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Abstract— In this paper, we address a beamforming application generalized sidelobe cancell¢GSC) configuration is struc-
based on the capture of far-field speech data from a single tured such that the direct signal from a desired direction is
speaker in a real meeting room. After the position of the \,qistorted [4,66.7.3]. Typical GSC beamformers consist of

speaker is estimated by a speaker tracking system, we construct . . . .
a subband-domain beamformer ingeneralized sidelobe canceller three blocks, aquiescent vectorblocking matrixand active

(GSC) configuration. In contrast to conventional practice, we Weight vector The quiescent vector is calculated to provide
then optimize the active weight vectors of the GSC so as to unity gain for the direction of interest. The blocking mati$
obtain an output signal with maximum negentropy (MN). This  ysually constructed in order to keep a distortionless caimit
implies the beamformer output should be as non-Gaussian as fo the signal filtered with the quiescent vector. Subject to

ossible. For calculating negentropy, we consider thd' and . .
fhe generalized Gaussign (C?G) pdrg. After MN beamforming, the constraint, the total output power of the beamformer is

Zelinski post-filtering is performed to further enhance the speeb  Minimized through the adjustment of an active weight vector
by removing residual noise. Our beamforming algorithm can which effectively places a null on any source of interfeesnc
suppress noise and reverberation without the signal cancellation pyt can also lead to undesirabdggnal cancellation[5]. To

problems encountered in the conventional beamforming algo- 4y4iq the latter, many algorithms have been developed.eThes
rithms. We demonstrate this fact through experiments on acouét h ' Id be classified into the following:
simulations. Moreover, we demonstrate the effectiveness of pu 2PProacnes cou € classitied into the following:

proposed technique through a series of far-field automatic spelc

recognition experiments on theMulti-Channel Wall Street Journal » Updating the active weight vector only when noise signals

Audio Visual Corpus (MC-WSJ-AV), a corpus of data captured are dommant [61, [7], (8], . .

with real far-field sensors, in a realistic acoustic environment, and ~ * constraining the update formula for the active weight vec-
spoken by real speakers. On the MC-WSJ-AV evaluation data, the tor with the leaky least mean square (LMS) algorithm [9],
delay-and-sum beamformer with post-filtering achieved a word [10] or with power of outputs of the blocking matrix [11],

error rate (WER) of 16.5%. MN beamforming with the T' pdf
achieved a 15.8% WER, which was further reduced to 13.2%
with the GG pdf, whereas the simple delay-and-sum beamformer

« using multi-channel target signals received with the mi-
crophone array and correlation matrices of the clean and

provided a WER of 17.8%. To the best of our knowledge, no noise corrupted target signals in a calibration phase,, [12]

lower error rates at present have been reported in the literature « blocking the leakage of desired signal components into

on this ASR task. the sidelobe canceller by designing the blocking ma-
Index Terms— microphone arrays, beamforming, speech recog- trix [11], [13], [14], [15],

nition, speech enhancement, source separation « taking speech distortion due to the leakage of a target

signal into account using a multi-channel Wiener filter
which aims at minimizing a weighted sum of residual
noise and speech distortion terms [16], and
There has been great and growing interest in microphone, ysing acoustic transfer functions from a desired source
array processing for hands-free speech recognition [1][32 to microphones instead of just compensating time de-
Such techniques have the potential to relieve users from the |ays [8], [15], [17], [18].
necessity of donning close talking microphones (CTMs) teefo i o
dictating or otherwise interacting with automatic speeatog- 't Might be worth mentioning that Low et al. proposed a
nition (ASR) systems. Beamforming is a promising techniguifférent approach from traditional GSC beamforming algo-
for far-field speech recognition. A conventional beamfarine Mthms [?]. They combined a blind source separation (BSS)
technique [20] and an adaptive noise canceller with the mod-
This work was supported by the European Union (EU) underrttegiated  ified leaky LMS algorithm. Their algorithm first estimates
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the modified leaky LMS algorithm which adjusts a step-size We demonstrate the effectiveness of our proposed technique
with a non-linear function. In their algorithm, weights ofthrough a series of far-field automatic speech recognition
the unmixing matrix for extracting the desired signal caexperiments on th&lulti-Channel Wall Street Journal Audio
be regarded as the block of the upper branch in the GSGual Corpus(MC-WSJ-AV) collected under the European
structure and the other weights can be associated with theion integrated projecAugmented Multi-party Interaction
blocking matrix. Then, the active noise canceller corresiso (AMI) [1]. The data was recorded in a real meeting room,
to the active weight vector. Therefore the method proposaedd hence contains noise from computers, fans, and other
by Low et al. could be viewed as a GSC beamformingpparatus in the room. Moreover, some recordings include
algorithm without the distortionless constraint. Howewitle noise coming from outside the meeting room, such as that
BSS algorithms only provide the local solution which highlyproduced by passing cars or speakers in an adjacent room.
depends on initial values, and we cannot even predict therlowrhe test data is neither artificially convolved with measure
bound of the performance of the speech enhancement. Timpulse responses nor unrealistically mixed with sepgrate
obtained unmixing matrix might not extract a target signakcorded noise.
in some situations. Such an uncertain behavior would beThe balance of this work is organized as follows. We de-
unacceptable in many applications. Moreover, permutatiah scribe the super-Gaussian pdfs which are used for calaglati
scaling ambiguity problems might still remain. the negentropy in Section Il. In particular, Section Il slsow
Parra and Alvino [21] proposed tlgeometric source sepa-that the distribution of clean speech is not Gaussian buarsup
ration (GSS) algorithm for the source separation problem. Tt@aussian and the pdf of noise corrupted speech becomes close
GSS algorithm estimates the unmixing matrix with the gede Gaussian. Section Ill reviews the definition of entropy
metric constraint which can implicitly solve the permutati and negentropy. Section IV illustrates the speech distabu
and scaling ambiguity problems. The current authors notetbdeled with the GG pdf. In Section V, we discuss our
in [2] that this algorithm is equivalent to constructing t@&C maximum negentropy beamforming criterion and then derive
beamformers and estimating the active weight vectors so ashe gradient relations required for beamforming. In Sectit
decorrelate the outputs of the two beamformers. The currem demonstrate that the proposed beamforming algorithm has
authors also proposed a beamforming algorithm whereby the signal cancellation problem through acoustic simutegtio
active weight vectors of two beamformers are adjusted in Section VII, we describe the results of far-field automati
order to achieve minimum mutual information (MMI) betweerspeech recognition experiments. Finally, in Section g
the outputs of the beamformers [2]. The mutual informatigpresent our conclusions and plans for future work.
criterion was noted to yield aimilar optimization metric to
thg QSS algorithm under a Gaussian assgmpt_ion. On.e of the| M oDELING SUBBAND SAMPLES OF SPEECH WITH
principal advantages of the MMI formulation is that it can g per-GAUSSIAN PROBABILITY DENSITY FUNCTIONS
be readily extended to non-Gaussian pdfs. Those algorjthms ) ) B )
however, can be applied only to the speech separation taskiere we review theoretical arguments z_ind empirical evi-
where multiple sound sources are simultaneously active. dence that subband samples of speech, like nearly all other
In this work, we considemegentropyas a criterion for |nformat|or_1 begrlng signals, ar®t Gaussian-distributed [28].
estimating the active weight vectors in a GSC. Negentropy 1he entire field ofindependent component analy¢I€A)
indicates how far a probability density function (pdf) of a5 founded on _the a_\ssgmptlon that al! signals of real |_nter§s
particular signal is from Gaussian. The pdf of speech is #® not Gau55|an-d|§tr|buted [28]. Briefly, the reasoning is
fact super-Gaussian [2], [22], [23], but it becomes cloger 8rounded on two points:
Gaussian when the speech is corrupted by noise or reverbdraThecentral limit theorenstates that the pdf of the sum of
tion. Hence, in adjusting the active weight vector of the GSC independent random variables (r.v.s) will approach Gaus-
to provide a signal with the highest possible negentropy, we sian in the limit as more and more components are added,
hope to remove or suppress noise and reverberation. As weregardlessof the pdfs of the individual components. This
will demonstrate, thenaximum negentropfMN) beamformer implies that the sum of several r.v.s will be closer to
can achieve this goal without the signal cancellation prob- Gaussian than any of the individual components. Thus, if
lem encountered in conventional beamforming algorithnjs [5 the original independent components comprising the sum
Moreover, our technique can circumvent the permutation and are sought, one must look for components with pdfs that
scaling ambiguity problems by maintaining a distortiosles are theleast Gaussian.
constraint in the look direction. For calculating negepgro 2. The entropy for a continuous complex-valued r.¥., is
we consider thd and generalized Gaussian (GG) pdfs, and defined as
investigate the suitability of each for this task. After Mam- .
forming, Zelinskipost-filtering is performed to further enhance H(Y) = - /PY(U) log py (v)dv = =& {logpy (v)},
the speech by removing residual noise [24]. The Zelinski Q)
post-filtering technique is efficient for removing incohere  wherepy (.) is the pdf of Y. Entropy is the basic measure
noise since it assumes zero-correlation between the naise o of information ininformation theory[29]. It is well known
different sensors. It should be noted, however, that such anthat a Gaussian r.v. has the highest entropy of all r.v.s with
assumption may be inappropriate in several applicatioBf [2 a given variance [29, Thm. 7.4.1], which also holds for
[26], [27]. complex Gaussian r.v.s [30, Thm. 2]. Hence, a Gaussian



domairt. We can see from Fig. 3 that the GG pdf can model
the distribution of magnitude in the subband domain very.wel

1.5 . . . .

| - — —GGp=0.1
iy Gamma Fig. 4 shows histograms of real parts of subband compo-
,’,"l\ o f;’place nents calculated from clean speech and noise corruptedtspee
A Gaussian It is clear from this figure that the pdf of the noise corrupted

speech has less probability mass around the center spitte, an
less probability mass in the tail than the clean speech, but
more probability mass in intermediate regions. This inisa
that the pdf of the noise-corrupted signal, which is in fae t
sum of the speech and noise signals, is closer to Gaussian
than that of clean speech. Fig. 5 shows histograms of clean
speech and reverberated speech in the subband domain. In
order to produce reverberated speech, a clean speech signal
was convolved with an impulse response measured in a room;
see Lincolnet al. [1] for the configuration of the room. We
can observe from Fig. 5 that the pdf of reverberated speech is
also closer to Gaussian than the original clean speech.

We also present a histogram of magnitude of noise corrupted
speech in Fig. 6 and that of reverberant speech in Fig. 7. We
can again see from Fig. 6 and Fig. 7 that the pdfs of corrupted
speech have less probability mass around the mean and less
probability mass in the tail, but once more more probability

rv. is, in some sense, the legstedictable of all r.v.s. mass in intermediate regions. Interestingly, Fig. 7 shdves t

Information-bearing signals contain structure that mak?ﬁe peak of the histogram of the speech is shifted from zero
them more predictable than Gaussian r.v.s. Hence, if LU right by the reverberation effect

interesting signal is sought, one must once more look for ) .
. g sig g These facts would indeed support the hypothesis that seek-
a signal that isnot Gaussian. . . . ) .
ing an enhanced speech signal that is maximally non-Gaussia
is an effective way to suppress the distorting effects os@oi
and reverberation.

Fig. 1. Gaussian and super-Gaussian pdfs.

The fact that the pdf of speech is super-Gaussian has of
been reported in the literature [2], [22], [23]. Noise, or th
other hand, is more nearly Gaussian-distributed. In faw, t, Super-Gaussian pdf derived from the Meijer G-function
pdf of the sum of several super-Gaussian r.v.s. becomeerclos
to Gaussian. Thus, a mixture consisting of a desired signalAs noted by Brehm and Stammler [31], it is useful to model
and several interfering signals can be expected to be neafyeech as apherically-invariant random proces¢SIRP),
Gaussian-distributed. because such processes are completely characterizediby the

first and second order moments. Moreover, Brehm and Stamm-

The Gaussian and four super-Gaussian univariate pdfs gfe[31] noted that the Laplacey,, andI" pdfs can all be
plotted in Fig. 1. From the figure, it is clear that the Laplacgepresented aMeijer G-functions which is useful for two
Ky, T, and GG densities exhibit the “spikey” and “heavyreasons. Firstly, this implies that multivariate pdfs dfcatlers
tailed” characteristics that are typical of super-Gausgidfs. can be readily derived from the univariate pdf. Secondlghsu
This implies that they have a sharp concentration of prdiybi variates can be extended to the case of complex r.v.s.
mass at the mean, relatively little probability mass as aneg  For the empirical studies reported herel’ @df was used,
with the Gaussian at intermediate values of the argument, agx it achieved a higher likelihood than the other two named
a relatively large amount of probability mass in the ta#.i. pdfs, namely, Laplace, ankl, [2]. For theT pdf, the complex
far from the mean. univariate pdfcannotbe expressed in closed form in terms

, i of elementary or even special functions. As explained in [2]

Fig. 2 shows the histogram of the real parts of subbamgh ever, it is possible to derive Taylor series expansions
samples of speech gk = 800 Hz. To generate these hiSyya¢ enaple the required variates to be calculated to arpitr
tograms, we used 43.9 minutes of clean speech recorded Wiy, racy. Similarly, the differential entropy for tiiepdf can
a close-talking microphone (CTM) from the development sgjs, ot he expressed in closed form. Hence, it is necessary

of the Speech Separation Challenge, Part 2 (SSC2) [1]. Figy? repjace the exact differential entropy with teenpirical
also presents the pdfs. In Fig. 2, the parameters of the GG

pdf are e_Stlmate_d from training data' It is clear_from Fig. 2 1The pdfs in Fig. 3 are generally defined over the intervab (-+cc).
that the distribution of clean speech is not Gaussian bugrsupprecisely speaking, the double-sided pdfs should be modifiedtier to model
Gaussian. Fig. 2 also suggests that the GG pdf can be suitdhgnitude whose value is always positive. This is easily dpneultiplying
for modeling speech both sides by a factor of two and redefining the interval @s+po). Such

) modifications, however, are not necessary in our algorithrthat the factor
) ) . ) of two in the normalization is constant in the log-likelihoddmain and has
Fig. 3 shows the histogram of magnitude in the subbamd effect on the gradient algorithm.
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I —— GG p=05
— — — GG p=1 (Laplace)
GG p=2 (Gaussian)
GG p=4

N-1
H(Y) = € {logpy (0)} =~ 3 logpy (Ya), @
n=0

whereY,, is an observed subband sample. Al D |

B. Generalized Gaussian pdf

Due to its definition as a contour integral, finding maximu
likelihood estimates for the parameters of a Me{j&function
must necessarily devolve to a grid search over the relev
parameter space [31]. Instead, it might be better to use@lsin
super-Gaussian pdf whose parameters can easily be adju
so as to match the subband samples. The generalized Gau:
(GG) pdf is well-known and finds frequent application in th
BSS and ICA fields. Moreover, it subsumes the Gaussian i u
Laplace pdfs as special cases. The GG pdf with zero mean ﬁ%’ 8. The generalized Gaussian (GG) pdfs.
a real-valued r.vy can be expressed as

1 Y p
posly) = (1 + 1/p)AP,5) - [_ ‘A(P, o) } ) Fig. 8 shows the GG pdf with the same scale parameter
) o 6“ = 1 and different shape parameteps= 0.5, 1,2, 4. From
where p is the shape parameters is the scale parameter he figure, it is clear that a smaller shape parameter yields a
which controls how fast the tail of the pdf decays, and pdf with a spikier peak and heavier tail.

r(1/p)]1"? The differential entropy of the GG pdf for the real-valued
Alp,6) = 6 [F(3/p):| (4) rv.y is obtained with the help dflathematice[32] as
In (4), T'(.) is the gamma function. Note that the GG with I B _/+°° )
p = 1 corresponds to the Laplace pdf, and that setjing 2 co(y) = e Pgg(&) 10g pg(€)dE

yields the Gaussian pdf, whereas in the case of +oo the

1 N
GG pdf converges to a uniform distribution. " +log [2L(L +1/p)A(p,6)]. ()



Maximum likelihood (ML) estimates of the shape and scale [1I. NEGENTROPY ANDKURTOSIS
parameters can be determined from a set of training data, a§nhere are two popular criteria for measuring non-

described in the next section. Gaussianity, namely, negentropy and kurtosis, both of whic
are frequently used in the field of ICA [28].
The negentropy of a complex-valued r¥.is defined as

A
Among several methods for estimating the shape parameter J(V) = H(Ygausd = H(Y) (10)
p of the GG pdf [33][34], the moment and ML methods ar@vhere Ygauss is @ Gaussian variable which has the same
arguably the most straightforward. In this work, we used tharianceo? as Y. The entropy ofYgauss Can be expressed
moment method in order to initialize the parameters of thes
GG pdf and then updated them with the ML estimate [34]. H (Ygausy = log |03 | +2 (1 + log 2) . (11)

The shape parameters are estimated from training samples

offline and are then held fixed during beamforming. The shafik Section Il, we calculatedi(Y’) in (10) with two super-
gussian distributions, namely, titeand GG pdfs. Note that

parameters are estimated independently for each subbsn
the optimal pdf is frequency-dependent. negentropy is minimum if and only i has a Gaussian
distribution.

For a sety = {yo,y1,...,yn—1} of N real-valued training L .
samples, the log-likelihood function under the GG pdf can be The excess kurtosier simply kurtosis of a complex-valued
v. Y with zero mean is defined as

expressed as
kurt(Y) = £{|Y["} = 3(E{[Y[*})%.

I(¥;6,p) = —Nlog {2F( +1/p)A(p,6)}
©6) The Gaussian pdf has zero kurtosis, pdfs with positive lsisto
Z are super-Gaussian, those with negative kurtosis sae-

n—0 Gaussian Of the three super-Gaussian pdfs in Fig. 1, the
pdf has the highest kurtosis, followed by th&, then by the
lace pdf. As is clear from Fig. 1, as the kurtosis increase
pdf becomes more spikey and heavy-tailed. Note that the
kurtosis of the GG pdf can be controlled by adjusting the shap
parameterp, as explained in Section IV.

Kurtosis can be calculated by simply averaging samples

g Nl | N 2
P =, 4 2
] [n] kurt(Y Z|Y| —3<NZ|Yn> . (12

n=0 _
(7) n=0

C. Methods for Estimating Scale and Shape Parameters

In this work, we considered three kinds of training sample La
namely, the magnitude as well as the real and imaginary paﬁg
of the subband samples of speech.

The parameter$g and p can be obtained by solving the
following equations:

olY;6,p) N p
do 6  ortl
This kurtosis criterion does not require any assumptionoas t
) N—1 » the exact form of the pdf. Due to its simplicity, it is widely
oY;6,p) =Na(p) — Z ( \anA ) used as a measure of non-Gaussianity. However, the value of

dp — \Ap,0) (8) Kurtosis might be greatly influenced by a few samples with
|| a low observation probability. Hyrinen and Oja [28] noted

x {log{A(p &)} +b(p)} =0, that negentropy was generally more robust in the presence

’ of outliers than kurtosis. Hence, we adopt negentropy as our

where measure of choice, although we will also measure and report

kurtosis values.
alp) = (p7*/2)[29(1 +1/p) + ¥(1/p) — 3¥(3/p)],

b(p) = (p~'/2)[¥(1/p) —3¥(3/p)], IV. SPEECHMODELING WITH THE GG PDF

Subbands of speech can be precisely modeled by estimating
the parameters of the GG pdf from training samples. From the
12 N1 1/p trained parameters, insight can be gained into the statisti
5o {F(3/p)] (p Z | |p> ) properties of human speech. Fig. 9 shows the scale parameter

- T(1/p) Yn ' d|y| and the shape parametecalculated from the magnitude

of subband components plotted as functions of frequency,

Due to the presence of the special functions, it is impossibihere the number of the subbands is 256. The training samples
to solve (8) forp explicitly. Varanasi [35] showed, however,used for estimating the GG pdf here were taken from clean
that (8) has a unique root given the scale parameter. Henspeech data in the SSC2 development set [1].
the gradient descent algorithm [36] can be used to find theltis clear from Fig. 9 that the scale parametgr| becomes
unique solution which maximizes the likelihood. The santi smaller at higher frequencies. The scale parameter is
of (8) can be also obtained with the secant algorithm [32flated to the variance dt’|, although not identical to it in
[35]. The estimation of the parameters is repeated until thige case that the ML method is used in its estimation. Fig. 9
log-likelihood function (6) converges. indicates that the magnitude at lower frequencies variee mo

and ¥ (.) is the digamma function. By solving (7) far, we
obtain
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Fig. 9. The parameters of the GG pdf for frequency; (a) scaterpeterg|y-| and (b) shape parametgr where the sampling frequency is 16 kHz.

than that at higher frequencies. Moreover, the GG pdfserhir
with actual speech data are super-Gaussian itk 2 in

. . . — Of the GG pdf
all subbands; they are in fasuper-Laplacianwith p < 1 ~ ~ Ofthe empirical expectation
in all subbands. As mentioned previously, the kurtosis is
measure of the super-Gaussianity of a pdf. It is therefore

40

interest to examine the behavior of kurtosis of the GG pdf. , g
demonstrated in Appendix A, the latter can be expressed E
4 [T(A/p)T(5/p) } £

kurt(Y, :04{—3 . 13 g

( 99) F2(3/p) ( ) g

Fig. 10 shows a plot of kurtosis values as a function
frequency. In Fig. 10, a solid line indicates the kurtosis
the GG pdf calculated with (13) and a broken line preset
the empirical kurtosis computed with (12). It is clear fror
Fig. 10 that the GG pdf can also model the kurtosis of spee
which would make the negentropy criterion more robust f
outliers than the empirical kurtosis. It is also clear froig.A.0
that kurtosis becomes smaller at higher frequencies, whitl- 10. Kurtosis for frequency, where the sampling freqyeiscl6 kHz.
indicates that the pdf of lower frequency components areemor
super-Gaussian than those of higher frequency componeng¥( f )
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V. BEAMFORMING AND POST-FILTERING

Consider a subband beamformer in the GSC configura-
tion [4, §6.7.3] with a post-filter, as shown in Fig. 11. The
output of a beamformer for a given subband can be expressed
as Fig. 11. Schematic of a generalized sidelobe canceling (Gf&@jnformer

Y, = (Wq _ Bwa)H X, (14) for an active source.

Maximum negentropy

wherewy is thequiescent weight vectdor a sourceB is the
blocking matrix w, is theactive weight vectgrand X, is the used the modified Gram-Schmidt orthogonalization techaiqu
input subbandnapshot vectoat framet. The orthogonality implies that the distortionless coriatravill

In keeping with the GSC formalismy is chosen to give be satisfied for any choice ok, While the active weight
unity gain in the desiredook direction [4, §6.7.3]; i.e., to vectorwy, is typically chosen to minimize the variance of the
satisfy adistortionless constraintThe blocking matrixB is beamformer’s outputs, here we will develop an optimization
chosen to be orthogonal teq, such thatB* wq = 0. The procedure to find thatv, which maximizes the negentropy
blocking matrix can be calculated with an orthogonalizatio/(Y") described in Section IlI.
technique such as the modified Gram-Schmidt, QR decompoin order to calculate the negentropy, the variance of the
sition or singular value decompositiof?]] In this work, we beamformer outputy” is needed. Substituting (14) into the



definition o3 = £ {Y Y*} of variance, we find By substituting (19) into (18) and taking the partial defiva

) I tive on both sides, we obtain the gradient function,
oy = (wq— Bwa)" Tx (wqg— Bwy), (15)

0J(Y;a) 0J(Y;a)

whereXx = £{XX"} is the covariance matrix of the input — QWa

owg* owg*

snapshot vectors. ) 1 (20)

Maximizing the negentropy criterion yields a weight vector _ 1 9|0y 4 1 3 1 opy(Yy) o
wa capable of canceling interferences that leak through the o3| Owa T 2 py(Y;) Owy® 2
sidelobes.

Zelinski post-filtering is performed on the output of thevhere
beamformer. The transfer function of the Zelinski posefilt D2 S

o 1 N
can be expressed as 8‘va*‘ - 3 {_BHXth } . 21)
a t=0

2 M—-1 M n
O | 2okl ikl PkLt

W,y = (16) Equations (20) and (21) are sufficient to implement a nu-

1 M 7

27 2k=1 Phi merical optimization algorithm, whereby the negentrofdy”)
where ¢y.; is the auto-spectral density of the time-alignean be maximized. The details of the numerical optimization
input at microphones and ¢y, is the cross-spectral density@!90rithm are described in Appendix B.

(CSD) at microphoné: and (. The estimation of a desired

signal can be improved by averaging the CSDs [24]. The final o ] ] ]
output of the beamformer and post-filter combination is ~ B- Estimation of Active Weights under the Generalized Gaus-

sian pdf

Vii=w. Vs =w, —Bw,)" X,. 17 .
L = wap Vi = ey (Wq = Bwa) ™ Xy (7 1) Parameter optimization 1Unlike the pdfs that can be

For the experiments described in Section VII, subband an&kpressed as Meijek-functions, the GG pdf cannot be readily
ysis and synthesis were performed with a uniform DFT filte#xtended from the univariate to the multi-variate. Hence, w
bank based on the modulation of a single prototype impulsge the magnitude of the beamformer’s output as the r.v. for
response [37], which was designed to minimize each aliasifglculating the entropy. By substituting (5) and (11) int@),
term individually. Beamforming in the subband domain hage arrive at the following expression for negentropy
the considerable advantage that the active sensor weights ¢
be optimized for each subband independently, which pravide  J(Y) =log|oy.| +2 (1 +log27) — Hee(|Y]).  (22)

a tremendous computational saving with respect to a time-
domain filter-and-sum beamformer with filters of the sami@ order to apply the conjugate gradients algorithm, we must
length on the output of each sensor. once more derive an expression for the gradient. By substi-

In conventional beamforming, regularizationterm is often tuting (22) into (18) and taking the partial derivative oritbo
applied that penalizes large active weights, and thereby ifides while holding the shape parameter fixed, we obtain
proves robustness by inhibiting the formation of excesgive

. 2
large sidelobes [4§6.10]. Such a regularization term can M = i? 8UY* - aHGG(l*Yl) —awa, (23)
be applied in the present instance by defining the modified Owa oy OWa Owa
optimization criterion where

J(Y;a)=J(Y) —a|wa® (18) OHge(|Y]) 1 06y (24)
for some reak > 0. Owa' oy Owa

Taking the derivative on both sides of (9), we find
A. Estimation of Active Weights under thepdf
11

P

Here we describe the formulae necessary for estimating the 956)y; p [T'(3/p) 5
active weight vectors under thepdf. Substituting (2) and (11) Owy* -7 L(1/p) X
into (10), we can express the negentropy as

» T-1

Il
t=0

T-1

Z |Y;g|p_1 8|YZ‘

pord Owy*

) , where the gradient of the magnitude at each frame is
where T' is the number of frames used for weight vector

adaptation. We maximize the objective function which is the Y| 1
sum of the negentropy and the negative regularization term. owy* 20|
the absence of a closed-form solution for kg maximizing

the negentropy (19), we resorted to tbenjugate gradients  We can implement a numerical optimization algorithm from
method [38,51.6]. equations (23) to (26); see Appendix B for the details.

T-1 X

1
J(Y) =log |a§/{ +2(1+1log2m) + T Z log py (Y2), (19)
t=0

: (25)

B7X,v;. (26)




2) Parameter optimization 2:0ne might think that the avoid signal cancellation. Perhaps the best-known of such
entropy of the GG pdf for the complex valued r.v. could balgorithms is the robust beamformer in GSC configuration
approximated by assuming that real and imaginary parts gn®posed by Hoshuyamat al. [11]. In the lower branch,
independent. With such an assumption, we can express their algorithm adaptively estimates a blocking matrix evhi
differential entropy of the GG pdf as cancels the signal correlated with the output from the upper

branch. Accordingly, the reflections of a desired signal can
H(Y) ~ Hi(Yy) + Hi(Y:) @7) be eliminated from the lower branch by the adaptive blocking
whereY; is the real part ofY andY; is its imaginary part. matrix (ABM). The coefficient of the ABM has upper and
Notice that the shape parameters for the real and imagindwer limits in order to specify the maximum allowable targe
parts must be trained individually. direction error. Then, the active weight vectors are eqdtohao

Then, upon substituting (11) and (27) into (10) and addirgs to minimize the output of the beamformer. Since the ABM
the regularization term, we obtain the objective function  can remove the reflections from the lower branch, the signal

J(V:a) =1lo |02 | +2(1 + log2m) cancellation proble_m is aIIeviate_d. However, the ABM cdsce
' 617y & (28) not only the reflections but also interference signals inctee

— Hi(Y;) — Hi(Y}) — af|wal|*. that the output of the upper branch contains the interferenc
In order to employ the gradient algorithm, we take theomponents. Then their algorithm is not able to suppress the
partial derivative of (28) leaked interference signals. In reality, the interferesigmals

are often present in the upper branch due to steering errors

. 2 (Y
07(Y;a) _ 1 Oloy| OHi(Yr) 0Hi(Y) —aw,, (29) and spatial aliasing[39, §13.1.4]. Therefore, Hoshuyama’s

Owa" o3| Owa®  Owa" Owa" algorithm must have in some sense trade-offs between the
where avoidance of the signal cancellation and suppression of the
O|Y, 4| 1 ) interference signals. This problem can be solved by simply
owa* *§B Xy - sign(Yy ) (30) halting the adaptation of the ABM and only updating the
active weight vectors in the case of a high signal-to-noise
and oI¥i,) ratio (SNR) [13]. Such a switching algorithm is based on SNR,
it

leHXf -sign(Yi,). (31) however, and requires complicated rules which must gegeral
Owy* 2 / v be determined empirically.

Equations (29) through (31) are used for the gradient Gannot et al. proposed a general transfer function GSC (TF-

algorithm. GSC) which incorporates transfer functions from a desired

source to microphones into the upper branch [8], [17], [18].

VI. SIMULATION The ratios of the transfer functions from the source to the

Conventional beamforming algorithms determine the OplriTJicrophone array are estimated with the least squares hetho

mum weight vector that minimizes the beamformer’s outpuf’:\’hen a des!red S|gngl IS preselnt. The qwespent vegtors are
calculated with the estimated ratios. The blocking masriae

wiSxw, (32) then computed so as to satisfy the orthogonality conditigh w
those quiescent weight vectors. Thus the leakage of theedesi
signal into the lower branch can be avoided. Their algorithm
whd — 1 33) canlgstim'ate the r{;\tios of the transfer.function Withoutru

’ positions in acoustically stationary environments. Itasvever
where d is the beam-steering vector. The well-known soludifficult to obtain stable solutions in non-stationary ciiohs.
tion is called the minimum variance distortionless respon#lthough it can be used in moderately reverberant environ-
(MVDR) beamformer [39§13.3.1]. The weight vector of the ments, it does not reduce the amount of reverberation [40].

subject to the distortionless constraint for the desireak lo
direction

MVDR beamformer can be expressed as E. Warsitz et al. proposed a generalized eigenvector (GEV)
$-1q beamforming algorithm which constructs the blocking nxatri
WMVDR = ngifld (34) based on the maximum SNR criterion [15]. They first cal-
X

culate beamformer weights which satisfy the maximum SNR
Additional weight is typically added to the main diagonatriterion. Secondly the orthogonal projection for consting

of 3x in order to avoid excessively large sidelobes in théhe blocking matrix is performed. Their algorithm estingate
beam pattern and the attendant nonrobustness§B®3.7]. the transfer function from the source to the microphones
The MVDR beamfomers would attempt to null out anyndirectly. They demonstrated that their method could cedu
interfering signal, but are prone to the signal cancelfaticsignal distortion and noise more than the TF-GSC without
problem [5] whenever there is an interfering signal that jsost-filtering. It was also shown in [15] that their GEV
correlated with the desired signal. In realistic environtsg beamforming algorithm can achieve almost the same noise
interference signals are highly correlated with a targghali suppression performance of the theoretical upper bound ob-
since the target signal is reflected from hard surfaces suelined by Hoshuyama’s beamformer.

as walls and tables. Therefore, the adaptation of the weighBased on the solutions mentioned above that have appeared
vector is usually halted whenever the desired source igeactiin the literature, it could be argued that conventional sibu
Many techniques have been proposed in the literature hleamforming algorithms have essentially addressed the- pro
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In contrast to such conventional beamformers, the MN
beamforming algorithm attempts not only to eliminate inFig- 15. The layout of the meeting room (measurements in cm).
terference signals but alsstrengthenthose reflections from
the desired source, assuming the desired sound source is i
statistically independent of the other sources. Of couasg, Performance of the delay-and-sum beamformer is poor.
reflected signal would be delayed with respect to the direct
path signal. Such a delay would, however, manifest itself as VIl. EXPERIMENTS

a phase shift in the subband domain as long as it is shorte{ye performed far-field automatic speech recognition (ASR)
than the length of an analysis filter, and could thus be remhovgyperiments on théulti-Channel Wall Street Journal Audio
through a suitable choice af,. Hence, the MN beamformer /g a) CorpugMC-WSJ-AV) from theAugmented Multi-party
offers the possibility of steering both nulls and sidelglies Interaction (AMI) project. The layout of the meeting room is
former towards the undesired signal and its reflections, tBgown in Fig. 15; see Lincoln et al. [1] for the detail of the
latter towards reflections of the desired signal. data collection apparatus. The room size is 650>c@90 cm

In order to verify that the MN beamforming algorithm formsx 325 c¢m and the reverberation tinig, was approximately
sidelobes directed towards the reflection of a desired kigra 380 millisecond. In addition to being reverberant, the data
conducted experiments with a simulated acoustic enviretmeincludes background noise from computers and air fans. Some
As shown in Fig. 12, we considered a simple configuratiagcordings contain audible noise from outside the meeting
with a sound source, a reflective surface, and a linear afrayreom, such as that generated by passing cars and speakers
eight microphones positioned with 10 cm inter-sensor $aci in an adjacent room.
Actual speech data were used as a source in this simulationThe far-field speech data was recorded with a circular,
which was based on thenage method41]. White Gaussian eight-channel microphone array with a diameter of 20 cm.
noise is added to each microphone data so that the SNRaditionally, a close-talking microphone was used for each
0 dB. We assume that the sound propagation speed is 343péaker to capture the best possible signal as a reference.
meter per second and the reflection coefficient is 0.7. Fig. ¥Be sampling rate of the recordings was 16 kHz. As the
shows beam patterns gt = 150 Hz, fs = 650 Hz andfs = data was recorded with real speakers in a realistic acoustic
1600 Hz obtained with a delay-and-sum (D&S) beamformegnvironment, the positions of the speakers’ heads as well as
the MVDR beamformer and the MN beamforming algorithnthe speaking volume vary even though the speakers areyargel
with the GG pdf of the magnitude. The weights of the MVDRstationary. Indeed, it is exactly this behavior of real ees
beamformer are optimized for isotropic (diffuse) noisefie t that makes working with data from corpora such as MC-WSJ-
simulation [42]. AV so much more challenging than working with data that

Given that a beam pattern shows the sensitivity of an arraas played through a loudspeaker into a room, not to mention
to plane waves, but the beam patterns in Fig. 13 were mattga that wasrtificially convolvedwith previously-measured
with a near-field source and reflection, we also ran a secdndisepulse responses. In theingle speaker stationargcenario
of simulations in which the source and reflection were assumef the MC-WSJ-AV, a speaker was asked to read sentences
to produce plane waves. The results of this second simalatiwom six positions, four seated around the table in Seats 1-4
are shown in Fig. 14. It is clear from Figure 13 and Figure 1ghown in Fig. 15, one standing at the white board, and one
that the MN beamformer emphasizes the reflection from tistanding at the presentation screen.
desired source, whereas the MVDR one optimized for the The test set used for the experiments reported here contains
diffuse noise eliminates it. It is also apparent from Figli8 recordings of 10 speakers where each speaker reads approxi-
(a) and Figure 14 (a) that MVDR and MN beamformers camately 40 sentences taken from the 5,000 word vocabulary
suppress interferences at low frequency while the supipressWall Street Journal (WSJ) task. This provides a total of
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352 utterances which correspond to 39.2 minutes of speefiiequency regions relative to the conventional Mel-fileark.
There are a total of 11,598 word tokens in the referendde MVDR also models spectral peaks more accurately than
transcriptions. The test set is disjoint from the trainirgad spectral valleys, which leads to improved robustness in the
set used to estimate the optimal scale and shape paramet@rgsence of noise. Front-end analysis involved extrac®idg
As shown in [2] the directivity of the circular array atcepstral coefficients per frame of speech and performinigaglo
low frequencies is poor; this stems from the fact that fdiePStral mean subtraction (CMS) with variance normakati
low frequencies, the wavelength is much longer than tHd'e final features were obtained by concatenating 15 con-
aperture of the array. At high frequencies, the beam pattéifcutive frames of cepstral features together, then peirfigr
is characterized by very large sidelobes; this is due toabe f@ linear discriminant analysis(LDA) to obtain a feature
that at high frequencies, the spacing between the elemént£b length 42. The LDA transformation was followed by a
the array exceeds half of a wavelength, thereby causin@;ai;pa%econd global CMS, then a global semi-tied covariance (STC)
aliasing [39,§13.1.4]. transform [45].

Prior to beamforming, we first estimated the speaker’s The far-field ASR experiments reported here were con-
position with a speaker tracking system [43]. Based on the a@lucted with aword trace decoderimplemented along the
erage speaker position estimated for each utteranceantter lines suggested by Sacet al. [46]. The decoder is capable
dependent active weight vectoss, were estimated for a Oof generating word lattices, which can then be optimized
source. The active weight vectors for each subband wetéh weighted finite-state transducer (WFST) operations as
initialized to zero for estimation. Iterations of the coggwe in [47]; i.e., the raw lattice from the decoder is projected
gradients algorithm were run on the entire utterance un@into the output side to discard all arc information save ffer t
convergence was achieved. word identities, and then compacted through epsilon reinova

Zelinski post-filtering [24] was performed after beamformgewrmm'zat'on’ and minimization [48].
ing. The feature extraction of our ASR system was based onWe used 30 hours of American WSJ and the 12 hours of
cepstral features estimated with a warpathimum variance Cambridge WSJ data in order to train a triphone acoustic
distortionless respons@d4] (MVDR) spectral envelope of model. The latter was necessary in order to provide coverage
model order 30. Due to the properties of the warped MVDR the British accents for the speakers in the SSC developmen
neither the Mel-filterbank nor any other filterbank was needeset [1]. Acoustic models estimated with two different HMM
The warped MVDR provides an increased resolution in lowtraining schemes were used for the various decoding passes:
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TABLE |
WORD ERROR RATES FOR EACH BEAMFORMING ALGORITHM AFTER
EVERY DECODING PASS

conventional maximum likelihood (ML) HMM training [49,

§12], and speaker-adapted training under a ML criterion (ML-
SAT) [50]. Our baseline system was fully continuous with
1,743 codebooks and a total of 67,860 Gaussian components.

Beamforming Pass (WER

The parameters of the GG pdf were trained with 43.9 minutes Algorithm 1 2 3 4
of speech dat ded with the CTM in the SSC devel t D&s BF 80.11399) 2151 178
peech data recorded with the In the 55L developmen D&S BF with PF 79.0 | 38.1 | 20.2 | 16,5
set. The training data set for the GG pdf contains recordings MMSE BF 78.6 | 35.4 | 18.8 | 14.8
GEV BF 78.7 | 355 | 18.6 | 145

of 5 speakers.

. MN BF with Gamma pdf|| 75.6 | 34.9 | 19.8 | 15.8

We performed four decoding passes on the waveforms MN BF with GG pdf (1) || 75.1 | 32.7 | 16.5 | 13.2
obtained with each of the beamforming algorithms described MN BF with GG pdf (2) || 79.0 | 37.2 | 20.0 | 16.7
i ; ; i i SDM 87.0 | 57.1 | 32.8 | 28.0
in prior sections. Each pass of decoding used a different Pt 9| 215 | o8 | 57

acoustic model or speaker adaptation scheme. For all passes
save the first unadapted pass, speaker adaptation parameter
were estimated using the word lattices generated during the

prior pass, as in [51]. A description of the four decodinggeas the MVDR beamformer with Zelinski post-filtering, which is
follows: equivalent to the minimum mean-squared error beamformer
MMSE BF) [39, §13.3.5]. Table | demonstrates that the
VDR beamformer with post-filtering (MMSE BF) provides
model. o K
. o better recognition performance than D&S BF with PF. The
2. Estimate vocal tract length normalization (VTLN) [52] .
; . LN - “MMSE beamformer would suppress the reflections of the de-
parameters and constrained maximum likelihood linear

regression parameters (CMLLR) [53] for each speaker, thSHed signal. On the other hand, as demonstrated in Section V

redecode with the conventional ML acoustic model. e MN beamforming algorithm can strengthen the target

3. Estimate VTLN, CMLLR, and maximum likelihood IinearSlgnal by using the refle(_:tlons solely based on the maximum
negentropy criterion. Notice MVDR beamforming algorithms

regression (MLLR) [54] parameters for each speaker, then®" - L P
redecode with the conventional model. require speech activity detgcnon in order to avoid signal
) cancellation. For the adaptation of the MVDR beamformer, we
4. Estimate VTLN, CMLLR, MLLR parameters for each : .
. used the first 0.1 and last 0.1 seconds in each utterance data
speaker, then redecode with the ML-SAT model. : : .
which contain only background noise. Table | also shows the
All passes used the full trigram LM for the 5,000 word WSgecognition results obtained with the generalized eigetave
task, which was made possible through the fast-on-the-figamformer (GEV BF) proposed by E. Warsitz et al. [15].
composition algorithm described in [55]. It achieves slightly better recognition performance thhe t
Table | shows the word error rates (WERs) for everfIMSE beamformer. In this task, the transfer function from
beamforming algorithm. As references, WERs in recognitiche sound source to the microphone array changes in time due
experiments on speech data recorded with the single distemtmovements of the speaker’s head. Moreover, it is diffitmult
microphone (SDM) and CTM are also given. It is clear fromdetermine whether or not the signal observed at any givea tim
Table | that every MN beamforming algorithm can provideontains both speech and noise components in each frequency
better recognition performance than the simple delaysamd- bin, which is required to estimate the transfer functioneDu
beamformer (D&S BF) which can be improved by Zelinskio these difficulties, the performance of the GEV beamformer
post-filtering (D&S BF with PF). It is also clear from Table lis limited in realistic environments. Once more, in corittas
that MN beamforming with the GG pdf assumption which usenventional beamforming methods, our algorithm does not
the magnitude in calculating the negentropy (MN BF with G@eed to detect the start and end points of target speechthimce
pdf (1)) achieves the best recognition performance. This psoposed method can suppress noise and reverberatioruivitho
because the GG pdf can model the magnitude of the subbaine signal cancellation problem. It is worth noting that blest
of speech best by training the shape parameter at each slbbasult of 13.2% in Table | is significantly less than half the
frequency bin. The recognition performance, however, @d nword error rate reported elsewhere in the literature on this
improve for MN beamforming with the GG pdf when thefar-field ASR task [1].
real and imaginary parts of the subband components weréVe also examined the effect of the regularization term in
assumed to be independent (MN BF with GG pdf (2)). Wequation (18). Table Il shows WER as a function of the regu-
found it better to treat the subband components as sphgricalarization parametety, where we used the MN beamforming
invariant random processes (SIRPS) as in [2], [31] and ate lalgorithm with the GG pdf of the magnitude r.v. We can see
to conclude that the real and imaginary parts are dependenfram Table |l that the regularization parameter = 102
mentioned in [23]. Table | suggests that thedf assumption provides the best result although its impact on the recimgnit
(MN BF with T" pdf) can lead to better noise suppressioperformance is not significant. The regularization paramet
performance to some extent. The reduction over the D&S BF could be interpreted as an indicator of the sufficiency of
with PF case, however, is limited because thedf cannot the input data in estimating the active weight vector. Thus,
model the subband components of speech as preciselyttes requirement of a smatl may imply that the input data
the GG pdf which takes the magnitude as the r.v. We alsoe not sufficiently reliable to completely determine thavac
performed recognition experiments on speech enhanced vigight vector due to, for example, steering errors.

1. Decode with the unadapted, conventional ML acous
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TABLE I

from which it follows
WORD ERROR RATES AGAINST THE REGULARIZATION PARAMETERx.

dv pyP 1

«a Pass (%WER - )
1 2 3 4 dy  AP(p,o)

a=00 | 727|319 16.4| 137
we10-3 |l 739|322 | 166 | 136 then (36) can be solved as

a=10"2 | 75.1 | 32.7 | 16,5 | 13.2 T A 0
a=10"1 || 762 | 325 | 17.5 | 135 Sy} = M/ Tl e dy
pI(1+1/p) Jo
A" (p,5) F(r—i—l). (37)
pI(1+1/p) p

We implemented each algorithm in C/C++ and python. The
computational cost of the MN beamforming algorithm (MN By substituting the 2nd and 4th moments obtained from
BF with GG pdf (1)) is approximately 2.6 times as much aBquation (37), the kurtosis of the GG pdf k(¥f,,) can now
that of the MMSE beamformer per frame on a machine withe expressed as
an Intel Core 2 DUO E6750/2.66GHz processor and 3.36 GB

RAM. A(p,5)* B A(p,6)? ’
it O - T o) - e

VIII. CONCLUSIONS ANDFUTURE WORK Since thel function satisfiepI'(1 + 1/p) = T'(1/p), equa-
In this work, we have proposed a novel beamformingon (38) can be simplified as

algorithm based on maximizing negentropy. Our first inves-

tigations into the MN beamforming algorithm were based kurt (Y, )_&4{“1/1’)“5/7’) 3}_ (39)
on acoustic simulations. These simulations were suffidient 7 I'2(3/p)

demonstrate the MN beamforming algorithm could strengthen

the desired signal by constructively adding reflectionshef t B. The implementation of the optimization algorithm
same. Moreover, the proposed method does not exhibit th
signal cancellation problems typically seen in converaion
beamformers. We also evaluated tlite and GG pdfs in

q—|ere we describe a nonlinear conjugate gradient method
for our beamforming algorithm. Our goal is to find the active

calculating the negentropy through a set of far-field auta'xmawe'ght veqtor wh|ch'prowdes the maximum negeqtropy. How-
ever, gradient algorithms are generally used to find thel loca

speech recognition experiments with data captured insteali ~ .. : ; .

. ; minimum of a function [36,51.6]. Accordingly, we explain
acoustic environments and spoken by real speakers. In tfgﬁg\% to find the local minimum of the negative of (18) with a
experiments, the MN beamforming algorithm with the GG p 9

assumption proved to provide the best ASR performance. conjugate gra_d|ent algorithm, which is equivalent to segki
the local maximum of (18).

We plan to develop an on-line version of the beamforming The conjugate algorithms proceed as a succession of line
algorithm presented here. This on-line algorithm will be Jug 9 P

capable of adjusting the active weight vectors, with each minimizations. The sequence obnjugate directionss used

new snapshot in order to track changes of speaker posittlbggﬁ%)()rgx;nt?]tee ::ierz]ifnuur\r;ature of a cost function in the neigh-

and movements of the speaker’s head during an utterance. . L . A
Expressing our objective function to minimize Bgw,*) =
—J(Y;a) here, we have the initial search direction with the
opposite gradient direction
_0I (wa’("o))

Awaiko) = Ta* s
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APPENDIX where the partial derivative is (20), (23) or (29) in our case

A. Ther-th moment and kurtosis of the GG pdf A line search is performed in that direction and a step size is
In this section, we derive two useful statistics of the G@ptimized as follows:
pdf, ther-th moment and kurtosis.

The rth moment of the GG pdf can be expressed as By = argmin; I(wa" + BAwg() and
E{y"} 1 / Ty [ lyl” ] Wa() = Wa(o) T H0)AWa(),
Yy 5= = Yy exp |— = L . . . . .
2I(1+1/p)A(p,6) J_ A(p, o) where the initial active weight vector is set to zero in this

) ) ) work.
Since the GG pdf is an even function about the mean, we Carfier the first iteration, the following steps constituteeon

rewrite (35) as iteration of searching the minimum along a subsequent con-

1 >~ yP jugate directionAw,* ., whereAwy*, = Awg’, :
E{y"} = - / "ex {—] dy. (36 (n) (0) (0)
W T(1+1/p)Ap.6) Jo T TP Ar(pay| ™ ( )1. Calculate the gradient of the objective function
Upon definin *
p g oo Y Awazn):_m_
AP(p,5)’ Ow*



2. Compute the modified Polak-Rére formula [13]
T * *
o = Fe Awsl,) (Awal,) = Awal, ) »
Awa?n—l)AWa?7z—l)
where ()T denotes the transpose operation.
3. Update the conjugate direction (15]
Awaz‘n) = Awa’(kn) + 'Y(n)AWaEFn—1)~
4. Perform the line search and optimize the step size [16]
By = argmirb I(waZ‘n) + ﬁAwaZ‘n)). (40)
5. Update the estimation of the vector [17]
Wa(n+1) = Wa(n) + Fn) AWa(y,)- [18]
1
In each step, the line search is repeated until
Re{ AWagn) - AWaly b < 101 [AWagy | [AWagy.  (41) 09

where tol indicates the accuracy of the line search. We i%]
tol = 0.001 in experiments. In MN beamforming, the accurac

of the speech model has a much more significant impact on
the convergence speed of conjugate gradient algorithnrs tha

approximation methods of the curvature and the parameter@.1
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