring rela-
tional annotations (Stenetorp et al., 2012; Eckart de
Castilho et al., 2016; Shindo et al., 2018), or any

∗ Equal contribution.

type of text classification task requiring document-
level annotations (Nakayama et al., 2018).

Neves and Ševa (2019) find that enabling
document-level classification is the top missing
feature in a large number of reviewed annotation
tools. At the same time, document-level annotation
has been the most frequently sought-after annota-
tion type according to a recent online survey (Tan,
2020). Another feature missing from about half of
the reviewed tools is multi-label annotations.

Since most annotation tools cover only one or
two annotation types, a change in the annotation
task can easily require a change in the annotation
tool itself. Commercial platforms such as Light-
Tag1 or Prodigy2 cover a larger array of tasks to
choose from. However, none of these are able to
chain a mixture of different tasks (e.g. document-
level classification followed by finer-grained se-
quence labeling) to be performed on a single an-
notation instance. One tool that comes close to
achieving this, is Angrist3, however, its lack of
modularity makes it difficult to adapt to new anno-
tation scenarios.

Hierarchical Universal Modular ANnotator (HU-
MAN) follows a highly modular concept, which
makes it easy to adapt to a specific annotation sce-
nario. It uses an internal deterministic state ma-
chine (DSM) to guide the annotator through the
pre-defined annotation task(s). This usage of a
DSM allows annotation tasks to be chained in any
order needed and makes it easy to implement en-
tirely new annotation tasks and custom features in
the future. This modular nature is especially use-
ful when single task annotations do not capture the
reality of a problem or when several dependencies
exist in the annotations. One example being hate
speech corpora (Zampieri et al., 2019; Struß et al.,

1https://www.lighttag.io
2https://prodi.gy/
3https://github.com/Tarlanc/angrist

https://www.lighttag.io
https://prodi.gy/
https://github.com/Tarlanc/angrist


2019), where the target of hate is only supposed
to be annotated if a comment has been previously
annotated as hateful.

Further, HUMAN covers a variety of annotation
tasks, including the often lacking multi-label anno-
tations and document-level classification, but also
sequence labeling on textual data as well as im-
age labeling; a pursuit towards universality. An
example involving both document-level annota-
tion as well as sequence labeling is multi-lingual
Named Entity Recognition (NER), where the anno-
tator has to identify the language on the document
level and then annotate the named entities on the
sequence-level. Moreover, when the annotation
need is single-task, the fact that many tasks are cov-
ered by HUMAN makes it easy to re-use previous
installations of HUMAN for a new scenario, even
if the task at hand changes.

Lastly, HUMAN makes the annotation of hier-
archical data possible. That is, if an annotation
instance is embedded in a context of previous con-
tent (e.g. comments in a forum) this context can be
shown to the annotators.

The remainder of this paper is organized as fol-
lows. In Section 2, we explain the structure of
HUMAN, starting with the architecture and fol-
lowed by the internal deterministic state machine,
annotation protocol, API, database, and graphical
user interface. In Section 3, we demonstrate the
application of HUMAN for a real-life use case.
This is followed by a discussion (Section 4) and
conclusion (Section 5).

2 System Description

The HUMAN annotation tool is primarily designed
to run on a web server. As such its architec-
ture follows a basic client-server model (Figure
1). Clients and servers exchange messages in a
request–response pattern, where the client sends a
request to which the server responds.

The server, consisting of the database and the
API, serves the code for the client. The database
(Section 2.4) is used for sending new annotation in-
stances to the client or saving finished annotations
which are sent by the client.

The client is controlled by a DSM (Section 2.1)
to show an annotation task in the GUI (Section 2.5).
For this it requests new content and sends finished
annotations to the server when an annotation in-
stance is completed. The annotators interact with
the GUI to solve annotation tasks.

DSM

Database

AP

API

Administrators

GUI

Annotators

annotate

provides content causes transitions

provide
data

saves 
annotationscalls

returns

parses

creates

define

Figure 1: The basic structure behind HUMAN: Admin-
istrators define the annotation protocol (AP) which gets
parsed to a DSM. The different components in client
(GUI and DSM) and server (API and database) interact
with each other. Annotators annotate using the GUI.

During setup of the HUMAN system, adminis-
trators design the annotation protocol (AP), which
is a JSON-style definition of the annotation task(s)
at hand. This is then used to generate both the
database and the DSM. Further, it is possible for
the administrator to write a custom API on the
server and call its functions through the DSM (Sec-
tion 2.3. Annotations can be given as arguments
to these functions making it easy to realise active
learning or similar tasks.

The server is implemented using Flask (Grin-
berg, 2018), a common web framework for Python.
The client is written in Typescript and tran-
spiled to JavaScript. The client was tested on
Chrome/Chromium (v85.0) and Firefox (v80.0.1).

2.1 Deterministic State Machine

The back-bone of HUMAN is its deterministic state
machine implemented using XState 4, a library for
finite state machines and statecharts for JavaScript.
It controls how each annotation instance is handled
during the annotation process.

4https://github.com/davidkpiano/xstate

https://github.com/davidkpiano/xstate


start: loading

s1: read
q: Please read the comment. 

s2: select
q: What is the sentiment of the comment?
o: [positive, neutral, negative] 

s3a: checkmark
q: Who is/are the recipient(s) of the sentiment?
o: [politician, civic actor, migrant, media actor, other] 

s3b: boolean
q: Is the comment written in a factual manner?
o: [yes, no] 

s4: label
q: Please label the recipient(s) of the sentiment. 

end: sendData

positive, negative neutral 

yes, no 

Figure 2: Visualization of a deterministic state machine
as used by HUMAN.

The DSM (Figure 2) starts at a start state
which assigns and loads an annotation instance
to be presented to the annotator. It then passes
through all of the annotation states (AS) that have
been defined by the administrator. This allows
for the definition of complex transitions between
ASs, as the answer an annotator provided to a given
question can influence to which subsequent AS the
DSM will guide them. As such, it is easy to design
a flow of questions presented to the annotator that
contains sub-branches and even loops. While ac-
counting for the transitions between ASs, the DSM
can also accommodate different actions, such as
saving annotations.

By default the DSM comes with three obligatory
states:

• start: Assigns and loads an annotation in-
stance to the annotator.

• failure: If any unexpected errors occur during
annotation, the platform automatically gener-
ates an error message and displays it to the
user. This state serves as a dead state.

• end: The end state passes the annotations col-
lected to the annotations table in the data
base.

All other states that handle the transitions be-
tween questions, need to be defined in the Annota-
tion Protocol by the administrator when setting up
the HUMAN server.

2.2 Annotation Protocol
The annotation protocol is the definition of the
DSM, using a simplified JSON-style syntax.
Within the AP, the project administrators define
each annotation task, i.e. state, that should be
passed by the DSM. Each state comes with at least
two obligatory fields. These are the transition field,
which describes to which state the DSM should
move next, and the state type. Depending on the
state type, there may be additional fields that fur-
ther define the quality of a state. The predefined
state types are:

• Functional States

loading : This is usually used to define the
type of the start state and loads a tex-
tual annotation instance.

loadingFile : Analogous to loading, but
used to load PDF files or images.

callAPI : This state is for calling API func-
tions (Section 2.3) on the server. It re-
quires the api call field.

• Annotation States: An annotation state re-
quires at least the additional question field
in which an instruction or question to be pre-
sented to the annotator is defined.

– read: Shows the annotation instance to
the annotator.

– select: Shows a question and a number
of options to choose from. Only one op-
tion may be selected by the annotator.
It also requires the options field,
which lists the options the annotator can
choose from.

– checkmark: Analogous to select but
allows the choice of multiple options.

– label: Prompts the annotator to highlight
portions of a text and label it with previ-
ously chosen labels.

– boolean: Used for yes-no questions.
– choosePage: Allows the annotator to

choose a page from a PDF to annotate.
– bbox: Asks the annotator to set bound-

ing boxes on an image. By writing a
custom API call, users can connect mod-
els that pre-select parts of an image with
bounding boxes.

– bboxLabel: Analogous to bbox, but an-
notators are required to add a text label
to each bounding box they place.



Figure 3: AP definition of a state of type select.

All of these annotation types can be chained af-
ter each other in a modular-fashion. State types
select, and checkmark can be especially use-
ful for document-level annotations, e.g. creating
labels for text classification models. Additionally,
label states can be used for sequence annotations
such as part-of-speech or named entity tagging, or
highlighting certain entities of interest in a text.
States choosePage, bbox and bboxLabel
can be applied to PDFs or images in which some-
thing should be selected. This is practical when
creating data for tasks such as optical character
recognition or object detection and labeling.

Actions Each state can be asked to perform dif-
ferent actions. While the load action is handled
automatically by the loading type, the save ac-
tion can be used in ASs and needs to be explicitly
stated. When the save action is included in the
state definition, then the answer provided by the an-
notator at this AS will be saved. Non-saving states
might be useful to handle transitions in the DSM
that are needed to design specific sub-branches, but
are not needed during the further assessment of the
data annotations.

Syntax The JSON-style AP syntax is simplistic
and can best be explained by the example code in
Figure 3, which is the description of a state named
s2 of type select. It asks the annotator about
the sentiment of the comment and provides three
options positive, neutral, negative to the annotator.
If they choose positive or neutral, the answer will
be saved and the DSM directs the annotator to an-
other state named s3. If, however, the annotator
chooses negative, they are redirected to the end
state without saving.

We provide full documentation with instructions
on how to define an AP using the defined syntax. 5

Parsing Once the AP is defined, the
ap parserwill parse it into XState compatible
format. If any definitions in the AP are ambiguous

5https://github.com/uds-lsv/human/wiki

or undefined, an error message appears that helps
the user resolve the problem.

Apart from creating the DSM, the parser also
initializes the database instance.

2.3 API

We provide the possibility to define a custom API
on the server. Functions of this API can be called
via the DSM with the callAPI state or by adding
a callAPI option to a state in the AP. The argu-
ments can contain annotations and/or the current
annotation instance. The reasoning behind this is
to enable active learning or similar tasks and have
direct access to any machine learning algorithm.

Example We want to train an optical character
recognition algorithm and need to annotate pictures
with bounding boxes around words. We want to
show the predicted boxes of the algorithm to the
annotator and let them correct them. For that we
can write an API function to call the prediction
function of our algorithm. In the AP we define
a state bbox with the callAPI option and the
name of our API function. When entering this state,
the DSM will then call the API function with the
current annotation instance (in this case a picture).
The returned bounding boxes will then be displayed
on the picture and corrected by the user.

2.4 Managing the Database

HUMAN uses an SQLite database with four differ-
ent tables: data, annotations, users, and
options.

Inputs Data can dynamically be input into the
data table via the GUI. All inputs must be format-
ted as tab-separated CSV files consisting of the
three columns content, context, meta.
In content, the content of an instance to be an-
notated is placed, the context is for optional
context information relevant for the annotator, and
meta is an encoded JSON object containing any
meta information that should be stored with an
instance, but that should not be shown to the anno-
tators (e.g. author of a comment, project internal
ID of an instance or date of publication).

After uploading the tab-separated CSV file to
the server, it will be checked for errors and then
parsed into the data table of the database, ready
to be distributed to annotators.

Outputs At any given time, collected annota-
tions can be downloaded from the annotations

https://github.com/uds-lsv/human/wiki


(a) Read question.

(b) Checkmark question.

(c) Label question.

Figure 4: The annotation page while passing through
different annotation states.

table. It is returned as an Excel file. By default, the
name of a column is tied to the name of the state in
the DSM that generated the annotation contained.
That is, a state named s2 will by default write an-
swers into column s2. The file also contains the
unique instance ID and user ID to match each anno-
tation with its corresponding annotation instance in
data and annotator in users. It is also possible
to separately extract each table of the database on
the server as tab-separated CSV files.

Users Each annotator needs a user account to ac-
cess the HUMAN server. User information such as
username, e-mail, full name and the hashed pass-
word are stored in the users table. Further, the
user type is stored, in order to separate annotator
accounts from administrator accounts. While an-
notators only have access to the annotation page
and their profile information, administrators also
have access to the data upload and download page
as well as the administrator console.

Options The options table contains informa-
tion about the set-up of the tool, such as the number
of annotators an annotation instance should be as-
signed to.

2.5 Graphical User Interface

The graphical user interface (GUI) makes the tool
easy to use for annotators and administrators. On

the annotation page (Figure 4), the left-hand side
shows the current annotation instance, with con-
tent to be annotated on top and optional context
information at the bottom. This makes it possible
to perform hierarchical annotations, by showing
an annotation instance together with the context it
was originally embedded in. The right-hand side is
dedicated to showing the questions one-by-one as
annotators pass through the DSM.

The administrator console in the GUI allows
the administrators to manage annotators and anno-
tation settings. This includes activating users that
have registered for an account, or deactivating users
that should be removed, or changing the annota-
tor’s password when required. The administrator
can check the total number of annotations made
by the annotators. It is further possible to specify
how many annotators are required per annotation
instance. Data upload and download is done via the
data console in the GUI and is also only available
to administrators.

3 Use-Case

In the case of the interdisciplinary project M-
PHASIS, where computer and communication sci-
entists are collaborating to study online hate speech
in user-generated content, an annotation tool was
needed that can implement multiple facets of hate
speech in the AP. Annotating in communication
science means following a complex AP which con-
sists of different theoretically deduced categories
to answer previously defined research questions
or hypotheses (Früh, 2017). Often there are mul-
tiple levels of analysis units which are hierarchi-
cal (Rössler, 2017), e.g., news articles with corre-
sponding comments which can be also divided into
various statements. Due to the analytical splitting
of comments into different statements, it was cru-
cial to have a tool that allows answering specific
questions more than once for the same comment
(loops).

Due to collaboration across disciplines it was
necessary to combine the different types of select
and label questions (Section 2.2). To study media
content, communication scholars apply an empir-
ical method called quantitative content analysis,
by which they try to systematically categorize con-
tent and formal characteristics of messages (Früh,
2017). The computational linguists, on the other
hand, also required sequence labels to identify spe-
cific entities in the texts, e.g. targets of hate speech.



For M-PHASIS there are different questions
which depend on the type of text input: news arti-
cles (3 select questions, 1 label question, 1 boolean
question) and comments. For comments, the ques-
tions vary according to type: moderating comment
(1 select question) or user comment (10 label ques-
tions, up to 30 questions of another type). For
the user comments, there are six different thematic
blocks in the AP. Some questions must be answered
for all comments, other (follow-up) questions must
only be answered when certain conditions apply to
the particular comment (branching). This includes,
inter alia, the question of whether statements within
a comment contain a positive or negative evalua-
tion of a target or an action recommendation of how
to deal with a target, for example when the adap-
tion of a specific behavior is demanded or a threat
of physical violence is expressed. Depending on
the annotator’s decision, follow-up questions are
shown, e.g. regarding the characteristics of a nega-
tive evaluation. If required, the tool loops through a
block of questions as many times as needed, for ex-
ample when various evaluations of different targets
are expressed in one comment.

The flexible structure of HUMAN allows one to
change the extent of the tool in consideration of
the actual content. This enables complex annota-
tions when necessary, but also makes it possible
to shorten the AP and therefore the time spent per
annotation – something no other tool has been able
to accomplish until now.

4 Discussion

HUMAN strongly follows its concept of modular-
ity and allows for the design and implementation
of complex annotation protocols. And while it is
currently already able to handle a variety of tasks
on textual data as well as PDFs and images, many
tasks are still uncovered. Two examples here be-
ing relationship annotations or asking open answer
questions. In order to truly reach universality, we
envision that the modular nature of the code will
invite anyone interested to add new and custom
features and annotation types to this open-source
tool.

5 Conclusion and Future Work

We have described HUMAN, a modular annota-
tion tool that covers a variety of annotation tasks,
ranging from document-level annotation over se-
quence labeling to image annotations. Its usage of

a deterministic state machine, also accommodates
different annotation tasks to be chained in such
a way that annotation decisions of the annotator
can be followed by different subsequent questions
(branching) or the revisions of previous questions
(loops). Its context and content fields make it possi-
ble to perform hierarchical annotations, i.e. anno-
tating an instance together with the context it was
embedded in.

This is, as far as we know, the only annotation
tool capable of covering such complex annotation
needs. This is of use not only for disciplines that
require multi-task annotation protocols, but also for
various single-task scenarios where users do not
want change the tool every time they have a new
annotation need with a slightly different task.

While HUMAN is already fully functional and
has been used for a real-life annotation scenario,
it is a work in progress. Possible new annotation
tasks could be e.g. annotations of relationships as
in Brat (Stenetorp et al., 2012), of wave signals,
similar to Praat (Boersma and Weenink, 2001) or
even videos as in NOVA (Heimerl et al., 2019).

In order to improve accessibility of the tool in
the future, we plan to implement a drag-and-drop
GUI for the creation of the AP, as well as a visual-
ization of the internally generated DSM to improve
debugging. Automatic calculation of statistics such
as the inter annotator agreement and average time
spent on an annotation instance are planned.

To further ease the database management, ad-
ministrators should have direct insight on each an-
notation instance in the database, which can then
be added, removed or edited in the GUI without
the need of SQLite commands on the server.

The code6 is published under a GPL-3 licence
together with a Wiki with detailed instructions on
how to setup the server and define an AP. It also
explains how to write custom annotation states and
API calls. Two functioning demos of the HUMAN
annotation page on two different APs are published
on our homepage7.

Acknowledgments

The development of this tool is partially funded by
ANR-DFG Project M-PHASIS (WI 4204/3-1). A
special thanks for all the feedback to Thomas Klein-
bauer, Christian Schemer, Laura Ascone, Angeliki
Monnier, Irina Illina and Dominique Fohr.

6https://github.com/uds-lsv/human
7http://human.lsv.uni-saarland.de/

https://github.com/uds-lsv/human
http://human.lsv.uni-saarland.de/


References
Paul Boersma and David Weenink. 2001. Praat, a sys-

tem for doing phonetics by computer. Glot Interna-
tional, 5(9/10):341–345.

Richard Eckart de Castilho, Éva Mújdricza-Maydt,
Seid Muhie Yimam, Silvana Hartmann, Iryna
Gurevych, Anette Frank, and Chris Biemann. 2016.
A web-based tool for the integrated annotation of se-
mantic and syntactic structures. In Proceedings of
the Workshop on Language Technology Resources
and Tools for Digital Humanities (LT4DH), pages
76–84, Osaka, Japan. The COLING 2016 Organiz-
ing Committee.

Werner Früh. 2017. Inhaltsanalyse. Theorie und
Praxis. UVK, Konstanz.

Miguel Grinberg. 2018. Flask web development: de-
veloping web applications with python. ” O’Reilly
Media, Inc.”.

Alexander Heimerl, Tobias Baur, Florian Lingenfelser,
Johannes Wagner, and Elisabeth André. 2019. Nova
- a tool for explainable cooperative machine learning.
In 2019 8th International Conference on Affective
Computing and Intelligent Interaction (ACII), pages
109–115.

Johannes Kiesel, Henning Wachsmuth, Khalid Al-
Khatib, and Benno Stein. 2017. WAT-SL: A cus-
tomizable web annotation tool for segment label-
ing. In Proceedings of the Software Demonstra-
tions of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 13–16, Valencia, Spain. Association for Com-
putational Linguistics.

Hiroki Nakayama, Takahiro Kubo, Junya Kamura, Ya-
sufumi Taniguchi, and Xu Liang. 2018. doccano:
Text annotation tool for human. Software available
from https://github.com/doccano/doccano.

Mariana Neves and Jurica Ševa. 2019. An extensive
review of tools for manual annotation of documents.
Briefings in Bioinformatics. Bbz130.

Patrick Rössler. 2017. Inhaltsanalyse. UVK, Kon-
stanz.

Hiroyuki Shindo, Yohei Munesada, and Yuji Mat-
sumoto. 2018. PDFAnno: a Web-based Linguistic
Annotation Tool for PDF Documents. In Proceed-
ings of the Eleventh International Conference on
Language Resources and Evaluation (LREC 2018),
Miyazaki, Japan. European Language Resources As-
sociation (ELRA).

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. brat: a web-based tool for NLP-assisted
text annotation. In Proceedings of the Demonstra-
tions at the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 102–107, Avignon, France. Association for
Computational Linguistics.

Julia Maria Struß, Melanie Siegel, Josep Ruppen-
hofer, Michael Wiegand, and Manfred Klenner.
2019. Overview of germeval task 2, 2019 shared
task on the identification of offensive language. In
Proceedings of the 15th Conference on Natural Lan-
guage Processing (KONVENS 2019), pages 354–
365, Erlangen, Germany. German Society for Com-
putational Linguistics & Language Technology.

Liling Tan. 2020. A survey of nlp annotation platforms.
https://github.com/alvations/annotate-questionnaire.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019. Semeval-2019 task 6: Identifying and catego-
rizing offensive language in social media (offense-
val). In Proceedings of the 13th International Work-
shop on Semantic Evaluation, pages 75–86.

https://www.aclweb.org/anthology/W16-4011
https://www.aclweb.org/anthology/W16-4011
https://doi.org/10.1109/ACII.2019.8925519
https://doi.org/10.1109/ACII.2019.8925519
https://www.aclweb.org/anthology/E17-3004
https://www.aclweb.org/anthology/E17-3004
https://www.aclweb.org/anthology/E17-3004
https://github.com/doccano/doccano
https://github.com/doccano/doccano
https://doi.org/10.1093/bib/bbz130
https://doi.org/10.1093/bib/bbz130
https://www.aclweb.org/anthology/E12-2021
https://www.aclweb.org/anthology/E12-2021

