
The Alyssa System at TREC 2006:
A Statistically-Inspired Question Answering System

Dan Shen Jochen L. Leidner Andreas Merkel Dietrich Klakow
Spoken Language Systems

Saarland University
D-66125 Saarbr̈ucken, Germany

lsv trec qa@lsv.uni-saarland.de

Abstract

We present our new statistically-inspired
open-domain Q&A research system that
allows to carry out a wide range of ex-
periments easily and flexibly by modify-
ing a central file containing an experimen-
tal “recipe” that controls the activation and
parameter selection of a range of widely-
used and custom-built components.

Based on this, we report our experiments
for the TREC 2006 question answering
track, where we used a cascade of LM-
based document retrieval, LM-based sen-
tence extraction, MaxEnt-based answer
extraction over a dependency relation rep-
resentation followed by a fusion process
that uses linear interpolation to integrate
evidence from various data streams to de-
tect answers to factoid questions more ac-
curately than the median of all partici-
pants.

1 Introduction

This paper describesAlyssa, a new open-domain
question answering (Q&A) system developed at
Saarland University.1 It was built as a tool for
the investigation of Q&A from a more princi-
pled, i.e. information theoretically well-founded
approach. Another requirement was the construc-
tion of a software that can serve as an experimen-
tal platform in the longer term. Therefore, our de-
velopment efforts were focused on flexibility and
modularity rather than performance tuning in the
first year ofAlyssaparticipation at TREC.

1The system is named after Alyssa, the departmental sec-
retary’s terrier dog and system mascot.

We report our experiments for the TREC 2006
question answering track, where we used a cas-
cade of LM-based document retrieval, LM-based
sentence extraction, maximum entropy based an-
swer extraction over a dependency relation repre-
sentation followed by a fusion process that uses
linear interpolation to integrate evidence from var-
ious data streams to detect answers to factoid ques-
tions more accurately than the median of all par-
ticipants.

The remainder of this paper is structured as
follows: Section 2 describes the architecture of
our system. In Section 3, we describe the spe-
cific methods used for TREC 2006, and Section 4
presents our results. Finally Section 5 concludes
the paper with a summary and possible future
work.

2 Architecture

2.1 Design Choices

As pointed out in (Leidner, 2003), software engi-
neering in speech & language technology is con-
strained by the development resources available.
According to (Cunningham, 2000), the “creation
of software infrastructure must be undertaken in
conjunction with the development of systems on
which the infrastructure is based and which will in
turn use its services”. In this case, our challenge
was to construct a reusable and extensible soft-
ware system while still being able to deliver first
experiments for TREC 2006, to the same dead-
line. As a consequence, we had to find a feasi-
ble minimum-overhead architecture without pro-
ducing yet another ad-hoc “solution”.

To this end, a modular architecture was cho-
sen that comprises an array of components that are
remote-controlled by a central driver module. The

#----------------------------
Define settings for doc. IR
#----------------------------
[document_retrieval]
or: lucene, terrier
engine=lemur
or: tdidf dfr lm_dir lm_abs lm_jm
method=lm_dir
top_n=60
index=default

LSVLM options --------------------
0=TFIDF 1=OKAPI 2=Kullback-Leibler
lemur_model=2
dirichlet_prior=1000
smoothing factor:
jelinek_mercer_lambda=0.5
discount_delta=0.5

Figure 1: A central experimental description facil-
itates experiments.

crucial insight is that the driver knows about the
components, but the components need not know
about the existence of the driver. Our design was
informed by the design of theQED system ((Leid-
ner et al., 2004)) and other systems, where the kind
of processing undertaken is encoded as sequences
of file name extensions.

We designed the core driver module so as to
read a global configuration file (Figure 1) describ-
ing all component’s activation status (on or off)
and the settings of all their parameters in a central
place. We use many external tools widely shared
across NLP researchers, and they often have their
own parameter files, which we generate automati-
cally from the master “recipe”, which serves a dual
purpose: first, the recipe preserves the details of
the experiment as it was run for later inspection
(provenance). Second, even the master recipe can
later be auto-generated (for example in the future
by a graphical GUI) using varied parameter set-
tings in order to explore potentially better compo-
nent constellations than the ones we currently use.

The file layout and naming conventions together
with the recipe form the backbone of theAlyssa
system architecture. Next, we describe how this
infrastructure is currently populated by compo-
nents.

2.2 Result

Figure 2 shows the resulting architecture ofAlyssa
with its various component modules and data
streams.

The question first undergoes question analysis,

a phase in which several modules are involved in-
dependently. The type of the question is deter-
mined and a linguistic analysis is carried out, in-
cluding full and shallow parses and named entity
tagging. Then a query is constructed from the
question based on this analysis. The query is run
against document retrieval on the AQUAINT in-
dex and passage retrieval on a Wikipedia index.
An optional co-reference step allows pronouns or
NPs to be replaced by their antecedents. Alterna-
tive sentence extraction strategies have been im-
plemented based on language modeling and win-
dowing techniques, and extracted sets of sentences
undergo further linguistic analysis before being
fed into two answer extraction module, one based
on patterns, another one based on a supervised
machine learning method using dependencies (see
below). Special modules take care of event ques-
tions, definition questions, and list questions. As
a result, several candidate answer streams emerge
that are integrated in a answer validation and fu-
sion step.

This architecture and module inventory is a su-
perset of what was actually used for TREC 2006,
as will become evident in the subsequent exper-
imental description, in part because some mod-
ules are still in development, in part because some
modules were ready but we simply did not have
enough time to carefully test their contribution
to performance was beneficial. For example, the
Web validation and anaphora resolution modules
were not used for TREC 2006 yet.

3 Methods

3.1 Question Analysis

We process questions as follows:
Preprocessing: We apply a simple anaphora

resolution strategy for a question: 1. We replace
all pronouns in the question with main NP of its
target (TNP). 2. For each NP in the question, if
it has same head word as the target and shorter
length than the target, we replace it with TNP. 3.
If the question doesn’t contain the target after the
previous steps, we choose a noun phrase in the
question based on rules and replace it with TNP.

Expected Answer Type (EAT) Extraction:
We chunk questions using Abney’s chun-
ker(Abney, 1989). Based on chunk sequence
of question, we identify a NP chunk which
indicates EAT of the question using rules, such
as, for Q: Which terrorist organization claimed

QP2QP1 QT

Query Construction

Document Retrieval

Aquaint

Corpus

Wiki Passage Retrieval

Corref. Resolution

SR1 SR2 SR3

Sentence Annotation

Pattern AE Dep. AE

Answer Validation (NIL Judgment)

Google

Wikipedia

Aquaint

Candidates

Wiki

Candidates

Event QA

EventQA

Candidates

List QA

Web

Candidates

Def. Q

Factoid Q

List Q

Def QA

Answer

Answer

List Q

Figure 2: Architecture ofAlyssa.

responsibility for the massacre?, which chunk
sequence iswhich np0 vb0 np1 for np2 ?, the
first chunk np0(terrorist organization) following
which, is identified as EAT. Furthermore, the
head of EAT is mapped to a hand-built ontology
to obtain the corresponding named entity (NE)
type (e.g.organization corresponds to NE type
ORGANIZATION). In the current system, about
50 named entity types (listed in Figure 3) are
considered.

=3>?<;- <>5/;7E/@7<; +=/>@D . A;7B3>?7@D . 0A7927;5 . <@63>,-

9<1/@7<; +17@D . 1<A;@>D . 1<;@7;3;@ . :<A;@/7; . 7?9/;2 .

9/83 . <13/; . =3;7;?A9/ . >7B3> . ?@>/7@ . B<91/;< . <@63>,-

;A:03> +1<A;@ . <>23> . :<;3D . =3>7<2 . =3>13;@ . 27?@/;13 .

?=332 . @3:=3>/@A>3 . ?7E3 . />3/ . B<9A:3 . C3756@ . <@63>,-

2/@3- 1<9<>- 1A>>3;1D- 9/;5A/53- :A?71- <11A=/@7<;- >39757<;-

?=<>@- C/>- /;7:/9 +07>2 . 7;?31@ . :/::/9 . <@63>,- =9/;@

+49<C3> . @>33 . <@63>,- /00>3B7/@7<;- ?D:0<9- =<?@1<23-A>9

Figure 3: List of NE types.

Question Pattern Matching: Considering that
there are questions with very high frequency to
be asked in TREC, we build question patterns
(QPTN) to map high frequent questions to classes.
Different from (Kaisser and Becker, 2004) and
(Wu et al., 2005), question classes are defined
in terms of meaning but not syntactic structures
of questions. For each question class, we also
build answer patterns (APTN) to extract answers
for questions in the class, as described in Sec-
tion 3.5.1. Figure 4 shows QPTNs for question
classWHAT CREATION. Given a questionQ and
a question patternQP, if the chunk sequence of
Q is matched toBFORM of QP, and if the key
chunks ofQ satisfies all constraintsCON listed
in CONS of QP, then Q is matched toQP and
belongs to then corresponding class. Further-
more, SLOTS of QP records which key chunks
of Q will be used in answer pattern matching.
23 question classes, such asWHO CREATION,
WHEN CREATION, WHEN BORN, are consid-
ered in the system. In TREC 2006, 92 among to-
tal 403 factoid questions are classified to question
classes.

Dependency Relation Path Extraction: For
the remaining questions that are not classified, we
use a statistical model to rank candidate answers.
The core idea of the model (Shen and Klakow,
2006) is to compare dependency relations between
questions and answer sentences. In question anal-
ysis, we use MINIPAR (Lin, 1994) to parse ques-
tions and extract dependency relation paths be-

06;4BB PK\1+E94CF6A74C:>=+2
0@?C=FB7C2

0@?C=2
058>A<2[NGX JT SU. ZH. 30-58>A<2
06>=B2

06>= PK\1+ZH.+2ZGV.0-6>=2
0-6>=B2
0B;>CB2

0B;>C PK\1+WQTX.+2SU.0-B;>C2
0-B;>CB2

0-@?C=2
0@?C=2

058>A<2[NGX HK SU. TL SU/ 30-58>A<2
06>=B2

06>= PK\1+SU.+2ZGV/0-6>=2
0-6>=B2
0B;>CB2

0B;>C PK\1+WQTX.+2SU/0-B;>C2
0-B;>CB2

0-@?C=2
0@?C=2

058>A<2[NGX HK SU. ,W SU/ 30-58>A<2
06>=B2

06>= PK\1+SU/+2ZGV/0-6>=2
0-6>=B2
0B;>CB2

0B;>C PK\1+WQTX.+2SU.0-B;>C2
0-B;>CB2

0-@?C=2
0-@?C=FB7C2
0D4AB2

0D4A PK\1+ZGV.+2LTYSJ^KWXGHQOWN^LTVR^TVMGSO]K^IVKGXK^
HYOQJ^OSZKSX^JOWITZKV^JKWOMS0-D4A2

0D4A PK\1+ZGV/+2LTYSJOSM^IVKGXOTS^OSZKSXOTS^JOWITZKV\0-D4A2
0-D4AB2
0-6;4BB2

Figure 4: Example of question patterns for class
WHAT CREATION.

tween question words, such aswhat, who, when,
and all key chunks of questions.

3.2 Question Classification and Typing

For question classification, we use the taxon-
omy as proposed in (Li and Roth, 2002). It
uses 6 coarse and 50 fine grained classes. In
our system we used the fine grained classifica-
tion only because we use specific sub-classes (like
DATE, which is a specific sub-class of NUMBER)
later on in our sentence retrieval. We use the
5,500 questions provided by the Cognitive Com-
puting Group at University of Illinois at Urbana-
Champaign2 for training and the TREC 10 data for
evaluation.

In terms of classification paradigm we start with
the Bayes classifier

ĉ = argmaxcP (Q|c)P (c) (1)

which is known to produce the minimum num-
ber of misclassifications if the correct probabilities

2http://l2r.cs.uiuc.edu/∼cogcomp/Data/QA/QC/

are known (Q is the question andc the question
type).

However, the probabilityP (Q|c) can easily be
calculated using a language model (LM) trained
on all questions of classc. The major advan-
tage of the language modeling approach is that
we can draw on a vast amount of available tech-
niques to estimate and smooth probabilities even
if there is very little training data available. On av-
erage, there are only about 100 training questions
per question type.

Specifically, we evaluated absolute discounting,
linear interpolation and Dirichlet prior as smooth-
ing techniques. It turns out that absolute discount-
ing in a variant known as Kneser-Ney smoothing
for bigram language models gives best possible re-
sults. On top of this, we employ a count specific
discounting technique.

The prior P (c) can be considered a unigram
language model as well. However, as all classes
are seen sufficiently often (that is at least 4 times)
there is no smoothing issue at all and relative fre-
quencies can be used.

Algorithm Accuracy

Naive Bayes 67.8%
Neural Network 68.8%
SNoW 75.8%
Decision Tree 77.0%
SVM 80.2%
LM 80.8%

Table 1: Comparison of various algorithms (Naive
Bayes, ... SVM) investigated in (Zhang and Lee,
2003) with the proposed language model based ap-
proach, denoted by LM in the table.

Tables 1 compares results from (Zhang and Lee,
2003) with the proposed LM approach for various
machine learning algorithms. As (Zhang and Lee,
2003) use two different feature sets (bag-of-words
and bigram features) we always picked the better
result from (Zhang and Lee, 2003). The LM ap-
proach uses bigram features.

It is interesting to see that the approach is much
better than the Naive Bayes approach even though
it uses the same independence assumptions. This
difference is probably due to the very much dif-
ferent smoothing technique. The SVM is the best
algorithm from (Zhang and Lee, 2003) however it
is outperformed by the LM approach by a small
margin.

3.3 Document Retrieval

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 1 2 3 4 5 6

M
A

P

number of included topics

Figure 5: Number of included topics versus MAP
for TREC 2004 data.

Document retrieval is a crucial part in Question
Answering systems. In this part we tried to re-
duce the number of documents to a smaller, more
manageable set of relevant documents. In our ex-
periment we considered a two-step-approach nec-
essary in order to meet the problem. First, a kind
of query construction was made to optimize the
search for documents. Then the document re-
trieval was done in a second step using standard
language model based techniques.

3.3.1 Query construction

In this first step, we prepared the query to ide-
ally fit the needs of our document retrieval algo-
rithm. As explained in (Miller et al., 1999) each
term in the query can be weighted with a score.
This means that repeating a specific term multiple
times would give the latter term more importance
in form of a higher score. Because this holds also
for our language model approach, we expanded
the query in this step with the topic of the ques-
tion. Figure 5 shows the effects on our document
retrieval systems when we expand the query with
the topic multiple times on TREC 2004 data. On
the x-axis the number of included topics is shown
whereas on the y-axis theMean Average Precision
(MAP) is plotted. The performance increases until
including the topic three times. So, if the topic
is added too often it gets too much weight and
other possible important keywords are scored too
lowly and, therefore, the retrieval system performs
worse.

There is also just a marginal improvement be-
tween adding the topic twice or three times so we
decided to include the topic only twice for our ex-

perimental setup.

3.3.2 Document retrieval and fetching

For document retrieval theLemur Toolkit for
Language Modeling and Information Retrieval3

was used. Queries as well as the AQUAINT cor-
pus were stemmed with the Porter stemmer and
no stop-word removal was done. As mentioned
above, we chose a language model based approach
for the retrieval step using unigram distributions.
The smoothing method we used was Bayesian
smoothing with Dirichlet priors. As shown in
(Hussain et al., 2006) smoothing with Dirichlet
prior performs best in context of document re-
trieval experiments and even outperforms tradi-
tional information retrieval techniques like Okapi
and TFIDF. (Hussain et al., 2006) also suggests
an optimal smoothing parameter for TREC ques-
tion sets which we used within our experiments as
well.

After the retrieval step, we fetched the best 60
relevant documents because this number was suf-
ficient in previous TREC runs to get about 90% of
answers within those documents.

3.4 Sentence Retrieval

In this section, we describe the setup for retrieving
sentences and the actual re-ranking step. Sentence
retrieval, which is just a special case of passage
retrieval, is a common step in question answering
((Clarke et al., 2000), (Tellex et al., 2003)). Nor-
mally it is necessary to further reduce the size of
a document collection in order to improve find-
ing answers. But there also might be very long
documents within the collection or perhaps topic
changes within a single document. So the docu-
ment is further split up to smaller chunks to deal
with such events. In our case we split up the doc-
uments to single sentences.

3.4.1 Experimental setup

Before we started with the sentence retrieval
experiments some preparations had to be done.
First of all we took the retrieved document col-
lection from the previous section (3.3.2) and ex-
tracted those documents from a specially prepared
AQUAINT corpus. In this prepared corpus, we
used a sentence boundary detection algorithm4 to
identify possible ends of sentences.

3http://www.lemurproject.org/
4LingPipe: http://www.alias-i.com/lingpipe/

After the extraction, the sentences as well as the
queries were stemmed using the Porter stemmer.
Parallel to this stemming process we did a kind
of expansion of queries and sentences. If the ex-
pected answer type of a query5 was DATE then
the tokenDATE was added at the end. The sen-
tences were prepared in almost the same manner.
Here, patterns were used to identify possible oc-
currences of time and date information. Due to
this expansion, possible answer candidates for the
expected answer typeDATE were ranked higher.
To get an optimal score for those kind of queries
we introduced a weighting scheme and experi-
mentally determined the specific weight.

Again an unigram language model based tech-
nique was used to rank the sentences in our exper-
iment. In detail we used Bayesian smoothing with
Dirichlet prior which is given by the following for-
mula:

pµ(w|d) =
c(w; d) + µp(w|C)

∑
w c(w; d) + µ

(2)

Whereasc(w;d) means the count of wordw in
sentenced, C is the collection of sentences andµ

is the smoothing parameter.
We chose this kind of smoothing because it per-

formed already promising for document retrieval.
As smoothing parameter we chose the interpola-
tion weight µ = 100. We got this value by a
search for the complete parameter space. Figure 6
shows that this method actually performed better
than Jelinek-Mercer linear interpolation.6

For the re-ranking experiments of the sentences
the LSVLM toolkit was used. It is theLanguage
Modeling toolkit from LSV7 and implements stan-
dard language modeling techniques. We decided
to use this particular toolkit instead ofLemur be-
cause it is much more flexible. So it is easily pos-
sible to switch between different language models
for interpolation or to manipulate the used vocab-
ulary. In our case, we closed the vocabulary over
the query to get a better performance as described
in (Hussain et al., 2006).

Another preparation step was to include a dy-
namical list of stop-words. This list consists of the
four most commonly used terms of the complete
sentence collection. However, these words were
not removed but just got a smaller score. Again a

5see Section 3.2
6(Hussain et al., 2006) also showed that Jelinek-Mercer

performed better than absolute discounting
7Lehrstuhl f̈ur Sprachsignalverarbeitung

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

A
cc

ur
ac

y

number of returned sentences

"JM_baseline.dat" us 1:11
"Dirichlet_baseline.dat" us 1:11

"Dirichlet_optimized.dat" us 1:11

Figure 6: Number of returned sentences versus ac-
curacy of baseline and optimized experiments for
TREC 2004 data.

weighting scheme was used to optimal score the
stop-words.

Finally, the queries were optimized. This was
done by removing the query word. In most cases
the query word has no meaning in terms of search-
ing for relevant sentences so removing it gives a
higher score for the rest of the possible relevant
query words.

3.4.2 Sentence Re-ranking

The settings described in the previous section
were used to do the sentence re-ranking.

Figure 6 shows first results when testing differ-
ent language model based techniques with differ-
ent optimization parameter explained in the previ-
ous section on TREC 2004 data. The plot shows
on the x-axis the number of sentences returned on
a logarithmic scale and on the y-axis the accuracy
of the system.

We experimented with two baseline meth-
ods, the Jelinek-Mercer linear interpolation
(JM_baseline) and a baseline of the Dirich-
let prior smoothing (Dirichlet_baseline).
The figure show that both distributions per-
form nearly equally but the Dirichlet baseline
is slightly better when returning just a smaller
set of sentences. The third smoothing method
(Dirichlet_optimized) shows the language
model with optimization changes we described in
section 3.4.1. It outperforms the baseline distribu-
tions for nearly all cases. The interesting point in
regard to our experiments is that we had to go back
to just a smaller number of sentences to obtain the
same accuracy as for a baseline method.

Table 2 also shows the significant improvement
of our smoothing method regarding theMean

Distribution MRR

JM baseline 0.29
Dirichlet baseline 0.31

Dirichlet optimized 0.39

Table 2: MRR of baseline and optimized experi-
ments.

Reciprocal Rank (MRR) of the distributions for
TREC 2004 dataset. A performance gain of 25%
can be observed between the Dirichlet prior base-
line and the optimized language model and a gain
of actually more than 34% regarding the Jelinek-
Mercer linear interpolation.

3.5 Answer Extraction

For the sentences retrieved by SR Module, we
first process them by using linguistic tools includ-
ing LingPipe (http://www.alias-i.com/lingpipe/)
for named entity recognition, Abney’s chunker
(Abney, 1989) for NP chunking and MINIPAR
(Lin, 1994) for dependency parsing. Next, we
apply two strategies, which are mainly based on
surface text pattern matching and correlation of
dependency relation path respectively, to extract
exact answers from the processed sentences. We
set them as pipeline structure. For each sentence,
firstly, answer patterns (Section 3.5.1) are used to
match candidate answers. If matched, the candi-
date answers will be returned. Otherwise, path
correlation-based Maximum Entropy model (Sec-
tion 3.5.2) is applied to rank the candidate an-
swers.

3.5.1 Chunk-based Surface Text Pattern
Matching

For the questions in question classes, answer
patterns (APTN) indicate what are expected an-
swer positions in surface sentences. APTNs are
represented as regular expressions over tokens, us-
ing the variablesslot, var and ANSWER. slot is
bound to the key chunks of questions. A ques-
tion chunk, expected by certain slots, is assigned
in question pattern matching.var is a set of spe-
cial alternative words, which are usually shared
by various patterns and also assigned in ques-
tion pattern matching.ANSWER indicates the ex-
pected answer. Figure 7 shows APTNs for ques-
tion classWHAT CREATION. Patterns are man-
ually authored for the system. However, results
show that the coverage is not satisfactory since

only 12 questions are answered by pattern match-
ing.

7<@;EE PLX8+G>;FH<D=;F?BA+9
7;CFAHE=F9

7;CFA9TQRU3 -VIS3. ;AEG=D72;CFA9
7;CFA9;AEG=D JL -VIS3. JX TQRU372;CFA9
7;CFA9TQRU3 JL -VIS5. RM ;AEG=D72;CFA9
7;CFA9TQRU3 ,T -VIS4.- RM. ;AEG=D72;CFA9
7;CFA9;AEG=D JL -VIS4. -RMZJX. TQRU372;CFA9
7;CFA9;AEG=D JL TQRU3 ,T -VIS4.72;C9
7;CFA9;AEG=D -WNRZUNIUZWNOKN. JL -VIS3. JX TQRU372;CFA9
7;CFA9;AEG=D -WNRZUNIUZWNOKN. JL -VIS4. -RMZJX. TQRU372;CFA9
7;CFA9IMULS -VIS3. ;AEG=D- \\W/.Y406[0 TQRU3 72;CFA9
7;CFA9-VIS4. RM ;AEG=D JX TQRU372;CFA9
7;CFA9TQRU3 ,T -VIS4. RM ;AEG=D72;CFA9
7;CFA9JL -VIS5. RM ;AEG=D-0.: TQRU372;CFA9
7;CFA9TQRU3- 0.: WNR -VIS3. ;AEG=D72;CFA9
7;CFA9;AEG=D ,T- MOSTU.: -VIS3. TQRU372;CFA9
7;CFA9TQRU3- -0Z1..: -VIS5. RM ;AEG=D72;CFA9
7;CFA9TQRU3- -0Z1..: ;AEG=D ,T -VIS5.72;CFA9
7;CFA9-VIS4. RM TQRU3- -0Z1..: ;AEG=D 72;CFA9
7;CFA9TQRU3 ,T -VIS4.- -0Z1..: ;AEG=D72;CFA9
7;CFA9;AEG=D -VIS5.- 0.: TQRU372;CFA9
7;CFA9;AEG=D- -0Z1.. -VIS4. -JXZRM. TQRU372;CFA9
7;CFA9;AEG=D- -0Z1.. ;AEG=D ,T TQRU372;CFA9

72;CFAHE=F9
72<@;EE9

Figure 7: Example of answer patterns for class
WHAT CREATION.

3.5.2 Correlation of Dependency Relation
Path

If none of candidate answers are matched to
APTNs, we further compare dependency relations
between candidate answers and mapped question
chunks in sentences with corresponding relations
in questions. A correlation measure is proposed to
calculate distance between two dependency rela-
tion paths. The parameters of the measure are esti-
mated on a set of question answer pairs in previous
TREC. Next, the correlations are incorporated in
a Maximum Entropy-based ranking model which
estimates path weights from training. Lastly, top-
ranked candidate answer in each sentence is re-
turned. (Shen and Klakow, 2006) presents the
detailed information of the model. Results show
that it extracts 65 among 403 factoid questions in
TREC 2006.

3.6 Fusion

One issue with fusion of different processing
streams and different modules in a QA system is
that scores are calculated in various ways and in
particular that they are hardly ever probabilities.
This makes fusion a difficult task.

However, it is well known that probability dis-
tributions in natural language applications (but
also beyond this) are often Zipf-distributed. As

all the modules produce a ranking on one way or
other, we use Zipf’s Law to convert ranks into
probabilities. A simple version of this idea is an
arithmetic average of inverse ranks which was pro-
posed in (Whittaker et al., 2005).

Here we use for the probability of an answer
created by modulei being correct a Mandelbrot
distribution which is a refinement of the Zipf dis-
tribution. It has one more parameter that allows to
tune the flatness of the distribution for top ranked
answers. This is important where modules put sev-
eral good answers on top but can not discriminate
between the alternatives. The Mandelbrot function
is defined by

Pi(A) =
N

(ri(A) + µ)β
(3)

whereri(A) is the rank on which modulei puts
the answerA andµ andγ are parameters deter-
mine on the TREC 2004 data.N is a normaliza-
tion factor depending onµ andγ.

The actual fusion is a linear interpolation

P (A) =
N∑

i=1

λiPi(A) (4)

whereN is the number of components to be
fused andλi are the interpolation weights satis-
fying the normalization constraint1 =

∑N
i=1

λi.
All the parameters are optimized on the TREC

2004 data. We fuse the results of our answer
extraction with the sentence retrieval results, the
Wikipedia system and the output of the web vali-
dation module. Note that the web validation mod-
ules was not used.

4 Results

We carried out our TREC experiments on three
nodes part of a Linux Beowulf cluster with
2.6 GHz Intel Xeon multi-core CPUs (512 MB
RAM each). While the cluster is equipped with
a master node featuring a 1 TB RAID system, we
only used the nodel-local 300 GB hard disk drives
to avoid delays caused by NFS overhead.

Table 3 shows the three runs we submitted and
our results obtained. The first run uses only the
AQUAINT corpus to retrieve answer candidates
from, whereas the second run adds Wikipedia can-
didates that are used to validate AQUAINT candi-
dates. The third run uses more answer extraction
patterns (in addition to the ones already used in the
other runs).

Run ID AQUAINT WIKIPEDIA More manual Accuracy F-score F-score
stream stream patterns FACTOID LIST OTHER

lsv2006a + 0.174 0.077 0.107
lsv2006b + + 0.191 0.096 0.109
lsv2006c + + + 0.186 0.098 0.110

Table 3: LSV Group Runs and Results Submitted to TREC 2006.

As the numbers show, despite the fact that
Alyssawas implemented in just a few months prior
and during TREC, it already performed better than
the median of participants. We attribute this suc-
cess to

• the flexibility of the system architecture,
which allowed us to experiment with a va-
riety of approaches systematically (while the
system implementation was still in progress),
combined with

• our data-driven approach: at any point in time
we try to improve the component that was
the bottleneck (in terms of most errors intro-
duced).

Surprisingly, our LIST and OTHER perfor-
mance isnot dramatically worse that the average
despite no specific efforts were made to address
these types, which indicates that the state of the
art is still very basic. This may be attributed to the
fact that we used Wikipedia rather than AQUAINT
as the source for definition questions.

Unlike other groups, we did not observe an in-
crease of unsupported answers. The lesson we
learn from this is to use Wikipedia, but to use it
wisely, i.e. to support AQUAINT answers rather
than to extract candidate answers directly from it.

5 Summary and Conclusions

5.1 Summary

We have presented the new open-domain Q&A
systemAlyssaand our experiments for the TREC
2006 question answering track using the system to
explore a statistically-inspired approach to ques-
tion answering.

Using a flexible software architecture that al-
lowed to switch methods easily we carried out a
series of experiments. Our best results outper-
formed the median over all TREC 2006 Q&A
track participants.

5.2 Future Work

In future work, we are planning to use the existing
system to carry out further experiments, such as

studying the impact of the substitution of pronouns
by their antecedents as a recall-enhancing device.

We are also planning to improve our system
along four directions: First, we would like to de-
velop and integrate more fine-grained named en-
tity tagging. Second, we are planning to investi-
gate more sophisticated learning methods for the
integration of the evidence, both at the fusion step
and the component level. Third, making use of ex-
isting patterns from the answer extraction could be
used for precise Web validation patterns. Finally,
we would like to carry out an ablation study ana-
lyzing the errors made by the systems.

Acknowledgements

We thank Ciprian Raileanu, Alexandru Chitea and Andrea

Heyl for implementing the modules for Web validation (using

the Google Web Service), anaphora resolution module (using

GATE’s ANNIE) and pattern construction respectively.

Jochen Leidner was funded in part by a SOCRATES grant

from the European Union and in part by the BMBF project

SmartWeb. Dan Shen was funded by the German research

council DFG through the International Graduate College

“IGK” between Saarland University and the University of Ed-

inburgh.

Andreas Merkel was funded by the BMBF project SmartWeb.

We thank to Johan Bos and Sebastian Padó for discussions.

References

Steven Abney. 1989. Parsing by chunks.The MIT
Parsing Volume.

C. Clarke, G. Cormack, D. Kisman, and T. Lynam.
2000. Question answering by passage selection
(MultiText experiments for TREC 9.

Hamish Cunningham. 2000.Software Architecture
for Language Engineering. Ph.D. thesis, Deptart-
ment of Computer Science, University of Sheffield,
Sheffield, England, UK.

Munawar Hussain, Andreas Merkel, and Dietrich
Klakow. 2006. Dedicated backing-off distribu-
tions for language model based passage retrieval. In
Hildesheimer Informatik-Berichte, LWA 2006.

M. Kaisser and T. Becker. 2004. Question answer-
ing by searching large corpora with linguistic meth-
ods. InProceedings of the Text Retrieval Conference
(TREC 2004). NIST.

Jochen L. Leidner, Johan Bos, Tiphaine Dalmas,
James R. Curran, Stephen Clark, Colin J. Ban-
nard, Mark Steedman, and Bonnie Webber. 2004.
The QED open-domain answer retrieval system for
TREC 2003. InProceedings of the Twelfth Text
Retrieval Conference (TREC 2003), NIST Special
Publication 500-255, pages 595–599, Gaithersburg,
MD, USA.

Jochen L. Leidner. 2003. Current issues in software
engineering for natural language processing. InPro-
ceedings of the Workshop on Software Engineering
and Architecture of Language Technology Systems
(SEALTS) held at HLT/NAACL 2003, pages 45–50,
Edmonton, Alberta, Canada.

Xin Li and Dan Roth. 2002. Learning question classi-
fiers. InProceedings of COLING.

Dekang Lin. 1994. PRINCIPAR—an efficient, broad-
coverage, principle-based parser. InProceedings of
COLING, pages 42–488.

David R. Miller, Tim Leek, and Richard M. Schwartz.
1999. A hidden markov model information retrieval
system. InProceedings of SIGIR-99, 22nd ACM
International Conference on Research and Devel-
opment in Information Retrieval, pages 214–221,
Berkeley, CA, USA.

Dan Shen and Dietrich Klakow. 2006. Exploring cor-
relation of dependency relation paths for answer ex-
traction. InProceedings of ACL2006.

S. Tellex, B. Katz, J. Lin, A. Fernandes, and G. Marton.
2003. Quantitative evaluation of passage retrieval
algorithms for question answering.

E. Whittaker, P. Chatain, S. Furui, and D. Klakow.
2005. TREC 2005 question answering experiments
at Tokyo Institute of Technology. InProceed-
ings of the Fourteenth Text REtrieval Conference
(TREC 2005).

M. Wu, M. Y. Duan, S. Shaikh, S. Small, and T. Strza-
lkowski. 2005. University of Albany’s ILQUA in
TREC 2005. InProceedings of the Text Retrieval
Conference (TREC 2005). NIST.

Dell Zhang and Wee Sun Lee. 2003. Question classifi-
cation using support vector machines. InSIGIR ’03:
Proceedings of the 26th Annual International ACM
SIGIR Conference on Research and Development in
Informaion Retrieval, pages 26–32.

