
Studying Feature Generation from Various Data Representations for
Answer Extraction

Dan Shen†‡ Geert-Jan M. Kruijff† Dietrich Klakow‡

† Department of Computational Linguistics
Saarland University

Building 17,Postfach 15 11 50
66041 Saarbruecken, Germany

‡ Lehrstuhl Sprach Signal Verarbeitung
Saarland University

Building 17, Postfach 15 11 50
66041 Saarbruecken, Germany

{dshen,gj}@coli.uni-sb.de
{dietrich.klakow}@lsv.uni-saarland.de

Abstract

In this paper, we study how to generate
features from various data representations,
such as surface texts and parse trees, for
answer extraction. Besides the features
generated from the surface texts, we
mainly discuss the feature generation in
the parse trees. We propose and compare
three methods, including feature vector,
string kernel and tree kernel, to represent
the syntactic features in Support Vector
Machines. The experiment on the TREC
question answering task shows that the
features generated from the more struc-
tured data representations significantly
improve the performance based on the
features generated from the surface texts.
Furthermore, the contribution of the indi-
vidual feature will be discussed in detail.

1 Introduction

Open domain question answering (QA), as defined
by the TREC competitions (Voorhees, 2003),
represents an advanced application of natural lan-
guage processing (NLP). It aims to find exact an-
swers to open-domain natural language questions
in a large document collection. For example:
Q2131: Who is the mayor of San Francisco?
Answer: Willie Brown

A typical QA system usually consists of three
basic modules: 1. Question Processing (QP) Mod-
ule, which finds some useful information from the

questions, such as expected answer type and key
words. 2. Information Retrieval (IR) Module,
which searches a document collection to retrieve a
set of relevant sentences using the question key
words. 3. Answer Extraction (AE) Module, which
analyzes the relevant sentences using the informa-
tion provided by the QP module and identify the
answer phrase.

In recent years, QA systems trend to be more
and more complex, since many other NLP tech-
niques, such as named entity recognition, parsing,
semantic analysis, reasoning, and external re-
sources, such as WordNet, web, databases, are in-
corporated. The various techniques and resources
may provide the indicative evidences to find the
correct answers. These evidences are further com-
bined by using a pipeline structure, a scoring func-
tion or a machine learning method.

In the machine learning framework, it is critical
but not trivial to generate the features from the
various resources which may be represented as
surface texts, syntactic structures and logic forms,
etc. The complexity of feature generation strongly
depends on the complexity of data representation.
Many previous QA systems (Echihabi et al., 2003;
Ravichandran, et al., 2003; Ittycheriah and Roukos,
2002; Ittycheriah, 2001; Xu et al., 2002) have well
studied the features in the surface texts. In this
paper, we will use the answer extraction module of
QA as a case study to further explore how to gen-
erate the features for the more complex sentence
representations, such as parse tree. Since parsing
gives the deeper understanding of the sentence, the
features generated from the parse tree are expected
to improve the performance based on the features
generated from the surface text. The answer ex-

traction module is built using Support Vector Ma-
chines (SVM). We propose three methods to rep-
resent the features in the parse tree: 1. features are
designed by domain experts, extracted from the
parse tree and represented as a feature vector; 2.
the parse tree is transformed to a node sequence
and a string kernel is employed; 3. the parse tree is
retained as the original representation and a tree
kernel is employed.

Although many textual features have been used
in the others’ AE modules, it is not clear that how
much contribution the individual feature makes. In
this paper, we will discuss the effectiveness of
each individual textual feature in detail. We fur-
ther evaluate the effectiveness of the syntactic fea-
tures we proposed. Our experiments using TREC
questions show that the syntactic features improve
the performance by 7.57 MRR based on the textual
features. It indicates that the new features based
on a deeper language understanding are necessary
to push further the machine learning-based QA
technology. Furthermore, the three representations
of the syntactic features are compared. We find
that keeping the original data representation by
using the data-specific kernel function in SVM
may capture the more comprehensive evidences
than the predefined features. Although the features
we generated are specific to the answer extraction
task, the comparison between the different feature
representations may be helpful to explore the syn-
tactic features for the other NLP applications.

2 Related Work

In the machine learning framework, it is crucial to
capture the useful evidences for the task and inte-
grate them effectively in the model. Many re-
searchers have explored the rich textual features
for the answer extraction.

IBM (Ittycheriah and Roukos, 2002; Ittycheriah,
2001) used a Maximum Entropy model to integrate
the rich features, including query expansion fea-
tures, focus matching features, answer candidate
co-occurrence features, certain word frequency
features, named entity features, dependency rela-
tion features, linguistic motivated features and sur-
face patterns. ISI’s (Echihabi et al. 2003; Echihabi
and Marcu, 2003) statistical-based AE module im-
plemented a noisy-channel model to explain how a
given sentence tagged with an answer can be re-
written into a question through a sequence of sto-

chastic operations. (Ravichandran et al., 2003)
compared two maximum entropy-based QA sys-
tems, which view the AE as a classification prob-
lem and a re-ranking problem respectively, based
on the word frequency features, expected answer
class features, question word absent features and
word match features. BBN (Xu et al. 2002) used a
HMM-based IR system to score the answer candi-
dates based on the answer contexts. They further
re-ranked the scored answer candidates using the
constraint features, such as whether a numerical
answer quantifies the correct noun, whether the
answer is of the correct location sub-type and
whether the answer satisfies the verb arguments of
the questions. (Suzuki et al. 2002) explored the
answer extraction using SVM.

However, in the previous statistical-based AE
modules, most of the features were extracted from
the surface texts which are mainly based on the
key words/phrases matching and the key word fre-
quency statistics. These features only capture the
surface-based information for the proper answers
and may not provide the deeper understanding of
the sentences. In addition, the contribution of the
individual feature has not been evaluated by them.
As for the features extracted from the structured
texts, such as parse trees, only a few works ex-
plored some predefined syntactic relation features
by partial matching. In this paper, we will explore
the syntactic features in the parse trees and com-
pare the different feature representations in SVM.
Moreover, the contributions of the different fea-
tures will be discussed in detail.

3 Answer Extraction

Given a question Q and a set of relevant sentences
SentSet which is returned by the IR module, we
consider all of the base noun phrases and the words
in the base noun phrases as answer candidates aci.
For example, for the question “Q1956: What coun-
try is the largest in square miles?”, we extract the
answer candidates { Russia, largest country, larg-
est, country, world, Canada, No.2.} in the sentence
“I recently read that Russia is the largest country
in the world, with Canada No. 2.” The goal of the
AE module is to choose the most probable answer
from a set of answer candidates 1 2{ , ,... }mac ac ac
for the question Q.

We regard the answer extraction as a classifica-
tion problem, which classify each question and

answer candidate pair <Q, aci> into the positive
class (the correct answer) and the negative class
(the incorrect answer), based on some features.
The predication for each <Q, aci> is made inde-
pendently by the classifier, then, the ac with the
most confident positive prediction is chosen as the
answer for Q. SVM have shown the excellent per-
formance for the binary classification, therefore,
we employ it to classify the answer candidates.

Answer extraction is not a trivial task, since it
involves several components each of which is
fairly sophisticated, including named entity recog-
nition, syntactic / semantic parsing, question analy-
sis, etc. These components may provide some
indicative evidences for the proper answers. Be-
fore generating the features, we process the sen-
tences as follows:
1. tag the answer sentences with named entities.
2. parse the question and the answer sentences us-
ing the Collins’ parser (Collin, 1996).
3. extract the key words from the questions, such
as the target words, query words and verbs.

In the following sections, we will briefly intro-
duce the machine learning algorithm. Then, we
will discuss the features in detail, including the
motivations and representations of the features.

4 Support Vector Machines

Support Vector Machines (SVM) (Vapnik, 1995)
have strong theoretical motivation in statistical
learning theory and achieve excellent generaliza-
tion performance in many language processing
applications, such as text classification (Joachims,
1998).

SVM constructs a binary classifier that predict
whether an instance x (n∈w R) is positive
(() 1f =x) or negative (() 1f = −x), where, an
instance may be represented as a feature vector or
a structure like sequence of characters or tree. In
the simplest case (linearly separable instances), the
decision f() sgn(b)⋅ +x = w x is made based
on a separating hyperplane 0b⋅ + =w x (n∈w R ,
b∈R). All instances lying on one side of the hy-
perplane are classified to a positive class, while
others are classified to a negative class.

Given a set of labeled training instances
() () (){ }1 1 2 2, , , ,..., ,m mD y y y= x x x , where n

i ∈x R

and { }1, 1iy = − , SVM is to find the optimal hy-

perplane that separates the positive and negative
training instances with a maximal margin. The
margin is defined as the distance from the separat-
ing hyperplane to the closest positive (negative)
training instances. SVM is trained by solving a
dual quadratic programming problem.

Practically, the instances are non-linearly sepa-
rable. For this case, we need project the instances
in the original space Rn to a higher dimensional
space RN based on the kernel function

1 2 1 2(,) (), ()K =<Φ Φ >x x x x ,where, (): n NΦ →x R R is
a project function of the instance. By this means, a
linear separation will be made in the new space.
Corresponding to the original space Rn, a non-
linear separating surface is found. The kernel
function has to be defined based on the Mercer’s
condition. Generally, the following kernel func-
tions are widely used.
Polynomial kernel: (,) (1) p

i j i jk = ⋅ +x x x x

Gaussian RBF kernel:
2 22(,) i j-

i jk e σ−= x xx x

5 Textual Features

Since the features extracted from the surface texts
have been well explored by many QA systems
(Echihabi et al., 2003; Ravichandran, et al., 2003;
Ittycheriah and Roukos, 2002; Ittycheriah, 2001;
Xu et al., 2002), we will not focus on the textual
feature generation in this paper. Only four types of
the basic features are used:
1. Syntactic Tag Features: the features capture

the syntactic/POS information of the words in
the answer candidates. For the certain ques-
tion, such as “Q1903: How many time zones
are there in the world?”, if the answer candi-
date consists of the words with the syntactic
tags “CD NN”, it is more likely to be the
proper answer.

2. Orthographic Features: the features capture
the surface format of the answer candidates,
such as capitalization, digits and lengths, etc.
These features are motivated by the observa-
tions, such as, the length of the answers are
often less than 3 words for the factoid ques-
tions; the answers may not be the subse-
quences of the questions; the answers often
contain digits for the certain questions.

3. Named Entity Features: the features capture
the named entity information of the answer

candidates. They are very effective for the
who, when and where questions, such as, For
“Q1950: Who created the literary character
Phineas Fogg?“, the answer “Jules Verne” is
tagged as a PERSON name in the sentences
“Jules Verne 's Phileas Fogg made literary
history when he traveled around the world in
80 days in 1873.”. For the certain question tar-
get, if the answer candidate is tagged as the
certain type of named entity, one feature fires.

4. Triggers: some trigger words are collected for
the certain questions. For examples, for
“Q2156: How fast does Randy Johnson
throw?”, the trigger word “mph” for the ques-
tion words “how fast” may help to identify the
answer “98-mph” in “Johnson throws a 98-
mph fastball”.

6 Syntactic Features

In this section, we will discuss the feature genera-
tion in the parse trees. Since parsing outputs the
highly structured data representation of the sen-
tence, the features generated from the parse trees
may provide the more linguistic-motivated expla-
nation for the proper answers. However, it is not
trivial to find the informative evidences from a
parse tree.

The motivation of the syntactic features in our
task is that the proper answers often have the cer-
tain syntactic relations with the question key words.
Table 1 shows some examples of the typical syn-
tactic relations between the proper answers (a) and
the question target words (qtarget). Furthermore,
the syntactic relations between the answers and the
different types of question key words vary a lot.
Therefore, we capture the relation features for the
different types of question words respectively. The
question words are divided into four types:

 Target word, which indicates the expected an-
swer type, such as “city” in “Q: What city is
Disneyland in?”.

 Head word, which is extracted from how ques-
tions and indicates the expected answer head,
such as “dog” in “Q210: How many dogs
pull …?”

 Subject words, which are the base noun phrases
of the question except the target word and the
head word.

 Verb, which is the main verb of the question.
To our knowledge, the syntactic relation fea-

tures between the answers and the question key
words haven’t been explored in the previous ma-
chine learning-based QA systems. Next, we will
propose three methods to represent the syntactic
relation features in SVM.

6.1 Feature Vector

It is the commonly used feature representation in
most of the machine learning algorithms. We pre-
define a set of syntactic relation features, which is
an enumeration of some useful evidences of the
answer candidates (ac) and the question key words
in the parse trees. 20 syntactic features are manu-
ally designed in the task. Some examples of the
features are listed as follows,

 if the ac node is the same of the qtarget node,
one feature fires.

 if the ac node is the sibling of the qtarget node,
one feature fires.

 if the ac node the child of the qsubject node,
one feature fires.

The limitation of the manually designed features is
that they only capture the evidences in the local
context of the answer candidates and the question
key words. However, some question words, such
as subject words, often have the long range syntac-

1. a node is the same as the qtarget node and qtarget is the hypernym of a.
Q: What city is Disneyland in?
S: Not bad for a struggling actor who was working at Tokyo Disneyland a few years ago.
2. a node is the parent of qtarget node.
Q: What is the name of the airport in Dallas Ft. Worth?
S: Wednesday morning, the low temperature at the Dallas-Fort Worth International Airport was 81 degrees.
3. a node is the sibling of the qtarget node.
Q: What book did Rachel Carson write in 1962?
S: In her 1962 book Silent Spring, Rachel Carson, a marine biologist, chronicled DDT 's poisonous effects, ….
Table 1: Examples of the typical relations between answer and question target word. In Q, the italic word is
question target word. In S, the italic word is the question target word which is mapped in the answer sentence;
the underlined word is the proper answer for the question Q.

Figure 1: An example of the path from the answer
candidate node to the question subject word node

tic relations with the answers. To overcome the
limitation, we will propose some special kernels
which may keep the original data representation
instead of explicitly enumerate the features, to ex-
plore a much larger feature space.

6.2 String Kernel

The second method represents the syntactic rela-
tion as a linked node sequence and incorporates a
string kernel in SVM to handle the sequence.

We extract a path from the node of the answer
candidate to the node of the question key word in
the parse tree. The path is represented as a node
sequence linked by symbols indicating upward or
downward movement through the tree. For exam-
ple, in Figure 1, the path from the answer candi-
date node “211,456 miles” to the question subject
word node “the moon” is
“ NPB ADVP VP S NPB↑ ↑ ↑ ↓ ”, where “ ↑ ” and
“ ↓ ” indicate upward movement and downward
movement in the parse tree. By this means, we
represent the object from the original parse tree to
the node sequence. Each character of the sequence
is a syntactic/POS tag of the node. Next, a string
kernel will be adapted to our task to calculate the
similarity between two node sequences.

(Haussler, 1999) first described a convolution

kernel over the strings. (Lodhi et al., 2000) applied
the string kernel to the text classification. (Leslie
et al., 2002) further proposed a spectrum kernel,
which is simpler and more efficient than the previ-
ous string kernels, for protein classification prob-

lem. In their tasks, the string kernels achieved the
better performance compared with the human-
defined features.

The string kernel is to calculate the similarity
between two strings. It is based on the observation
that the more common substrings the strings have,
the more similar they are. The string kernel we
used is similar to (Leslie et al., 2002). It is defined
as the sum of the weighted common substrings.
The substring is weighted by an exponentially de-
caying factor λ (set 0.5 in the experiment) of its
length k. For efficiency, we only consider the sub-
strings which length are less than 3. Different
from (Leslie et al., 2002), the characters (syntac-
tic/POS tag) of the string are linked with each
other. Therefore, the matching between two sub-
strings will consider the linking information. Two
identical substrings will not only have the same
syntactic tag sequences but also have the same
linking symbols. For example, for the node se-
quences NP VP VP S NP↑ ↑ ↑ ↓ and NP NP VP NP↑ ↑ ↓ ,
there is a matched substring (k = 2): NP VP↑ .

6.3 Tree Kernel

The third method keeps the original representation
of the syntactic relation in the parse tree and incor-
porates a tree kernel in SVM.

Tree kernels are the structure-driven kernels to
calculate the similarity between two trees. They
have been successfully accepted in the NLP appli-
cations. (Collins and Duffy, 2002) defined a ker-
nel on parse tree and used it to improve parsing.
(Collins, 2002) extended the approach to POS tag-
ging and named entity recognition. (Zelenko et al.,
2003; Culotta and Sorensen, 2004) further ex-
plored tree kernels for relation extraction.

We define an object (a relation tree) as the
smallest tree which covers one answer candidate
node and one question key word node. Suppose
that a relation tree T has nodes 0 1{ , , ..., }nt t t and
each node it is attached with a set of attrib-
utes 0 1{ , , ..., }ma a a , which represents the local char-
acteristics of ti . In our task, the set of the
attributes includes Type attributes, Orthographic
attributes and Relation Role attributes, as shown in
Table 2. The core idea of the tree kernel (,)1 2K T T
is that the similarity between two trees T1 and T2 is

PUNC

. away 221,456 miles

S

PP NPB VP

VBZ ADVP

NPB RB
the moon

is

Q1980: How far is the moon from Earth in miles?
S: At its perigee, the closest approach to Earth , the
moon is 221,456 miles away.

……

T1_ac#target

T2_ac#target

Q1897: What is the name of the airport in Dallas Ft. Worth?
S: Wednesday morning, the low temperature at the Dallas-Fort
Worth International Airport was 81 degrees.

t4t3 t2

T: BNP
O: null
R1: true
R2: false

t1

Dallas-Fort
T: NNP
O: CAPALL
R1: false
R2: false

International
T: JJ
O: CAPALL
R1: false
R2: false

Airport
T: NNP
O: CAPALL
R1: false
R2: true

Q35: What is the name of the highest mountain in Africa?
S: Mount Kilimanjaro, at 19,342 feet, is Africa's highest moun-
tain, and is 5,000 feet higher than ….

Mount
T: NNP
O: CAPALL
R1: false
R2: true

Kilimanjaro
T: NNP
O: CAPALL
R1: false
R2: false

T: BNP
O: null
R1: true
R2: false

t0

w0

w1 w2

Worth
T: NNP
O: CAPALL
R1: false
R2: false

the sum of the similarity between their subtrees. It
is calculated by dynamic programming and cap-
tures the long-range syntactic relations between
two nodes. The kernel we use is similar to (Ze-
lenko et al., 2003) except that we define a task-
specific matching function and similarity function,
which are two primitive functions to calculate the
similarity between two nodes in terms of their at-
tributes.

Matching function
1 if . . and . .

(,)
0 otherwise

i j i j

i j

t type t type t role t role
m t t

= =
=

Similarity function

0{ ,..., }
(,) (. , .)i j i j

ma a a
s t t f t a t a

∈
= ∑

where, (. , .)i jf t a t a is a compatibility function be-
tween two feature values

. .
(. , .)

1 if

0 otherwise
i j

i j

t a t a
f t a t a =

=

Figure 2 shows two examples of the relation tree
T1_ac#targetword and T2_ac#targetword. The
kernel we used matches the following pairs of the
nodes <t0, w0>, <t1, w2>, <t2, w2> and <t4, w1>.

Attributes Examples
POS tag CD, NNP, NN…Type
syntactic tag NP, VP, …
Is Digit? DIG, DIGALL
Is Capitalized? CAP, CAPALL

Ortho-
graphic

length of phrase LNG1, LNG2#3,
LNGgt3

Role1 Is answer candidate? true, false
Role2 Is question key words? true, false
Table 2: Attributes of the nodes

7 Experiments

We apply the AE module to the TREC QA task.
To evaluate the features in the AE module inde-
pendently, we suppose that the IR module has got
100% precision and only passes those sentences
containing the proper answers to the AE module.
The AE module is to identify the proper answers
from the given sentence collection.

We use the questions of TREC8, 9, 2001 and
2002 for training and the questions of TREC2003
for testing. The following steps are used to gener-
ate the data:

1. Retrieve the relevant documents for each ques-
tion based on the TREC judgments.
2. Extract the sentences, which match both the
proper answer and at least one question key word,
from these documents.
3. Tag the proper answer in the sentences based on
the TREC answer patterns

Figure 2: Two objects representing the relations be-
tween answer candidates and target words.

In TREC 2003, there are 413 factoid questions

in which 51 questions (NIL questions) are not re-
turned with the proper answers by TREC. Accord-
ing to our data generation process, we cannot
provide data for those NIL questions because we
cannot get the sentence collections. Therefore, the
AE module will fail on all of the NIL questions
and the number of the valid questions should be
362 (413 – 51). In the experiment, we still test the
module on the whole question set (413 questions)
to keep consistent with the other’s work. The
training set contains 1252 questions. The perform-
ance of our system is evaluated using the mean
reciprocal rank (MRR). Furthermore, we also list
the percentages of the correct answers respectively

in terms of the top 5 answers and the top 1 answer
returned. We employ the SVMLight (Joachims,
1999) to incorporate the features and classify the
answer candidates. No post-processes are used to
adjust the answers in the experiments.

Firstly, we evaluate the effectiveness of the tex-
tual features, described in Section 5. We incorpo-
rate them into SVM using the three kernel
functions: linear kernel, polynomial kernel and
RBF kernel, which are introduced in Section 4.
Table 3 shows the performance for the different
kernels. The RBF kernel (46.24 MRR) signifi-
cantly outperforms the linear kernel (33.72 MRR)
and the polynomial kernel (40.45 MRR). There-
fore, we will use the RBF kernel in the rest ex-
periments.

 Top1 Top5 MRR
linear 31.28 37.91 33.72
polynomial 37.91 44.55 40.45
RBF 42.67 51.58 46.24
Table 3: Performance for kernels

In order to evaluate the contribution of the indi-

vidual feature, we test out module using different
feature combinations, as shown in Table 4. Sev-
eral findings are concluded:
1. With only the syntactic tag features Fsyn., the
module achieves a basic level MRR of 31.38. The
questions “Q1903: How many time zones are there
in the world?“ is correctly answered from the sen-
tence “The world is divided into 24 time zones.”.
2. The orthographic features Forth. show the posi-
tive effect with 7.12 MRR improvement based on
Fsyn.. They help to find the proper answer “Grover
Cleveland” for the question “Q2049: What presi-
dent served 2 nonconsecutive terms?” from the
sentence “Grover Cleveland is the forgotten two-
term American president.”, while Fsyn. wrongly
identify “president” as the answer.
3. The named entity features Fne are also benefi-
cial as they make the 4.46 MRR increase based on
Fsyn.+Forth. For the question “Q2076: What com-
pany owns the soft drink brand "Gatorade"?”, Fne
find the proper answer “Quaker Oats” in the sen-
tence “Marineau , 53 , had distinguished himself
by turning the sports drink Gatorade into a mass
consumer brand while an executive at Quaker Oats
During his 18-month…”, while Fsyn.+Forth. return
the wrong answer “Marineau”.
4. The trigger features Ftrg lead to an improve-
ment of 3.28 MRR based on Fsyn.+Forth+Fne. They

correctly answer more questions. For the question
“Q1937: How fast can a nuclear submarine
travel?”, Ftrg return the proper answer “25 knots”
from the sentence “The submarine , 360 feet
(109.8 meters) long , has 129 crew members and
travels at 25 knots.”, but the previous features fail
on it.

Fsyn Forth. Fne Ftrg Top1 Top5 MRR
√ 26.50 38.92 31.38
√ √ 34.69 43.61 38.50
√ √ √ 39.85 47.82 42.96
√ √ √ √ 42.67 51.58 46.24

Table 4: Performance for feature combinations

Next, we will evaluate the effectiveness of the syn-
tactic features, described in Section 6. Table 5
compares the three feature representation methods,
FeatureVector, StringKernel and TreeKernel.

 FeatureVector (Section 6.1). We predefine
some features in the syntactic tree and present
them as a feature vector. The syntactic fea-
tures are added with the textual features and
the RBF kernel is used to cope with them.

 StringKernel (Section 6.2). No features are
predefined. We transform the syntactic rela-
tions between answer candidates and question
key words to node sequences and a string ker-
nel is proposed to cope with the sequences.
Then we add the string kernel for the syntactic
relations and the RBF kernel for the textual
features.

 TreeKernel (Section 6.3). No features are
predefined. We keep the original representa-
tions of the syntactic relations and propose a
tree kernel to cope with the relation trees.
Then we add the tree kernel and the RBF ker-
nel.

 Top1 Top2 MRR
Fsyn.+Forth.+Fne+Ftrg 42.67 51.58 46.24
FeatureVector 46.19 53.69 49.28
StringKernel 48.99 55.83 52.29
TreeKernel 50.41 57.46 53.81
Table 5: Performance for syntactic feature repre-
sentations

Table 5 shows the performances of FeatureVec-

tor, StringKernel and TreeKernel. All of them im-
prove the performance based on the textual
features (Fsyn.+Forth.+Fne+Ftrg) by 3.04 MRR, 6.05
MRR and 7.57 MRR respectively. The probable
reason may be that the features generated from the
structured data representation may capture the

more linguistic-motivated evidences for the proper
answers. For example, the syntactic features help
to find the answer “nitrogen” for the question
“Q2139: What gas is 78 percent of the earth 's at-
mosphere?” in the sentence “One thing they have-
n't found in the moon's atmosphere so far is
nitrogen, the gas that makes up more than three-
quarters of the Earth's atmosphere.”, while the
textual features fail on it. Furthermore, the String-
Kernel (+3.01MRR) and TreeKernel (+4.53MRR)
achieve the higher performance than FeatureVec-
tor, which may be explained that keeping the
original data representations by incorporating the
data-specific kernels in SVM may capture the
more comprehensive evidences than the predefined
features. Moreover, TreeKernel slightly outper-
forms StringKernel by 1.52 MRR. The reason may
be that when we transform the representation of the
syntactic relation from the tree to the node se-
quence, some information may be lost, such as the
sibling node of the answer candidates. Sometimes
the information is useful to find the proper answers.

8 Conclusion

In this paper, we study the feature generation based
on the various data representations, such as surface
text and parse tree, for the answer extraction. We
generate the syntactic tag features, orthographic
features, named entity features and trigger features
from the surface texts. We further explore the fea-
ture generation from the parse trees which provide
the more linguistic-motivated evidences for the
task. We propose three methods, including feature
vector, string kernel and tree kernel, to represent
the syntactic features in Support Vector Machines.
The experiment on the TREC question answering
task shows that the syntactic features significantly
improve the performance by 7.57MRR based on
the textual features. Furthermore, keeping the
original data representation using a data-specific
kernel achieves the better performance than the
explicitly enumerated features in SVM.

References
M. Collins. 1996. A New Statistical Parser Based on

Bigram Lexical Dependencies. In Proceedings of
ACL-96, pages 184-191.

M. Collins. 2002. New Ranking Algorithms for Parsing
and Tagging: Kernel over Discrete Structures, and
the Voted Perceptron. In Proceedings of ACL-2002.

M. Collins and N. Duffy. 2002. Convolution Kernels
for Natural Language. Advances in Neural Informa-
tion Processing Systems 14, Cambridge, MA. MIT
Press.

A. Culotta and J. Sorensen. 2004. Dependency Tree
Kernels for Relation Extraction. In Proceedings of
ACL-2004.

A. Echihabi, U. Hermjakob, E. Hovy, D. Marcu, E.
Melz, D. Ravichandran. 2003. Multiple-Engine
Question Answering in TextMap. In Proceedings of
the TREC-2003 Conference, NIST.

A. Echihabi, D. Marcu. 2003. A Noisy-Channel Ap-
proach to Question Answering. In Proceedings of the
ACL-2003.

D. Haussler. 1999. Convolution Kernels on Discrete
Structures. Technical Report UCS-CRL-99-10, Uni-
versity of California, Santa Cruz.

A. Ittycheriah and S. Roukos. 2002. IBM’s Statistical
Question Answering System – TREC 11. In Pro-
ceedings of the TREC-2002 Conference, NIST.

A. Ittycheriah. 2001. Trainable Question Answering
System. Ph.D. Dissertation, Rutgers, The State Uni-
versity of New Jersey, New Brunswick, NJ.

T. Joachims. 1999. Making large-Scale SVM Learn-
ing Practical. Advances in Kernel Methods - Sup-
port Vector Learning, MIT-Press, 1999.

T. Joachims. 1998. Text Categorization with Support
Vector Machines: Learning with Many Relevant Fea-
tures. In Proceedings of the European Conference on
Machine Learning, Springer.

C. Leslie, E. Eskin and W. S. Noble. 2002. The spec-
trum kernel: A string kernel for SVM protein classi-
fication. Proceedings of the Pacific Biocomputing
Symposium.

H. Lodhi, J. S. Taylor, N. Cristianini and C. J. C. H.
Watkins. 2000. Text Classification using String
Kernels. In NIPS, pages 563-569.

D. Ravichandran, E. Hovy and F. J. Och. 2003. Statis-
tical QA – Classifier vs. Re-ranker: What’s the dif-
ference? In Proceedings of Workshop on Mulingual
Summarization and Question Answering, ACL 2003.

J. Suzuki, Y. Sasaki, and E. Maeda. 2002. SVM Answer
Selection for Open-domain Question Answering. In
Proc. of COLING 2002, pages 974–980.

V. N. Vapnik. 1998. Statistical Learning Theory.
Springer.

E.M. Voorhees. 2003. Overview of the TREC 2003
Question Answering Track. In Proceedings of the
TREC-2003 Conference, NIST.

J. Xu, A. Licuanan, J. May, S. Miller and R. Weischedel.
2002. TREC 2002 QA at BBN: Answer Selection
and Confidence Estimation. In Proceedings of the
TREC-2002 Conference, NIST.

D. Zelenko, C. Aone and A. Richardella. 2003. Kernel
Methods for Relation Extraction. Journal of Ma-
chine Learning Research, pages 1083-1106.

