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Abstract— In this paper, we address a beamforming application
based on the capture of far-field speech data from a single
speaker in a real meeting room. After the position of the
speaker is estimated by a speaker tracking system, we construct
a subband-domain beamformer ingeneralized sidelobe canceller
(GSC) configuration. In contrast to conventional practice, we
then optimize the active weight vectors of the GSC so as to
obtain an output signal with maximum negentropy (MN). This
implies the beamformer output should be as non-Gaussian as
possible. For calculating negentropy, we consider theΓ and
the generalized Gaussian (GG) pdfs. After MN beamforming,
Zelinski post-filtering is performed to further enhance the speech
by removing residual noise. Our beamforming algorithm can
suppress noise and reverberation without the signal cancellation
problems encountered in the conventional beamforming algo-
rithms. We demonstrate this fact through experiments on acoustic
simulations. Moreover, we demonstrate the effectiveness of our
proposed technique through a series of far-field automatic speech
recognition experiments on theMulti-Channel Wall Street Journal
Audio Visual Corpus (MC-WSJ-AV), a corpus of data captured
with real far-field sensors, in a realistic acoustic environment, and
spoken by real speakers. On the MC-WSJ-AV evaluation data, the
delay-and-sum beamformer with post-filtering achieved a word
error rate (WER) of 16.5%. MN beamforming with the Γ pdf
achieved a 15.8% WER, which was further reduced to 13.2%
with the GG pdf, whereas the simple delay-and-sum beamformer
provided a WER of 17.8%. To the best of our knowledge, no
lower error rates at present have been reported in the literature
on this ASR task.

Index Terms— microphone arrays, beamforming, speech recog-
nition, speech enhancement, source separation

I. I NTRODUCTION

There has been great and growing interest in microphone
array processing for hands-free speech recognition [1], [2], [3].
Such techniques have the potential to relieve users from the
necessity of donning close talking microphones (CTMs) before
dictating or otherwise interacting with automatic speech recog-
nition (ASR) systems. Beamforming is a promising technique
for far-field speech recognition. A conventional beamformer in
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generalized sidelobe canceller(GSC) configuration is struc-
tured such that the direct signal from a desired direction is
undistorted [4,§6.7.3]. Typical GSC beamformers consist of
three blocks, aquiescent vector, blocking matrixand active
weight vector. The quiescent vector is calculated to provide
unity gain for the direction of interest. The blocking matrix is
usually constructed in order to keep a distortionless constraint
for the signal filtered with the quiescent vector. Subject to
the constraint, the total output power of the beamformer is
minimized through the adjustment of an active weight vector,
which effectively places a null on any source of interference,
but can also lead to undesirablesignal cancellation[5]. To
avoid the latter, many algorithms have been developed. These
approaches could be classified into the following:

• updating the active weight vector only when noise signals
are dominant [6], [7], [8],

• constraining the update formula for the active weight vec-
tor with the leaky least mean square (LMS) algorithm [9],
[10] or with power of outputs of the blocking matrix [11],

• using multi-channel target signals received with the mi-
crophone array and correlation matrices of the clean and
noise corrupted target signals in a calibration phase, [12],

• blocking the leakage of desired signal components into
the sidelobe canceller by designing the blocking ma-
trix [11], [13], [14], [15],

• taking speech distortion due to the leakage of a target
signal into account using a multi-channel Wiener filter
which aims at minimizing a weighted sum of residual
noise and speech distortion terms [16], and

• using acoustic transfer functions from a desired source
to microphones instead of just compensating time de-
lays [8], [15], [17], [18].

It might be worth mentioning that Low et al. proposed a
different approach from traditional GSC beamforming algo-
rithms [?]. They combined a blind source separation (BSS)
technique [20] and an adaptive noise canceller with the mod-
ified leaky LMS algorithm. Their algorithm first estimates
the unmixing matrix with the information maximization tech-
nique [20]. It then alleviates the permutation problem by using
the directivity pattern [?] and scaling ambiguity by forcing the
determinant of the unmixing matrices to unity [?]. The output
channel with the highest kurtosis value is regarded as target
speech and the others are labeled as reference signals. The
adaptive noise canceller finally removes any components that
are correlated to the reference signals, which also leads to
the signal cancellation problem. To prevent it, they proposed
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the modified leaky LMS algorithm which adjusts a step-size
with a non-linear function. In their algorithm, weights of
the unmixing matrix for extracting the desired signal can
be regarded as the block of the upper branch in the GSC
structure and the other weights can be associated with the
blocking matrix. Then, the active noise canceller corresponds
to the active weight vector. Therefore the method proposed
by Low et al. could be viewed as a GSC beamforming
algorithm without the distortionless constraint. However, the
BSS algorithms only provide the local solution which highly
depends on initial values, and we cannot even predict the lower
bound of the performance of the speech enhancement. The
obtained unmixing matrix might not extract a target signal
in some situations. Such an uncertain behavior would be
unacceptable in many applications. Moreover, permutationand
scaling ambiguity problems might still remain.

Parra and Alvino [21] proposed thegeometric source sepa-
ration (GSS) algorithm for the source separation problem. The
GSS algorithm estimates the unmixing matrix with the geo-
metric constraint which can implicitly solve the permutation
and scaling ambiguity problems. The current authors noted
in [2] that this algorithm is equivalent to constructing twoGSC
beamformers and estimating the active weight vectors so as to
decorrelate the outputs of the two beamformers. The current
authors also proposed a beamforming algorithm whereby the
active weight vectors of two beamformers are adjusted in
order to achieve minimum mutual information (MMI) between
the outputs of the beamformers [2]. The mutual information
criterion was noted to yield asimilar optimization metric to
the GSS algorithm under a Gaussian assumption. One of the
principal advantages of the MMI formulation is that it can
be readily extended to non-Gaussian pdfs. Those algorithms,
however, can be applied only to the speech separation task
where multiple sound sources are simultaneously active.

In this work, we considernegentropyas a criterion for
estimating the active weight vectors in a GSC. Negentropy
indicates how far a probability density function (pdf) of a
particular signal is from Gaussian. The pdf of speech is in
fact super-Gaussian [2], [22], [23], but it becomes closer to
Gaussian when the speech is corrupted by noise or reverbera-
tion. Hence, in adjusting the active weight vector of the GSC
to provide a signal with the highest possible negentropy, we
hope to remove or suppress noise and reverberation. As we
will demonstrate, themaximum negentropy(MN) beamformer
can achieve this goal without the signal cancellation prob-
lem encountered in conventional beamforming algorithms [5].
Moreover, our technique can circumvent the permutation and
scaling ambiguity problems by maintaining a distortionless
constraint in the look direction. For calculating negentropy,
we consider theΓ and generalized Gaussian (GG) pdfs, and
investigate the suitability of each for this task. After MN beam-
forming,Zelinskipost-filtering is performed to further enhance
the speech by removing residual noise [24]. The Zelinski
post-filtering technique is efficient for removing incoherent
noise since it assumes zero-correlation between the noise on
different sensors. It should be noted, however, that such an
assumption may be inappropriate in several applications [25],
[26], [27].

We demonstrate the effectiveness of our proposed technique
through a series of far-field automatic speech recognition
experiments on theMulti-Channel Wall Street Journal Audio
Visual Corpus(MC-WSJ-AV) collected under the European
Union integrated projectAugmented Multi-party Interaction
(AMI) [1]. The data was recorded in a real meeting room,
and hence contains noise from computers, fans, and other
apparatus in the room. Moreover, some recordings include
noise coming from outside the meeting room, such as that
produced by passing cars or speakers in an adjacent room.
The test data is neither artificially convolved with measured
impulse responses nor unrealistically mixed with separately-
recorded noise.

The balance of this work is organized as follows. We de-
scribe the super-Gaussian pdfs which are used for calculating
the negentropy in Section II. In particular, Section II shows
that the distribution of clean speech is not Gaussian but super-
Gaussian and the pdf of noise corrupted speech becomes closer
to Gaussian. Section III reviews the definition of entropy
and negentropy. Section IV illustrates the speech distribution
modeled with the GG pdf. In Section V, we discuss our
maximum negentropy beamforming criterion and then derive
the gradient relations required for beamforming. In Section VI,
we demonstrate that the proposed beamforming algorithm has
no signal cancellation problem through acoustic simulations.
In Section VII, we describe the results of far-field automatic
speech recognition experiments. Finally, in Section VIII,we
present our conclusions and plans for future work.

II. M ODELING SUBBAND SAMPLES OFSPEECH WITH

SUPER-GAUSSIAN PROBABILITY DENSITY FUNCTIONS

Here we review theoretical arguments and empirical evi-
dence that subband samples of speech, like nearly all other
information bearing signals, arenot Gaussian-distributed [28].

The entire field ofindependent component analysis(ICA)
is founded on the assumption that all signals of real interest
are not Gaussian-distributed [28]. Briefly, the reasoning is
grounded on two points:

1. Thecentral limit theoremstates that the pdf of the sum of
independent random variables (r.v.s) will approach Gaus-
sian in the limit as more and more components are added,
regardlessof the pdfs of the individual components. This
implies that the sum of several r.v.s will be closer to
Gaussian than any of the individual components. Thus, if
the original independent components comprising the sum
are sought, one must look for components with pdfs that
are theleast Gaussian.

2. The entropy for a continuous complex-valued r.v.Y , is
defined as

H(Y ) , −

∫

pY (v) log pY (v)dv = −E {log pY (v)} ,

(1)
wherepY (.) is the pdf ofY . Entropy is the basic measure
of information in information theory[29]. It is well known
that a Gaussian r.v. has the highest entropy of all r.v.s with
a given variance [29, Thm. 7.4.1], which also holds for
complex Gaussian r.v.s [30, Thm. 2]. Hence, a Gaussian
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Fig. 1. Gaussian and super-Gaussian pdfs.

r.v. is, in some sense, the leastpredictable of all r.v.s.
Information-bearing signals contain structure that makes
them more predictable than Gaussian r.v.s. Hence, if an
interesting signal is sought, one must once more look for
a signal that isnot Gaussian.

The fact that the pdf of speech is super-Gaussian has often
been reported in the literature [2], [22], [23]. Noise, on the
other hand, is more nearly Gaussian-distributed. In fact, the
pdf of the sum of several super-Gaussian r.v.s. becomes closer
to Gaussian. Thus, a mixture consisting of a desired signal
and several interfering signals can be expected to be nearly
Gaussian-distributed.

The Gaussian and four super-Gaussian univariate pdfs are
plotted in Fig. 1. From the figure, it is clear that the Laplace,
K0, Γ, and GG densities exhibit the “spikey” and “heavy-
tailed” characteristics that are typical of super-Gaussian pdfs.
This implies that they have a sharp concentration of probability
mass at the mean, relatively little probability mass as compared
with the Gaussian at intermediate values of the argument, and
a relatively large amount of probability mass in the tail; i.e.,
far from the mean.

Fig. 2 shows the histogram of the real parts of subband
samples of speech atfs = 800 Hz. To generate these his-
tograms, we used 43.9 minutes of clean speech recorded with
a close-talking microphone (CTM) from the development set
of the Speech Separation Challenge, Part 2 (SSC2) [1]. Fig. 2
also presents the pdfs. In Fig. 2, the parameters of the GG
pdf are estimated from training data. It is clear from Fig. 2
that the distribution of clean speech is not Gaussian but super-
Gaussian. Fig. 2 also suggests that the GG pdf can be suitable
for modeling speech.

Fig. 3 shows the histogram of magnitude in the subband

domain1. We can see from Fig. 3 that the GG pdf can model
the distribution of magnitude in the subband domain very well.

Fig. 4 shows histograms of real parts of subband compo-
nents calculated from clean speech and noise corrupted speech.
It is clear from this figure that the pdf of the noise corrupted
speech has less probability mass around the center spike, and
less probability mass in the tail than the clean speech, but
more probability mass in intermediate regions. This indicates
that the pdf of the noise-corrupted signal, which is in fact the
sum of the speech and noise signals, is closer to Gaussian
than that of clean speech. Fig. 5 shows histograms of clean
speech and reverberated speech in the subband domain. In
order to produce reverberated speech, a clean speech signal
was convolved with an impulse response measured in a room;
see Lincolnet al. [1] for the configuration of the room. We
can observe from Fig. 5 that the pdf of reverberated speech is
also closer to Gaussian than the original clean speech.

We also present a histogram of magnitude of noise corrupted
speech in Fig. 6 and that of reverberant speech in Fig. 7. We
can again see from Fig. 6 and Fig. 7 that the pdfs of corrupted
speech have less probability mass around the mean and less
probability mass in the tail, but once more more probability
mass in intermediate regions. Interestingly, Fig. 7 shows that
the peak of the histogram of the speech is shifted from zero
to the right by the reverberation effect.

These facts would indeed support the hypothesis that seek-
ing an enhanced speech signal that is maximally non-Gaussian
is an effective way to suppress the distorting effects of noise
and reverberation.

A. Super-Gaussian pdf derived from the Meijer G-function

As noted by Brehm and Stammler [31], it is useful to model
speech as aspherically-invariant random process(SIRP),
because such processes are completely characterized by their
first and second order moments. Moreover, Brehm and Stamm-
ler [31] noted that the Laplace,K0, and Γ pdfs can all be
represented asMeijer G-functions, which is useful for two
reasons. Firstly, this implies that multivariate pdfs of all orders
can be readily derived from the univariate pdf. Secondly, such
variates can be extended to the case of complex r.v.s.

For the empirical studies reported here, aΓ pdf was used,
as it achieved a higher likelihood than the other two named
pdfs, namely, Laplace, andK0 [2]. For theΓ pdf, the complex
univariate pdfcannot be expressed in closed form in terms
of elementary or even special functions. As explained in [2],
however, it is possible to derive Taylor series expansions
that enable the required variates to be calculated to arbitrary
accuracy. Similarly, the differential entropy for theΓ pdf can
also not be expressed in closed form. Hence, it is necessary
to replace the exact differential entropy with theempirical

1The pdfs in Fig. 3 are generally defined over the interval (-∞, +∞).
Precisely speaking, the double-sided pdfs should be modifiedin order to model
magnitude whose value is always positive. This is easily doneby multiplying
both sides by a factor of two and redefining the interval as [0, +∞). Such
modifications, however, are not necessary in our algorithm inthat the factor
of two in the normalization is constant in the log-likelihooddomain and has
no effect on the gradient algorithm.
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Fig. 2. Histogram of real parts of subband
components and pdfs.
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Fig. 3. Histogram of magnitude in the subband
domain and pdfs.
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Fig. 4. Histograms of clean speech and noise
corrupted speech in the subband domain.
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Fig. 5. Histograms of clean speech and rever-
berant speech in the subband domain.
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Fig. 6. Histograms of the magnitude of clean
speech and noise corrupted speech in the sub-
band domain.
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Fig. 7. Histograms of magnitude of clean
speech and reverberated speech in the subband
domain.

entropy

H(Y ) = −E {log pY (v)} ≈ −
1

N

N−1
∑

n=0

log pY (Yn), (2)

whereYn is an observed subband sample.

B. Generalized Gaussian pdf

Due to its definition as a contour integral, finding maximum
likelihood estimates for the parameters of a MeijerG-function
must necessarily devolve to a grid search over the relevant
parameter space [31]. Instead, it might be better to use a simple
super-Gaussian pdf whose parameters can easily be adjusted
so as to match the subband samples. The generalized Gaussian
(GG) pdf is well-known and finds frequent application in the
BSS and ICA fields. Moreover, it subsumes the Gaussian and
Laplace pdfs as special cases. The GG pdf with zero mean for
a real-valued r.v.y can be expressed as

pGG(y) =
1

2Γ(1 + 1/p)A(p, σ̂)
exp

[

−

∣

∣

∣

∣

y

A(p, σ̂)

∣

∣

∣

∣

p]

, (3)

where p is the shape parameter, σ̂ is the scale parameter
which controls how fast the tail of the pdf decays, and

A(p, σ̂) = σ̂

[

Γ(1/p)

Γ(3/p)

]1/2

. (4)

In (4), Γ(.) is the gamma function. Note that the GG with
p = 1 corresponds to the Laplace pdf, and that settingp = 2
yields the Gaussian pdf, whereas in the case ofp → +∞ the
GG pdf converges to a uniform distribution.
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Fig. 8. The generalized Gaussian (GG) pdfs.

Fig. 8 shows the GG pdf with the same scale parameter
σ̂2 = 1 and different shape parameters,p = 0.5, 1, 2, 4. From
the figure, it is clear that a smaller shape parameter yields a
pdf with a spikier peak and heavier tail.

The differential entropy of the GG pdf for the real-valued
r.v. y is obtained with the help ofMathematica[32] as

HGG(y) = −

∫ +∞

−∞

pgg(ξ) log pgg(ξ)dξ

=
1

p
+ log [2Γ(1 + 1/p)A(p, σ̂)] . (5)
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Maximum likelihood (ML) estimates of the shape and scale
parameters can be determined from a set of training data, as
described in the next section.

C. Methods for Estimating Scale and Shape Parameters

Among several methods for estimating the shape parameter
p of the GG pdf [33][34], the moment and ML methods are
arguably the most straightforward. In this work, we used the
moment method in order to initialize the parameters of the
GG pdf and then updated them with the ML estimate [34].
The shape parameters are estimated from training samples
offline and are then held fixed during beamforming. The shape
parameters are estimated independently for each subband, as
the optimal pdf is frequency-dependent.

For a setY = {y0, y1, . . . , yN−1} of N real-valued training
samples, the log-likelihood function under the GG pdf can be
expressed as

l(Y ; σ̂, p) = −N log {2Γ(1 + 1/p)A(p, σ̂)}

−
1

A(p, σ̂)p

N−1
∑

n=0

|yn|
p.

(6)

In this work, we considered three kinds of training sampleyn,
namely, the magnitude as well as the real and imaginary parts
of the subband samples of speech.

The parameterŝσ and p can be obtained by solving the
following equations:

∂l(Y ; σ̂, p)

∂σ̂
= −

N

σ̂
+

p

σ̂p+1

[

Γ(1/p)

Γ(3/p)

]− p

2
N−1
∑

n=0

|yn|
p = 0,

(7)

∂l(Y; σ̂, p)

∂p
=Na(p) −

N−1
∑

n=0

(

|yn|

A(p, σ̂)

)p

×

[

log

{

|yn|

A(p, σ̂)

}

+ b(p)

]

= 0,

(8)

where

a(p) = (p−2/2)[2Ψ(1 + 1/p) + Ψ(1/p) − 3Ψ(3/p)],

b(p) = (p−1/2)[Ψ(1/p) − 3Ψ(3/p)],

and Ψ(.) is the digamma function. By solving (7) for̂σ, we
obtain

σ̂ =

[

Γ(3/p)

Γ(1/p)

]1/2
(

p

N

N−1
∑

n=0

|yn|
p

)1/p

. (9)

Due to the presence of the special functions, it is impossible
to solve (8) forp explicitly. Varanasi [35] showed, however,
that (8) has a unique root given the scale parameter. Hence,
the gradient descent algorithm [36] can be used to find the
unique solution which maximizes the likelihood. The solution
of (8) can be also obtained with the secant algorithm [32],
[35]. The estimation of the parameters is repeated until the
log-likelihood function (6) converges.

III. N EGENTROPY ANDKURTOSIS

There are two popular criteria for measuring non-
Gaussianity, namely, negentropy and kurtosis, both of which
are frequently used in the field of ICA [28].

The negentropy of a complex-valued r.v.Y is defined as

J(Y ) , H(Ygauss) − H(Y ) (10)

where Ygauss is a Gaussian variable which has the same
varianceσ2

Y as Y . The entropy ofYgauss can be expressed
as

H(Ygauss) = log
∣

∣σ2
Y

∣

∣ + 2 (1 + log 2π) . (11)

In Section II, we calculatedH(Y ) in (10) with two super-
Gaussian distributions, namely, theΓ and GG pdfs. Note that
negentropy is minimum if and only ifY has a Gaussian
distribution.

The excess kurtosisor simply kurtosis of a complex-valued
r.v. Y with zero mean is defined as

kurt(Y ) , E{|Y |4} − 3(E{|Y |2})2.

The Gaussian pdf has zero kurtosis, pdfs with positive kurtosis
are super-Gaussian, those with negative kurtosis aresub-
Gaussian. Of the three super-Gaussian pdfs in Fig. 1, theΓ
pdf has the highest kurtosis, followed by theK0, then by the
Laplace pdf. As is clear from Fig. 1, as the kurtosis increases,
the pdf becomes more spikey and heavy-tailed. Note that the
kurtosis of the GG pdf can be controlled by adjusting the shape
parameterp, as explained in Section IV.

Kurtosis can be calculated by simply averaging samples

kurt(Y ) =
1

N

N−1
∑

n=0

|Yn|
4 − 3

(

1

N

N−1
∑

n=0

|Yn|
2

)2

. (12)

This kurtosis criterion does not require any assumption as to
the exact form of the pdf. Due to its simplicity, it is widely
used as a measure of non-Gaussianity. However, the value of
kurtosis might be greatly influenced by a few samples with
a low observation probability. Hyvärinen and Oja [28] noted
that negentropy was generally more robust in the presence
of outliers than kurtosis. Hence, we adopt negentropy as our
measure of choice, although we will also measure and report
kurtosis values.

IV. SPEECHMODELING WITH THE GG PDF

Subbands of speech can be precisely modeled by estimating
the parameters of the GG pdf from training samples. From the
trained parameters, insight can be gained into the statistical
properties of human speech. Fig. 9 shows the scale parameter
σ̂|Y | and the shape parameterp calculated from the magnitude
of subband components plotted as functions of frequency,
where the number of the subbands is 256. The training samples
used for estimating the GG pdf here were taken from clean
speech data in the SSC2 development set [1].

It is clear from Fig. 9 that the scale parameterσ̂|Y | becomes
smaller at higher frequencies. The scale parameterσ̂|Y | is
related to the variance of|Y |, although not identical to it in
the case that the ML method is used in its estimation. Fig. 9
indicates that the magnitude at lower frequencies varies more
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Fig. 9. The parameters of the GG pdf for frequency; (a) scale parameterσ̂|Y | and (b) shape parameterp, where the sampling frequency is 16 kHz.

than that at higher frequencies. Moreover, the GG pdfs trained
with actual speech data are super-Gaussian withp < 2 in
all subbands; they are in factsuper-Laplacianwith p < 1
in all subbands. As mentioned previously, the kurtosis is a
measure of the super-Gaussianity of a pdf. It is therefore of
interest to examine the behavior of kurtosis of the GG pdf. As
demonstrated in Appendix A, the latter can be expressed as

kurt(Ygg) = σ̂4

{

Γ(1/p) Γ(5/p)

Γ2(3/p)
− 3

}

. (13)

Fig. 10 shows a plot of kurtosis values as a function of
frequency. In Fig. 10, a solid line indicates the kurtosis of
the GG pdf calculated with (13) and a broken line presents
the empirical kurtosis computed with (12). It is clear from
Fig. 10 that the GG pdf can also model the kurtosis of speech,
which would make the negentropy criterion more robust for
outliers than the empirical kurtosis. It is also clear from Fig. 10
that kurtosis becomes smaller at higher frequencies, which
indicates that the pdf of lower frequency components are more
super-Gaussian than those of higher frequency components.

V. BEAMFORMING AND POST-FILTERING

Consider a subband beamformer in the GSC configura-
tion [4, §6.7.3] with a post-filter, as shown in Fig. 11. The
output of a beamformer for a given subband can be expressed
as

Yt = (wq − Bwa)
H

Xt, (14)

wherewq is thequiescent weight vectorfor a source,B is the
blocking matrix, wa is theactive weight vector, andXt is the
input subbandsnapshot vectorat framet.

In keeping with the GSC formalism,wq is chosen to give
unity gain in the desiredlook direction [4, §6.7.3]; i.e., to
satisfy adistortionless constraint. The blocking matrixB is
chosen to be orthogonal towq, such thatBH

wq = 0. The
blocking matrix can be calculated with an orthogonalization
technique such as the modified Gram-Schmidt, QR decompo-
sition or singular value decomposition [?]. In this work, we
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Fig. 10. Kurtosis for frequency, where the sampling frequency is 16 kHz.
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Fig. 11. Schematic of a generalized sidelobe canceling (GSC)beamformer
for an active source.

used the modified Gram-Schmidt orthogonalization technique.
The orthogonality implies that the distortionless constraint will
be satisfied for any choice ofwa. While the active weight
vectorwa is typically chosen to minimize the variance of the
beamformer’s outputs, here we will develop an optimization
procedure to find thatwa which maximizes the negentropy
J(Y ) described in Section III.

In order to calculate the negentropy, the variance of the
beamformer outputsY is needed. Substituting (14) into the
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definition σ2
Y = E {Y Y ∗} of variance, we find

σ2
Y = (wq − Bwa)

H
ΣX (wq − Bwa) , (15)

whereΣX = E{XX
H} is the covariance matrix of the input

snapshot vectors.
Maximizing the negentropy criterion yields a weight vector

wa capable of canceling interferences that leak through the
sidelobes.

Zelinski post-filtering is performed on the output of the
beamformer. The transfer function of the Zelinski post-filter
can be expressed as

wz,t =

2
M(M−1)

∣

∣

∣

∑M−1
k=1

∑M
l=k+1 φ̂kl,t

∣

∣

∣

1
M

∑M
k=1 φ̂kk,t

(16)

where φ̂kk,t is the auto-spectral density of the time-aligned
input at microphonek and φ̂kl,t is the cross-spectral density
(CSD) at microphonek and l. The estimation of a desired
signal can be improved by averaging the CSDs [24]. The final
output of the beamformer and post-filter combination is

Yl,t = wz,t Yt = wz,t (wq − Bwa)
H

Xt. (17)

For the experiments described in Section VII, subband anal-
ysis and synthesis were performed with a uniform DFT filter
bank based on the modulation of a single prototype impulse
response [37], which was designed to minimize each aliasing
term individually. Beamforming in the subband domain has
the considerable advantage that the active sensor weights can
be optimized for each subband independently, which provides
a tremendous computational saving with respect to a time-
domain filter-and-sum beamformer with filters of the same
length on the output of each sensor.

In conventional beamforming, aregularizationterm is often
applied that penalizes large active weights, and thereby im-
proves robustness by inhibiting the formation of excessively
large sidelobes [4,§6.10]. Such a regularization term can
be applied in the present instance by defining the modified
optimization criterion

J (Y ;α) = J(Y ) − α‖wa‖
2 (18)

for some realα > 0.

A. Estimation of Active Weights under theΓ pdf

Here we describe the formulae necessary for estimating the
active weight vectors under theΓ pdf. Substituting (2) and (11)
into (10), we can express the negentropy as

J(Y ) = log
∣

∣σ2
Y

∣

∣ + 2 (1 + log 2π) +
1

T

T−1
∑

t=0

log pY (Yt), (19)

where T is the number of frames used for weight vector
adaptation. We maximize the objective function which is the
sum of the negentropy and the negative regularization term.In
the absence of a closed-form solution for thewa maximizing
the negentropy (19), we resorted to theconjugate gradients
method [38,§1.6].

By substituting (19) into (18) and taking the partial deriva-
tive on both sides, we obtain the gradient function,

∂J (Y ;α)

∂wa
∗

=
∂J(Y ;α)

∂wa
∗

− αwa

=
1

|σ2
Y |

∂|σ2
Y |

∂wa
∗

+
1

T

T−1
∑

t=0

1

pY (Yt)

∂pY (Yt)

∂wa
∗

− αwa

(20)

where

∂|σ2
Y |

∂wa
∗

=
1

T

T−1
∑

t=0

{

−B
H
XtY

∗
t

}

. (21)

Equations (20) and (21) are sufficient to implement a nu-
merical optimization algorithm, whereby the negentropyJ(Y )
can be maximized. The details of the numerical optimization
algorithm are described in Appendix B.

B. Estimation of Active Weights under the Generalized Gaus-
sian pdf

1) Parameter optimization 1:Unlike the pdfs that can be
expressed as MeijerG-functions, the GG pdf cannot be readily
extended from the univariate to the multi-variate. Hence, we
use the magnitude of the beamformer’s output as the r.v. for
calculating the entropy. By substituting (5) and (11) into (10),
we arrive at the following expression for negentropy

J(Y ) = log
∣

∣σ2
Y

∣

∣ + 2 (1 + log 2π) − HGG(|Y |). (22)

In order to apply the conjugate gradients algorithm, we must
once more derive an expression for the gradient. By substi-
tuting (22) into (18) and taking the partial derivative on both
sides while holding the shape parameter fixed, we obtain

∂J (Y ;α)

∂wa
∗

=
1

σ2
Y

∂σ2
Y

∂wa
∗
−

∂HGG(|Y |)

∂wa
∗

− αwa, (23)

where

∂HGG(|Y |)

∂wa
∗

=
1

σ̂|Y |

∂σ̂|Y |

∂wa
∗
. (24)

Taking the derivative on both sides of (9), we find

∂σ̂|Y |

∂wa
∗

=
p

T

[

Γ(3/p)

Γ(1/p)

]
1
2

×

[

p

T

T−1
∑

t=0

|Yt|
p

]

1
p
−1

×

[

T−1
∑

t=0

|Yt|
p−1 ∂|Yt|

∂wa
∗

]

, (25)

where the gradient of the magnitude at each frame is

∂|Yt|

∂wa
∗

= −
1

2|Yt|
B

H
XtY

∗
t . (26)

We can implement a numerical optimization algorithm from
equations (23) to (26); see Appendix B for the details.
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2) Parameter optimization 2:One might think that the
entropy of the GG pdf for the complex valued r.v. could be
approximated by assuming that real and imaginary parts are
independent. With such an assumption, we can express the
differential entropy of the GG pdf as

H(Y ) ≈ Hr(Yr) + Hi(Yi) (27)

whereYr is the real part ofY and Yi is its imaginary part.
Notice that the shape parameters for the real and imaginary
parts must be trained individually.

Then, upon substituting (11) and (27) into (10) and adding
the regularization term, we obtain the objective function

J (Y ;α) = log
∣

∣σ2
Y

∣

∣ + 2 (1 + log 2π)

− Hr(Yr) − Hi(Yi) − α‖wa‖
2.

(28)

In order to employ the gradient algorithm, we take the
partial derivative of (28)

∂J (Y ;α)

∂wa
∗

=
1

|σ2
Y |

∂|σ2
Y |

∂wa
∗
−

∂Hr(Yr)

∂wa
∗

−
∂Hi(Yi)

∂wa
∗

−αwa, (29)

where

∂|Yr,t|

∂wa
∗

= −
1

2
B

H
Xt · sign(Yr,t) (30)

and

∂|Yi,t|

∂wa
∗

= j
1

2
B

H
Xt · sign(Yi,t). (31)

Equations (29) through (31) are used for the gradient
algorithm.

VI. SIMULATION

Conventional beamforming algorithms determine the opti-
mum weight vector that minimizes the beamformer’s output:

w
H
ΣXw, (32)

subject to the distortionless constraint for the desired look
direction

w
H
d = 1, (33)

where d is the beam-steering vector. The well-known solu-
tion is called the minimum variance distortionless response
(MVDR) beamformer [39,§13.3.1]. The weight vector of the
MVDR beamformer can be expressed as

wMVDR =
Σ

−1
X

d

dHΣ
−1
X

d
. (34)

Additional weight is typically added to the main diagonal
of ΣX in order to avoid excessively large sidelobes in the
beam pattern and the attendant nonrobustness [39,§13.3.7].
The MVDR beamfomers would attempt to null out any
interfering signal, but are prone to the signal cancellation
problem [5] whenever there is an interfering signal that is
correlated with the desired signal. In realistic environments,
interference signals are highly correlated with a target signal
since the target signal is reflected from hard surfaces such
as walls and tables. Therefore, the adaptation of the weight
vector is usually halted whenever the desired source is active.
Many techniques have been proposed in the literature to

avoid signal cancellation. Perhaps the best-known of such
algorithms is the robust beamformer in GSC configuration
proposed by Hoshuyamaet al. [11]. In the lower branch,
their algorithm adaptively estimates a blocking matrix which
cancels the signal correlated with the output from the upper
branch. Accordingly, the reflections of a desired signal can
be eliminated from the lower branch by the adaptive blocking
matrix (ABM). The coefficient of the ABM has upper and
lower limits in order to specify the maximum allowable target-
direction error. Then, the active weight vectors are estimated so
as to minimize the output of the beamformer. Since the ABM
can remove the reflections from the lower branch, the signal
cancellation problem is alleviated. However, the ABM cancels
not only the reflections but also interference signals in thecase
that the output of the upper branch contains the interference
components. Then their algorithm is not able to suppress the
leaked interference signals. In reality, the interferencesignals
are often present in the upper branch due to steering errors
and spatial aliasing [39, §13.1.4]. Therefore, Hoshuyama’s
algorithm must have in some sense trade-offs between the
avoidance of the signal cancellation and suppression of the
interference signals. This problem can be solved by simply
halting the adaptation of the ABM and only updating the
active weight vectors in the case of a high signal-to-noise
ratio (SNR) [13]. Such a switching algorithm is based on SNR,
however, and requires complicated rules which must generally
be determined empirically.

Gannot et al. proposed a general transfer function GSC (TF-
GSC) which incorporates transfer functions from a desired
source to microphones into the upper branch [8], [17], [18].
The ratios of the transfer functions from the source to the
microphone array are estimated with the least squares method
when a desired signal is present. The quiescent vectors are
calculated with the estimated ratios. The blocking matrices are
then computed so as to satisfy the orthogonality condition with
those quiescent weight vectors. Thus the leakage of the desired
signal into the lower branch can be avoided. Their algorithm
can estimate the ratios of the transfer function without source
positions in acoustically stationary environments. It is however
difficult to obtain stable solutions in non-stationary conditions.
Although it can be used in moderately reverberant environ-
ments, it does not reduce the amount of reverberation [40].

E. Warsitz et al. proposed a generalized eigenvector (GEV)
beamforming algorithm which constructs the blocking matrix
based on the maximum SNR criterion [15]. They first cal-
culate beamformer weights which satisfy the maximum SNR
criterion. Secondly the orthogonal projection for constructing
the blocking matrix is performed. Their algorithm estimates
the transfer function from the source to the microphones
indirectly. They demonstrated that their method could reduce
signal distortion and noise more than the TF-GSC without
post-filtering. It was also shown in [15] that their GEV
beamforming algorithm can achieve almost the same noise
suppression performance of the theoretical upper bound ob-
tained by Hoshuyama’s beamformer.

Based on the solutions mentioned above that have appeared
in the literature, it could be argued that conventional robust
beamforming algorithms have essentially addressed the prob-
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Fig. 12. Configuration of a source, sensors, and reflective surface for
simulation.

lem of removing reflections that are highly correlated with
the target signal in order to circumvent the signal cancellation
problem.

In contrast to such conventional beamformers, the MN
beamforming algorithm attempts not only to eliminate in-
terference signals but alsostrengthenthose reflections from
the desired source, assuming the desired sound source is
statistically independent of the other sources. Of course,any
reflected signal would be delayed with respect to the direct
path signal. Such a delay would, however, manifest itself as
a phase shift in the subband domain as long as it is shorter
than the length of an analysis filter, and could thus be removed
through a suitable choice ofwa. Hence, the MN beamformer
offers the possibility of steering both nulls and sidelobes; the
former towards the undesired signal and its reflections, the
latter towards reflections of the desired signal.

In order to verify that the MN beamforming algorithm forms
sidelobes directed towards the reflection of a desired signal, we
conducted experiments with a simulated acoustic environment.
As shown in Fig. 12, we considered a simple configuration
with a sound source, a reflective surface, and a linear array of
eight microphones positioned with 10 cm inter-sensor spacing.
Actual speech data were used as a source in this simulation,
which was based on theimage method[41]. White Gaussian
noise is added to each microphone data so that the SNR is
0 dB. We assume that the sound propagation speed is 343.74
meter per second and the reflection coefficient is 0.7. Fig. 13
shows beam patterns atfs = 150 Hz,fs = 650 Hz andfs =
1600 Hz obtained with a delay-and-sum (D&S) beamformer,
the MVDR beamformer and the MN beamforming algorithm
with the GG pdf of the magnitude. The weights of the MVDR
beamformer are optimized for isotropic (diffuse) noise in the
simulation [42].

Given that a beam pattern shows the sensitivity of an array
to plane waves, but the beam patterns in Fig. 13 were made
with a near-field source and reflection, we also ran a second set
of simulations in which the source and reflection were assumed
to produce plane waves. The results of this second simulation
are shown in Fig. 14. It is clear from Figure 13 and Figure 14
that the MN beamformer emphasizes the reflection from the
desired source, whereas the MVDR one optimized for the
diffuse noise eliminates it. It is also apparent from Figure13
(a) and Figure 14 (a) that MVDR and MN beamformers can
suppress interferences at low frequency while the suppression

Fig. 15. The layout of the meeting room (measurements in cm).

performance of the delay-and-sum beamformer is poor.

VII. E XPERIMENTS

We performed far-field automatic speech recognition (ASR)
experiments on theMulti-Channel Wall Street Journal Audio
Visual Corpus(MC-WSJ-AV) from theAugmented Multi-party
Interaction (AMI) project. The layout of the meeting room is
shown in Fig. 15; see Lincoln et al. [1] for the detail of the
data collection apparatus. The room size is 650 cm× 490 cm
× 325 cm and the reverberation timeT60 was approximately
380 millisecond. In addition to being reverberant, the data
includes background noise from computers and air fans. Some
recordings contain audible noise from outside the meeting
room, such as that generated by passing cars and speakers
in an adjacent room.

The far-field speech data was recorded with a circular,
eight-channel microphone array with a diameter of 20 cm.
Additionally, a close-talking microphone was used for each
speaker to capture the best possible signal as a reference.
The sampling rate of the recordings was 16 kHz. As the
data was recorded with real speakers in a realistic acoustic
environment, the positions of the speakers’ heads as well as
the speaking volume vary even though the speakers are largely
stationary. Indeed, it is exactly this behavior of real speakers
that makes working with data from corpora such as MC-WSJ-
AV so much more challenging than working with data that
was played through a loudspeaker into a room, not to mention
data that wasartificially convolvedwith previously-measured
impulse responses. In thesingle speaker stationaryscenario
of the MC-WSJ-AV, a speaker was asked to read sentences
from six positions, four seated around the table in Seats 1-4
shown in Fig. 15, one standing at the white board, and one
standing at the presentation screen.

The test set used for the experiments reported here contains
recordings of 10 speakers where each speaker reads approxi-
mately 40 sentences taken from the 5,000 word vocabulary
Wall Street Journal (WSJ) task. This provides a total of
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Fig. 13. Beam patterns produced by a delay-and-sum beamformer, the MVDR beamformer and the MN beamforming algorithm using a spherical wave
assumption for (a)fs = 150 Hz, (b)fs = 650 Hz and (c)fs = 1600 Hz.
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Fig. 14. Beam patterns produced by a delay-and-sum beamformer, the MVDR beamformer and the MN beamforming algorithm using a plane wave assumption
for (a) fs = 150 Hz, (b)fs = 650 Hz and (c)fs = 1600 Hz.

352 utterances which correspond to 39.2 minutes of speech.
There are a total of 11,598 word tokens in the reference
transcriptions. The test set is disjoint from the training data
set used to estimate the optimal scale and shape parameters.

As shown in [2] the directivity of the circular array at
low frequencies is poor; this stems from the fact that for
low frequencies, the wavelength is much longer than the
aperture of the array. At high frequencies, the beam pattern
is characterized by very large sidelobes; this is due to the fact
that at high frequencies, the spacing between the elements of
the array exceeds half of a wavelength, thereby causing spatial
aliasing [39,§13.1.4].

Prior to beamforming, we first estimated the speaker’s
position with a speaker tracking system [43]. Based on the av-
erage speaker position estimated for each utterance, utterance-
dependent active weight vectorswa were estimated for a
source. The active weight vectors for each subband were
initialized to zero for estimation. Iterations of the conjugate
gradients algorithm were run on the entire utterance until
convergence was achieved.

Zelinski post-filtering [24] was performed after beamform-
ing. The feature extraction of our ASR system was based on
cepstral features estimated with a warpedminimum variance
distortionless response[44] (MVDR) spectral envelope of
model order 30. Due to the properties of the warped MVDR,
neither the Mel-filterbank nor any other filterbank was needed.
The warped MVDR provides an increased resolution in low–

frequency regions relative to the conventional Mel-filterbank.
The MVDR also models spectral peaks more accurately than
spectral valleys, which leads to improved robustness in the
presence of noise. Front-end analysis involved extracting20
cepstral coefficients per frame of speech and performing global
cepstral mean subtraction (CMS) with variance normalization.
The final features were obtained by concatenating 15 con-
secutive frames of cepstral features together, then performing
a linear discriminant analysis(LDA) to obtain a feature
of length 42. The LDA transformation was followed by a
second global CMS, then a global semi-tied covariance (STC)
transform [45].

The far-field ASR experiments reported here were con-
ducted with aword trace decoderimplemented along the
lines suggested by Saonet al. [46]. The decoder is capable
of generating word lattices, which can then be optimized
with weighted finite-state transducer (WFST) operations as
in [47]; i.e., the raw lattice from the decoder is projected
onto the output side to discard all arc information save for the
word identities, and then compacted through epsilon removal,
determinization, and minimization [48].

We used 30 hours of American WSJ and the 12 hours of
Cambridge WSJ data in order to train a triphone acoustic
model. The latter was necessary in order to provide coverage
of the British accents for the speakers in the SSC development
set [1]. Acoustic models estimated with two different HMM
training schemes were used for the various decoding passes:
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conventional maximum likelihood (ML) HMM training [49,
§12], and speaker-adapted training under a ML criterion (ML-
SAT) [50]. Our baseline system was fully continuous with
1,743 codebooks and a total of 67,860 Gaussian components.
The parameters of the GG pdf were trained with 43.9 minutes
of speech data recorded with the CTM in the SSC development
set. The training data set for the GG pdf contains recordings
of 5 speakers.

We performed four decoding passes on the waveforms
obtained with each of the beamforming algorithms described
in prior sections. Each pass of decoding used a different
acoustic model or speaker adaptation scheme. For all passes
save the first unadapted pass, speaker adaptation parameters
were estimated using the word lattices generated during the
prior pass, as in [51]. A description of the four decoding passes
follows:

1. Decode with the unadapted, conventional ML acoustic
model.

2. Estimate vocal tract length normalization (VTLN) [52]
parameters and constrained maximum likelihood linear
regression parameters (CMLLR) [53] for each speaker, then
redecode with the conventional ML acoustic model.

3. Estimate VTLN, CMLLR, and maximum likelihood linear
regression (MLLR) [54] parameters for each speaker, then
redecode with the conventional model.

4. Estimate VTLN, CMLLR, MLLR parameters for each
speaker, then redecode with the ML-SAT model.

All passes used the full trigram LM for the 5,000 word WSJ
task, which was made possible through the fast-on-the-fly
composition algorithm described in [55].

Table I shows the word error rates (WERs) for every
beamforming algorithm. As references, WERs in recognition
experiments on speech data recorded with the single distant
microphone (SDM) and CTM are also given. It is clear from
Table I that every MN beamforming algorithm can provide
better recognition performance than the simple delay-and-sum
beamformer (D&S BF) which can be improved by Zelinski
post-filtering (D&S BF with PF). It is also clear from Table I
that MN beamforming with the GG pdf assumption which uses
the magnitude in calculating the negentropy (MN BF with GG
pdf (1)) achieves the best recognition performance. This is
because the GG pdf can model the magnitude of the subband
of speech best by training the shape parameter at each subband
frequency bin. The recognition performance, however, did not
improve for MN beamforming with the GG pdf when the
real and imaginary parts of the subband components were
assumed to be independent (MN BF with GG pdf (2)). We
found it better to treat the subband components as spherically-
invariant random processes (SIRPs) as in [2], [31] and are led
to conclude that the real and imaginary parts are dependent as
mentioned in [23]. Table I suggests that theΓ pdf assumption
(MN BF with Γ pdf) can lead to better noise suppression
performance to some extent. The reduction over the D&S BF
with PF case, however, is limited because theΓ pdf cannot
model the subband components of speech as precisely as
the GG pdf which takes the magnitude as the r.v. We also
performed recognition experiments on speech enhanced by

TABLE I

WORD ERROR RATES FOR EACH BEAMFORMING ALGORITHM AFTER

EVERY DECODING PASS.

Beamforming Pass (%WER)
Algorithm 1 2 3 4
D&S BF 80.1 39.9 21.5 17.8

D&S BF with PF 79.0 38.1 20.2 16.5
MMSE BF 78.6 35.4 18.8 14.8
GEV BF 78.7 35.5 18.6 14.5

MN BF with Gamma pdf 75.6 34.9 19.8 15.8
MN BF with GG pdf (1) 75.1 32.7 16.5 13.2
MN BF with GG pdf (2) 79.0 37.2 20.0 16.7

SDM 87.0 57.1 32.8 28.0
CTM 52.9 21.5 9.8 6.7

the MVDR beamformer with Zelinski post-filtering, which is
equivalent to the minimum mean-squared error beamformer
(MMSE BF) [39, §13.3.5]. Table I demonstrates that the
MVDR beamformer with post-filtering (MMSE BF) provides
better recognition performance than D&S BF with PF. The
MMSE beamformer would suppress the reflections of the de-
sired signal. On the other hand, as demonstrated in Section VI,
the MN beamforming algorithm can strengthen the target
signal by using the reflections solely based on the maximum
negentropy criterion. Notice MVDR beamforming algorithms
require speech activity detection in order to avoid signal
cancellation. For the adaptation of the MVDR beamformer, we
used the first 0.1 and last 0.1 seconds in each utterance data
which contain only background noise. Table I also shows the
recognition results obtained with the generalized eigenvector
beamformer (GEV BF) proposed by E. Warsitz et al. [15].
It achieves slightly better recognition performance than the
MMSE beamformer. In this task, the transfer function from
the sound source to the microphone array changes in time due
to movements of the speaker’s head. Moreover, it is difficultto
determine whether or not the signal observed at any given time
contains both speech and noise components in each frequency
bin, which is required to estimate the transfer function. Due
to these difficulties, the performance of the GEV beamformer
is limited in realistic environments. Once more, in contrast to
conventional beamforming methods, our algorithm does not
need to detect the start and end points of target speech sincethe
proposed method can suppress noise and reverberation without
the signal cancellation problem. It is worth noting that thebest
result of 13.2% in Table I is significantly less than half the
word error rate reported elsewhere in the literature on this
far-field ASR task [1].

We also examined the effect of the regularization term in
equation (18). Table II shows WER as a function of the regu-
larization parameterα, where we used the MN beamforming
algorithm with the GG pdf of the magnitude r.v. We can see
from Table II that the regularization parameterα = 10−2

provides the best result although its impact on the recognition
performance is not significant. The regularization parameter
α could be interpreted as an indicator of the sufficiency of
the input data in estimating the active weight vector. Thus,
the requirement of a smallα may imply that the input data
are not sufficiently reliable to completely determine the active
weight vector due to, for example, steering errors.
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TABLE II

WORD ERROR RATES AGAINST THE REGULARIZATION PARAMETERα.

α Pass (%WER)
1 2 3 4

α = 0.0 72.7 31.9 16.4 13.7
α = 10

−3 73.9 32.2 16.6 13.6
α = 10

−2 75.1 32.7 16.5 13.2
α = 10

−1 76.2 32.5 17.5 13.5

We implemented each algorithm in C/C++ and python. The
computational cost of the MN beamforming algorithm (MN
BF with GG pdf (1)) is approximately 2.6 times as much as
that of the MMSE beamformer per frame on a machine with
an Intel Core 2 DUO E6750/2.66GHz processor and 3.36 GB
RAM.

VIII. C ONCLUSIONS ANDFUTURE WORK

In this work, we have proposed a novel beamforming
algorithm based on maximizing negentropy. Our first inves-
tigations into the MN beamforming algorithm were based
on acoustic simulations. These simulations were sufficientto
demonstrate the MN beamforming algorithm could strengthen
the desired signal by constructively adding reflections of the
same. Moreover, the proposed method does not exhibit the
signal cancellation problems typically seen in conventional
beamformers. We also evaluated theΓ and GG pdfs in
calculating the negentropy through a set of far-field automatic
speech recognition experiments with data captured in realistic
acoustic environments and spoken by real speakers. In these
experiments, the MN beamforming algorithm with the GG pdf
assumption proved to provide the best ASR performance.

We plan to develop an on–line version of the beamforming
algorithm presented here. This on–line algorithm will be
capable of adjusting the active weight vectorswa,i with each
new snapshot in order to track changes of speaker position
and movements of the speaker’s head during an utterance.
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APPENDIX

A. Ther-th moment and kurtosis of the GG pdf

In this section, we derive two useful statistics of the GG
pdf, ther-th moment and kurtosis.

The rth moment of the GG pdf can be expressed as

E {yr} =
1

2Γ(1 + 1/p)A(p, σ̂)

∫ ∞

−∞

yr exp

[

−
|y|

p

A(p, σ̂)

]

dy.

(35)
Since the GG pdf is an even function about the mean, we can
rewrite (35) as

E {yr} =
1

Γ(1 + 1/p)A(p, σ̂)

∫ ∞

0

yr exp

[

−
yp

Ap(p, σ̂)

]

dy. (36)

Upon defining

v =
yp

Ap(p, σ̂)
,

from which it follows

dv

dy
=

pyp−1

Ap(p, σ̂)
,

then (36) can be solved as

E {yr} =
Ar(p, σ̂)

pΓ(1 + 1/p)

∫ ∞

0

v
r+1

p
−1 e−v dv

=
Ar(p, σ̂)

pΓ(1 + 1/p)
Γ

(

r + 1

p

)

. (37)

By substituting the 2nd and 4th moments obtained from
Equation (37), the kurtosis of the GG pdf kurt(Ygg) can now
be expressed as

A(p, σ̂)4

pΓ(1 + 1/p)
Γ (5/p) − 3

{

A(p, σ̂)2

pΓ(1 + 1/p)
Γ (3/p)

}2

. (38)

Since theΓ function satisfiespΓ(1 + 1/p) = Γ(1/p), equa-
tion (38) can be simplified as

kurt(Ygg) = σ̂4

{

Γ(1/p) Γ(5/p)

Γ2(3/p)
− 3

}

. (39)

B. The implementation of the optimization algorithm

Here we describe a nonlinear conjugate gradient method
for our beamforming algorithm. Our goal is to find the active
weight vector which provides the maximum negentropy. How-
ever, gradient algorithms are generally used to find the local
minimum of a function [36,§1.6]. Accordingly, we explain
how to find the local minimum of the negative of (18) with a
conjugate gradient algorithm, which is equivalent to seeking
the local maximum of (18).

The conjugate algorithms proceed as a succession of line
minimizations. The sequence ofconjugate directionsis used
to approximate the curvature of a cost function in the neigh-
borhood of the minimum.

Expressing our objective function to minimize asI(wa
∗) =

−J (Y ;α) here, we have the initial search direction with the
opposite gradient direction

∆wa
∗
(0) = −

∂I(wa
∗
(0))

∂wa
∗

,

where the partial derivative is (20), (23) or (29) in our case.
A line search is performed in that direction and a step size is
optimized as follows:

β(0) := argminβ I(wa
∗ + β∆wa

∗
(0)) and

wa
∗
(1) = wa

∗
(0) + β(0)∆wa

∗
(0),

where the initial active weight vector is set to zero in this
work.

After the first iteration, the following steps constitute one
iteration of searching the minimum along a subsequent con-
jugate directionΛwa

∗
(n), whereΛwa

∗
(0) = ∆wa

∗
(0) :

1. Calculate the gradient of the objective function

∆wa
∗
(n) = −

∂I(wa
∗
(n))

∂wa
∗

.
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2. Compute the modified Polak-Ribière formula

γ(n) = Re







∆wa
T
(n)

(

∆wa
∗
(n) − ∆wa

∗
(n−1)

)

∆wa
T
(n−1)∆wa

∗
(n−1)







,

where(·)T denotes the transpose operation.
3. Update the conjugate direction

Λwa
∗
(n) = ∆wa

∗
(n) + γ(n)Λwa

∗
(n−1).

4. Perform the line search and optimize the step size

β(n) = argminβ I(wa
∗
(n) + βΛwa

∗
(n)). (40)

5. Update the estimation of the vector

wa
∗
(n+1) = wa

∗
(n) + β(n)Λwa

∗
(n).

In each step, the line search is repeated until

Re
{

∆wa(n) · Λwa
∗
(n)

}

< tol |∆wa(n)| |Λwa(n)|. (41)

where tol indicates the accuracy of the line search. We set
tol = 0.001 in experiments. In MN beamforming, the accuracy
of the speech model has a much more significant impact on
the convergence speed of conjugate gradient algorithms than
approximation methods of the curvature and the parameters.
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