Choosing the right machine learning method for a given problem Predicting classification decisions with data point based meta-learning

Irene Cramer, Barbara Rauch, Hagen Fürstenau, Dan Shen, Maria Staudte Contact:barbara.rauch@LSV.uni-saarland.de

30-sec summary

- How can we aid non-experts with selection of ML technique?
- Meta-Learning has been used for this in the past: train a meta-learner to predict the performance of a base classifier
- Novelty: we're proposing a change to classic meta-learning which shows promising results in an initial evaluation: instead of making predictions for a data set, predict decision for each *data point*

Feedback we'd like from YOU

- How do you select a technique when faced with a problem?
- Do you believe it makes sense to use meta-learning to guide users?
- Do you agree with the basic 'ML toolbox' assumption of this work?

The problem

- Many factors influence choice of ML technique; simplifications: only looking at classification, only considering classification accuracy as selection criterion.
- Given a classification task and a set of applicable ML methods, which algorithm do we expect to achieve the highest accuracy?

Meta-learning: basic idea

- Basic setup: describe dataset with meta-features, train meta-classifier to predict performance of base classifier
- \bullet Input unit = data set
- \bullet Output: accuracy prediction, algorithm ranking or suitability decision

Previous work

- Large EU projects: StatLog ('90-'93), MetaL ('98-'02) [REF!]
- Meta-learn. workshops at ECML98, ICML99, ECML00, ICML05
- Special Issue on Meta-Learning, Machine Learning, 03/2004 [2]

Data-point based meta-learning

- Input unit = data point; i.e. train meta-level classifier to predict classification results for a data point
- Result may be converted into ranking or accuracy, i.e. no information loss compared to previous approach
- Reasons for doing it this way:
- we get more fine-grained information that can be used in e.g. multiple classifier systems or semi-supervised learning
- intuitively, this level of processing may be more suited to the problem: base classifier's overall accuracy depends on correctness of every single point's classification

Proof-of-concept implementation

- Five classifiers used at base and meta level: decision tree (C4.5), Knearest neighbour, Naive Bayes, Ripper rule learner, SVM with radial basis function kernel
- Used YALE toolkit [1] implementations
- 19 simple meta-features. Examples:
- − # attributes
- Proportion of nominal attributes

- # training data points
 # classes actually occurring in the training data
- Prop. of training data with same class as test point
- Prop. of training data with same class as test point
 Prop. of points with same class over the k nearest training points
- Normalised Hamming distance to the nearest point

Initial Results: promising

- Evaluated on 127 data sets from Weka archive (UCI KDD / StatLib repositories) = 102 training + 25 test sets
- Majority Baseline ("BC is correct"): 65% prediction accuracy
- Average with simple system: 72.14%

[•] With best meta-classifier (MC): 83.34%

MC	BC	Acc.	MC	BC	Acc.	MC	BC	Acc.	MC	BC	Acc.	MC	BC	Acc.	Avg.
DT	DT	76.08	DT	KNN	77.56	DT	NB	68.93	DT	RL	79.52	DT	SVM	66.86	73.79
KNN	DT	76.79	KNN	KNN	73.25	KNN	NB	75.21	KNN	RL	60.38	KNN	SVM	69.12	70.95
NB	DT	70.51	NB	KNN	60.60	NB	NB	64.48	NB	RL	62.66	NB	SVM	81.44	67.94
RL	DT	79.28	RL	KNN	69.03	RL	NB	69.87	RL	RL	74.82	RL	SVM	71.12	72.83
SVM	DT	62.66	SVM	KNN	69.55	SVM	NB	59.00	SVM	RL	93.54	SVM	SVM	91.11	75.17
Avera	Average		Average		70.00	Average		67.50	Average		74.18	Average		75.93	72.14
Baseli	Baseline		Baseline		68.53	Baseline		64.07	Baseline		67.89	Baseline		54.77	65.19

Issues with current system

- No tuning or feature selection
- Simplistic meta-features
- Although more data sets used than in most other meta-learning studies, still low number

Conclusions

- blah, blah, blah....
- blah, blah, blah....

Acknowledgements

Thanks to Katharina Morik, Donald Michie, Stefan Evert, Dietrich Klakow, and Miles Osborne for their helpful comments. This research was partially funded by DFG studentships in the International Post-Graduate College "Language Technology and Cognitive Systems".

References

- Mierswa, Ingo and Wurst, Michael and Klinkenberg, Ralf and Scholz, Martin and Euler, Timm (2006), YALE: Rapid Prototyping for Complex Data Mining Tasks. In Proc. ACM SIGKDD 2006, ACM Press
- [2] Special Issue of Machine Learning on Metalearning, 54(3), 2004.

