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ABSTRACT
The next big step in embedded, mobile speech recognition
will be to allow completely free input as it is needed for mes-
saging like SMS or email. However, unconstrained dicta-
tion remains error-prone, especially when the environment is
noisy. In this paper, we compare different methods for im-
proving a given free-text dictation system used to enter text-
based messages in embedded mobile scenarios, where dis-
traction, interaction cost, and hardware limitations enforce
strict constraints over traditional scenarios. We present a cor-
pus-based evaluation, measuring the trade-off between im-
provement of the word error rate versus the interaction steps
that are required under various parameters. Results show that
by post-processing the output of a “black box” speech recog-
nizer (e.g. a web-based speech recognition service), a reduc-
tion of word error rate by 55% (10.3% abs.) can be obtained.
For further error reduction, however, a richer representation
of the original hypotheses (e.g. lattice) is necessary.

Author Keywords
Speech recognition, error correction, automotive, messaging
ACM Classification Keywords
H.5.m. Information Interfaces and Presentation: Misc.
General Terms
Experimentation, Measurement, Performance

INTRODUCTION
Embedded, mobile speech recognition has evolved from
simple voice commands (“Call Anna”) to relatively natural
speech input for certain domains (“Where is the next Pizza
place?”). The next big step will be to allow completely free
input as it is needed for messaging like SMS or email. Un-
constrained dictation is the hardest form of automatic speech
recognition (ASR) and remains error-prone, especially when
the environment is suboptimal, because background noise is
present or because the user can for some reason not fully
concentrate on speaking. Unfortunately, in mobile scenarios
this is mostly the case [5]. In the first place, this is an issue
of optimizing the ASR engine, which can be done by tak-
ing enough of the right training material and by eliminating
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“nuisance attributes” from the recognition process. Follow-
ing the post-ASR correction paradigm, we consider ASR as
a black box, which cannot be optimized either because we
already did our best or because we haven’t got access to it.
While post-correction can be applied in a number of mobile
domains, the main application scenario we have in mind is
dictating (and editing) text message while driving. Here, the
black box scenario is very likely. Car manufacturers are in
the process of moving from owned on-board ASR solutions
for off-board third party services such as Vlingo [12]. Why?
First of all, ASR development is costly. Then, innovation cy-
cles of the product (car) need to be further decoupled from
the much shorter cycles of value added components (such as
infotainment). And finally, the bandwidth of mobile Internet
has become wide enough to off-board services.

Obvious means for correcting errors that we know from per-
sonal computers at home will not be immediately applicable
here, because in mobile situations, a number of constraints
apply. On the other hand, correcting speech recognition errors
by adding another speech recognition step bears the danger
of ending up in cascading errors that frustrate the user [11].
[6] looked for modalities that are optimal for drivers using a
combination of eye gaze and speech commands. However, in-
dependent from the ergonomics of the interaction, we should
add some intelligence to the process, which helps reducing
the number of necessary interaction steps as much as possi-
ble. In this article, we tackle the latter issue. Particularly,
we address these questions: What factors do affect the per-
formance of the error correction for the in-car domain? What
methods can be used to improve it? Using a given ASR, what
is the upper boundary of accuracy that can be achieved us-
ing these methods? And finally, how much user interaction is
needed and how is it related to the performance?

RELATED WORK
Previous work on post-ASR correction using a single speech
recognizer hypothesis focused on language models (LM)
trained with statistical and other methods and relatively lit-
tle training data. In all cases introduced in the following,
ASR has been treated as a complete black box – the only
clue given for the input string was the word sequence pro-
duced by the recognizer. The different approaches commonly
employed LMs. [10] introduced a correction method using a
back-off LM in order to allow domain specific tasks. [3] pro-
duced a LM consisting of two components: a word n-gram
model accounts for lexical information and a maximum en-
tropy language model (MELM) capturing higher level syn-
tactic and semantic knowledge. In a similar study, [4] pro-
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posed a semantic-oriented approach. Here, lexico-semantic
patterns (LSP) have been used that combined linguistic en-
tries with semantic types in form of part-of-speech tags to
capture constituents of utterance hypotheses. [7] developed
a two-structured LM, comprised of syntactic-semantic and
lexical information, as well as grammatical knowledge. Our
model accounts for lexical information combined with either
lexicographical or phonological similarities. Deletion and in-
sertion errors where handled with the help of fertility mod-
els in the first three approaches, whereas our model so far
includes deletions only. [13] target dialog systems with post-
ASR confidence ratings based on both acoustic features, word
lattice, and LM. [10] achieved a WER reduction of 14.9%
using Sphinx-II for ASR and a LM trained on TRAINS-95
dialogue data for the transportation domain. However, the
initial WER was rather high (42% respectively 35%). [3] im-
proved an initial WER of 27% by 4%. They used LG-Elite
and ByVoice ASR in an in-vehicle telematic domain. [4]
used the same ASR and domain knowledge but also trained
with the TRAINS-95 dialogue system and obtained a 6.28%
WER-improvement. [7] employed data from the Saplen cor-
pus to train different knowledge domains like fast food and
Air Travel Information Service (ATIS). With these models
they used the HTK ASR, which resulted in an overall 8.5%
WER-improvement from a baseline of 23.88%.

POST-ASR ERROR CORRECTION APPROACHES
Fig. 1 illustrates the dialog system underlying this study. Af-
ter activation, the user can speak a sentence, which is then dis-
played on a screen. Using one of several modalities such as
touch, a central multi-functional device or short robust speech
commands, an erroneous word can be selected, in which case
a non-scrollable list of alternatives pops up. The user can se-
lect an alternative, choose the word to be deleted, or cancel
the correction. The insertion of words is currently not im-
plemented. Alternatively, on the main screen, the user can
toggle between full sentence alternatives using left and right
controls. When done, the user accepts the sentence. Given
the “black box” scenario described above, one question im-
mediately comes into mind: Where do the alternatives come
from? The remainder of this paper is dedicated to this prob-
lem. Thereby, the term interaction steps refers to the num-
ber of individual input turns by the user, e.g. button presses.
Hence, switching to the next sentence alternative is one inter-
action, selection a wrong word and then choosing an alterna-
tive is another two interactions.

Sentence Alternatives (DASA, WASA). Sentence alternatives,
if provided by the ASR, can be used in multiple ways: for
sentence-level correction (Directly Applied Sentence Alter-
natives, DASA) and to derive word alternatives (Word Alter-
natives based on Sentence Alternatives, WASA). Our WASA
generator aligns all sentence alternatives with the (poten-
tially incorrect) reference sentence on character-level using
Needleman/Wunsch algorithm (using a score of 1 for match
and -1 for mismatch and gaps) [9]. Then, words in the al-
ternative are mapped to the words in the reference sentence
depending on the characters they span in the alignment. It is
possible that multiple words in the alternative are mapped to
a single word (insertion) or that a single word in the reference

Figure 1. Simplified view of the underlying dialog system. A) user dic-
tates a sentence, B1) user selects alternative sentence, B2) user selects a
word that is wrong and chooses an alternative word (using a minimal
distraction modality which is not described here), C) user accepts the
sentence by choosing “Send”.

spanned multiple words in the source (deletion). The alterna-
tives for a single word then correspond to the words from all
sentence alternatives mapped to that word (minus duplicates).
Word alternatives are ordered by the scores of the correspond-
ing sentence alternatives from which they were obtained. If
the number of alternatives was larger than the number offered
to the user, the best n were displayed according to this met-
ric. This method heavily relies on support from the recognizer
and does not consider further domain-specific knowledge.

Language Model (LM). The second word alternative gener-
ator implemented does not require additional input beyond
the sentence. Rather than that, it works solely on the con-
text of the word and employs a pre-trained language model.
The motivating idea is that the information about knowing
which word is wrong, combined with the fact that the im-
mediate context (the word before and after it) are then most
likely correct, could be sufficient extra information for a sta-
tistical method. It is unclear, however, to what extend LM-
based approaches depend on domain-specific training data.
In our experiments described below, we therefore compared
in-domain and out-of-domain LM variants. In any case, LM
should be able to predict the words that can appear in the
position of the wrong word reported by the user. This pre-
diction is done based on the Bayes classifier scenario: First,
the probability of each vocabulary term conditioned on the
surrounding words is calculated. Typically, in the statistical
language modeling, an n-gram model and specifically a tri-
gram model is used to predict the present word based on the
two previous already seen words. In our language model, two
words in the immediate context are also used to calculate the
probability of the present word. However, contrary to the nor-
mal recognition task which runs the LM simultaneously with
the recognition, this LM is used after the recognition step and
as a result, the model knows about all sentence’s words, not
only the predecessor words. Hence, the words before and af-
ter the present word are used for calculating the probability:
ŵi = argmaxwP (w|wi−1, wi+1), where ŵi is the word to be
predicted as an alternative for the present word; w is the vo-
cabulary word, and wi−1 and wi+1 are the previous and next
words respectively. Similar to the normal trigram model, a
smoothing technique is required to overcome the problem of
unseen histories in which a bigram model is used as the back-
off model for smoothing. Based on our experiments on the
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development set, using only the previous word for the bigram
model performs better than using only the next word. There-
fore, the previous word is considered as the backoff model
while Kneser-Ney smoothing is applied. In the Bayes clas-
sifier, the best word which has the highest probability is se-
lected as an alternative for the wrong word. In our model,
since a list of alternative words is required, we further rank
the vocabulary terms in the ascending format of this probabil-
ity. Finally, top n words are selected as the best alternatives
for the current position.

Lexicographical and Phonological Similarities. If the ASR
has made an error, it is likely that the correct word is phono-
logically very close to the word reported as incorrect. Al-
though the LM can have a good prediction based on the sur-
rounding words, it does not take the actual word into account.
This way, it is much more likely to suggest alternatives that
are semantically or syntactically close to the word to be re-
placed, instead of those with similar acoustic features. While
the correct word may still be among the top 50 alternatives
sorted by LM probability, the limit for alternatives in our sce-
nario require that the LM suggestions be re-ranked based on
a metric that takes such similarity to the current word into
account. We tested two such re-ranking schemes in our eval-
uation: A lexicographical and a phonological comparison.
Both use a basic Levenshtein metric to sort alternatives by
their distance to the original word. While the lexicographical
method works on the written word in alphabetic characters,
the phonological scheme works on the IPA phonetical rep-
resentation, which is obtained using the CMU Pronouncing
Dictionary [2].

EXPERIMENTAL SETUP
The input for the evaluation consists of a pre-processed text
corpus (see below), which represents the message the user
wants to send. In the next step, an ASR is applied which (at
minimum) outputs one transcription for each input sentence.
Each sentence is then processed like a human would do with
a system as it is described here, until either it is completely
correct or the remaining errors cannot be fixed using the op-
tions provided. Modules generating the alternatives have ac-
cess to the sentence in its current state, and – if available –
any extra information from the recognizer. They do not know
the correct version of a respective sentence, but they may be
trained on external data prior to the experiment. For word-
level correction, the word alternatives module is queried for
options for each wrong word. If the correct solution is among
them, it is selected. The size of the alternatives list is one of
the main parameters in the following analysis. The two mea-
sures applied are word error rate (WER) of the original and
processed sentences, as well as interaction steps (IS). It is im-
portant to note that interactions are counted even if they don’t
lead to an improvement, because the system has to expose the
same level of knowledge as the user: If the user has to click a
wrong word to see whether the correct alternative is available,
the system should too.

The corpus is a custom collection of publicly available mate-
rial from a popular microblogging service (“MB corpus”). 51
users were selected with a total of 63,841 short sentences (av-

erage 8.6 words/sentence and 4 characters/word) in English,
with a special preference for automotive, traffic and traveling
topics (some users indeed seemed to be writing while driv-
ing). All sentences were post-processed by regular expres-
sions designed to remove artifacts and transform the output
into a format resembling dictated speech. E.g., small numbers
were changed to their written form, common abbreviations
were spelled out, etc. A subset of 940 sentences was selected
manually. Three native American English speakers read each
sentence. The eval set consists of 482 sentences while the
remainder of the corpus is used as training (63,383) and de-
velopment (458) set for the in-domain LM. The development
set is used to study the smoothing parameters. The train-
ing data consisted of 452,137 word tokens and 27,361 word
types. Additionally, we trained an Upper-Boundary model
directly on the eval set used as recognizer input. It measures
the upper boundary performance that can be achieved with
any LM training data based on the recognizer output.

The out-of-domain model was trained on the Blog06 corpus
created by the University of Glasgow [8]. It is a collection
of homepages and permalinks from blogs monitored over an
11 week period from Dec 2005 to Feb 2006. The collec-
tion contains 3,215,171 pages. Since blog documents are
user created, we found that this dataset is close to our ap-
plication yet larger and more generic than the in-domain LM.
We tested two recognizers: the SAPI 5.3-based recognizer in-
cluded in Windows 7 (RWIN ) and the end-user version of
Dragon Naturally Speaking 10 (RDRAG). RWIN provides
sentence alternatives and scores, while the RDRAG only pro-
vides the transcription. Neither of the two recognizers was
adapted to the speaker beforehand, i.e. both used generic US
English models. Additionally, we created a “pseudo” recog-
nizer (RPSEUD) that takes the correct transcript and replaces
random words in a controlled fashion. We tested a number
of parameters in different combinations. The first goal was
to find out how much the initial error rate could be improved
if the number of IS would not play a role (i.e. find an upper
boundary for the method). The second goal was to see how
the error rate would change if a tolerance level with respect
to the maximum number of IS was defined.

RESULTS
With the RWIN recognizer, our baseline is the initial WER
of 18.4% (and stddev of 21.8). Different degrees of improve-
ment can be achieved using Directly Applied Sentence Alter-
natives (DASA) correction, Word Alternatives based on Sen-
tence Alternatives (WASA), and LM. For each method, the
number of top alternatives that are checked for the correct
word is varied, starting from a low number that requires few
IS because it can fit on a single screen without the user hav-
ing to page or scroll, and moving towards a number (we chose
50) that models optimal performance. In addition, the maxi-
mum number of alternatives generated for LM and ASR was
50 respectively 20. For the LM method, we also compared
the different training sets and ranking schemes. We omitted
ranking tests for WASA because we can assume that all of
the ASR’s alternatives are already ordered w.r.t. similarity
to the word to be corrected. On the lowest, but also least
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costly alternatives setting (5), the improvement in WER ab-
solute percent is 4.8 for DASA, 5.6 for WASA, and 1.8 for
LM using in-domain training. The corresponding numbers
for the highest setting (50) are 9.4, 20.2, and 3.7. While the
LM achieves a notable improvement, its “upper boundary”
(6.5) still falls behind the methods that are based on extra in-
formation from the ASR. On the other hand, the performance
only slightly decreases for the out-of-domain model (3.2 with
50 alternatives). In the cases where the number of displayed
alternatives is smaller than the number of available alterna-
tives (e.g. 20 vs. 50), a lexical or phonological re-ranking
was performed. The phonolgical ranking almost always out-
performed the lexical ranking, although the difference was
not decisive (< 1%). These results, as well as all others in
this section, are statistically significant based on a two-tailed
paired t-test at the level of p-value < 0.01.

The RDRAG ASR has a lower initial WER, and so the ef-
fects are less visible, but still significant. Because it offers no
sentence alternatives, only the LM-based correction method
could be applied. Apart from that, it shows the same trends
at 1.7 (in-domain), 4.2 (upper-boundary) and 1.51 (out-of-
domain). The RPSEUD recognizer was created to see if there
was a relationship between ASR errors and difficulties of the
two alternative generators. It is very likely that “real” rec-
ognizers make errors with seldom or difficult words, which
are tough cases for the correction as well. Our observations
appear to confirm this, as the same LM achieves a greater im-
provement on the artificial (evenly distributed) errors.

Figure 2. Tradeoff between interaction cost and correction performance.
Marks correspond to the number of alternatives provided, which are 0,
5, 10, 20, and 50 (the upper limit is imposed by the ASR used).

Fig. 2 shows the IS’ respective cost corresponding to the
major experiments using RWIN . For the LM conditions,
the phonological ranking was selected. Recommendations
in published standards [1] indicate that approximately five
word alternatives can be displayed legibly on a 7” screen, so
we counted an additional IS for each “page switch” the user
would have needed to do. From the chart it can be seen what
the improvement in WER for a given maximum number of IS
may be. For example, if we allow four IS, the LM will pro-
vide a performance improvement of approximately 2.5% abs.
However, if the ASR provides sentence alternatives, the im-
provement would be 10% abs. if WASA is used to generate
word alternatives from them, and it requires approx. 4.1 IS.

CONCLUSIONS
This study presented a number of options how to deal with
speech recognition errors in a scenario where user interac-
tions are particularly costly and ASR configuration is limited.
The approaches were compared in terms of performance, but
also in terms of required interaction and with respect to their
ASR feature requirements. The experiment suggests that an
advanced ASR provides both the best overall accuracy as well
as a good interaction/performance trade-off, but it also shows
that post-correction matters: A purely LM-based approach,
which requires no ASR insight, can still result in a solid
performance increase of 3.7% abs. WER. While this is the
biggest improvement the LM could achieve in our test, it re-
quires approx. ten user interactions per sentence. If she com-
mits only 2.6 interactions, which is more realistic in driving
situations, the same method results in a gain of 2.6% absolute.
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