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Abstract Automatic natural language generation

(NLG) is a difficult problem already when merely try-

ing to come up with natural-sounding utterances. Ubiq-

uituous applications, in particular companion technolo-

gies, pose the additional challenge of flexible adaptation

to a user or a situation. This requires optimizing com-

plex objectives such as information density, in combi-

natorial search spaces described using declarative input

languages. We believe that AI search and planning is a

natural match for these problems, and could substan-

tially contribute to solving them effectively. We illus-

trate this using a concrete example NLG framework,

give a summary of the relevant optimization objectives,

and provide an initial list of research challenges.
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1 Introduction

As mobile devices are getting more and more ubiqui-

tous, and speech recognition and synthesis have seen

large performance improvements in recent years, NLG

is necessary in an increasingly large number of applica-

tions and situations. Highly domain-specific template-

based NLG approaches are becoming less viable, due

to a lack of ability to adapt the generated utterances

flexibly to a user or a situation, as would be especially

important in companion technologies. For instance, a

dialog system should generate utterances that are eas-

ier to comprehend and more redundant when a user is

concentrating on another task (such as driving a car),

but should generate concise utterances (which are often

more complex) when the user can fully concentrate on

the interaction with the dialog system [8].

Achieving flexible situation-adaptive NLG is a ma-

jor challenge to, and an active research area in, Compu-

tational Linguistics, requiring the identification of suit-

able objectives and measures for controlling utterance

complexity. It is also a major challenge to the design

of search algorithms, for optimizing (combinations of)

such objectives. We believe that the AI search commu-

nity could make major contributions towards the latter.

AI planning in particular is relevant given its focus on

automation and powerful declarative models. Our mis-

sion in this paper is to provide a concise summary of

the problem and the challenges ahead, in terminology

accessible to the AI community, as a first step towards

bringing the two communities together in this endeavor.
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NLG traditionally proceeds in a pipeline comprising

three phases: document planning, microplanning, and

surface realization. During document planning, the sys-

tem decides on the content to be conveyed, and what

rhetorical structure connects said content. Microplan-

ning then lexicalizes this content, choosing which words

should be used to express it, and performs aggregation

and referring expression generation. This results in a

syntactico-semantic representation, forming the input

to the surface realization component which generates

the final natural language utterances from that input.

The boundary between microplanning and surface

realization is fluid, varying the granularity of the mi-

croplanning output and, accordingly, the degrees of free-

dom assigned to the surface realization grammar. The

surface realization process can include: lexical choice

(e.g., restaurant vs. bar); structural choice (e.g., active

vs. passive voice: “restaurant serves food” or “food is

served by restaurant”); and choosing among adjective,

prepositional phrase, or relative clause options as in

“Almaz is an Eritrean restaurant”, “Almaz is a restau-

rant with Eritrean food”, or “Almaz, which is an Er-

itrean restaurant, . . . ”.

The desired situation-adaptivity in NLG is a func-

tion not of what to say, but how to say it, and as such

is naturally associated with the microplanning and sur-

face realization phases. We here focus on the surface re-

alization problem, the understanding being that, in ap-

plications, the surface realization grammar (and there-

with the search) will be given sufficient freedom to en-

compass the relevant formulation differences.

Traditional optimization objectives for surface real-

ization are to generate grammatically correct, natural-

sounding sentences. Effectively optimizing these objec-

tives is, already, not a solved problem, and could po-

tentially benefit from AI search algorithms expertise.

This is even more true for the complex optimization

objectives required to achieve intelligent behavior in

companion technologies and other ubiquitous applica-

tions. In what follows, to make matters concrete, we

first consider a particular search-based surface realiza-

tion framework, OpenCCG, overviewing its search al-

gorithm in AI terms and in relation to AI search algo-

rithms. We then summarize current research issus in the

design of more complex NLG objectives & measures,

towards the desired flexibility. We conclude the paper

with a discussion of challenges to search algorithms, as

well as possible approaches to address these.

[Almaz]
[have]

[good food][Eritrean]

[be]

〈restaurant〉

Fig. 1 Example input for the realization algorithm represent-
ing the propositions be(Almaz, Eritrean) and have(Almaz,
good food).

2 A Concrete Example: OpenCCG

OpenCCG is a prominent state-of-the-art method for

surface realization via search [37, 39]. As our purpose

is to illustrate basic aspects of the search, we do not

provide a comprehensive summary and present a sim-

plified version only. OpenCCG is based on combinatory

categorial grammars (CCG). It uses a so-called chart

realization algorithm (e. g. [21, 2, 3]). Chart realization

is a dynamic programming approach to language gen-

eration that performs a best-first search in the space

of (partial) sentences, storing partial results in a chart

table, and generating new search nodes by combining

expanded nodes with entries from that table.

The input to surface realization is a labeled directed

graph, representing the so-called semantics, i. e., the

content we wish to convey: objects, properties, activ-

ity, and how they are connected. The target is to find a

valid sentence that contains all the semantics in the in-

put. Fig. 1 illustrates an example input. Valid sentences

containing this semantics are, e. g.:

(a) Almaz has good food and is an Eritrean restaurant.

(b) The Eritrean restaurant Almaz has good food.

Search nodes in OpenCCG consist of a string, i. e.

the partial sentence contained in the node, as well as

a grammar category that determines how the node can

be combined with other nodes. A category may be a

grammar item (S stands for sentence, N for noun, NP

for noun phrase, and so on), or a function that composes

several atomic expressions with forward concatenation

(/) or backward concatenation (\). For example, NP/N

means that, if concatenated with another item of type

N , we get an item of type NP ; and NP concatenated

with S\NP yields an item of type S .

We denote nodes as α(X), where α is the string and

X the category. Nodes can be transformed and com-

bined using different types of rules. Two strings can be

concatenated via application, forward [α(X/Y ) β(Y )→
αβ(X)] or backward [α(Y ) β(X\Y )→ αβ(X)]. For ex-

ample, we may concatenate “Eritrean” (NP/N) and

“restaurant” (N) to obtain “Eritrean restaurant” (NP).

Two strings can also be concatenated via composition,
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forward [α(X/Y ) β(Y/Z) → αβ(X/Z)] or backward

[α(Y \Z) β(X\Y )→ αβ(X\Z)]. Additionally, there are

unary rules changing the grammar type of a string in or-

der to enable new combinations, e. g. “restaurant” (N)

→ “restaurant” NP\(NP/N). Importantly, rules com-

bining two strings only ever allow to concatenate these,

in either order – i. e., we can not insert another string

later on in between the two. This is a design decision

intended to keep the branching factor feasible.

In addition to the string and category α(X), search

nodes are associated with information regarding how

much of the input semantics is being conveyed, i. e.,

which parts of the input graph are covered. This is sim-

ply a bitvector that, for every element in the input,

maintains the information whether or not a word cov-

ering that element has already been added to α.

The target of the search is to find a complete sen-

tence, i. e. a node of category S covering the entire input

semantics, maximizing the score with respect to the de-

sired optimization metric (discussed further below).

To initialize the search space, a pre-process performs

a lookup in a dictionary : a collection of all words – lex-

ical items – that may be used, each associated with its

grammar category and with the semantics it can cover.

The pre-process retrieves all lexical items relevant to

the input semantics at hand. For example, the seman-

tics 〈restaurant〉 may be covered by the lexical items

“restaurant”(N), “bistro”(N), and “café” (NP/N); the

semantics 〈win〉 may be covered by different variants of

that verb, differing with respect to tense, as well as the

number of objects to be associated with the verb (in-

transitive, transitive, ditransitive verb). All these lexi-

cal items are inserted into (what the AI search commu-

nity would refer to as) the open list, and search begins.

In the search, the chart serves as a dynamic pro-

gramming cache. It stores the nodes that have already

been expanded. Whenever a new node is expanded, suc-

cessors are generated by combining the node with every

compatible node in the chart. Two nodes are compatible

if their semantics coverages are disjoint (we must not

cover the same input element with more than one lexi-

cal entry), and the grammar categories can be concate-

nated by application or composition. Additional succes-

sors are generated as the result of applying unary rules,

and adding connective words such as “that”, “to”, etc.

Duplicate elimination prunes nodes with the same

semantics and category, even if their strings differ. How-

ever, in order to increase diversity, not all duplicates are

pruned. Instead, the chart is divided into equivalence

classes of same semantics and category, and the K-best

nodes in each equivalence class are preserved, where

“best” is according to optimization criterion score (see

below), and K is a parameter that controls the trade-off

between search efficiency and quality of the result.

The search is best-first, ordered by a scoring func-

tion. Contrary to heuristic search methods in AI, cur-

rent OpenCCG scoring functions do not attempt to es-

timate “goal distance” (the number of steps until a com-

plete sentence), nor the quality of the best completion

of the partial solution at hand. The scoring functions do

not attempt to predict the future at all, instead com-

puting the optimization objective score solely on the

content of the search node itself. In this sense, the use

of scoring functions is akin to the use of evaluation func-

tions in local search optimization methods, despite the

fact that search nodes are not feasible solutions (i. e., do

not correspond to grammatically valid sentences). This

is a simple and feasible solution, but may obviously be

detrimental to the search. One research challenge (see

Section 4) is to find remedies based on the methods

devised for the generation of heuristic functions in AI.

A common optimization objective – a means of mea-

suring “how natural-sounding” a sentence is – is based

on n-grams, measures of how common particular word

tuples (e. g. triples, trigrams) are in natural language.

For each word tuple, we get a probability measure for

this word tuple occuring in a natural language text.

The score of a partial sentence α is the sum of the

negative logarithms of these probabilities, over all word

tuples contained in α (we get back to this in the next

section). Note that, applied to partial sentences during

search, this creates a strong bias towards longer strings,

simply because these contain more word tuples. Note

furthermore the crucial difference to optimization cri-

teria commonly considered in AI search problems: these

are typically described declaratively as a function of the

solution structure, and satisfy particular decomposition

properties such as additivity. In contrast, n-grams are

defined outside the input grammar, and behave in ir-

regular ways gleaned from natural language text bod-

ies. This gap between search model and optimization

objective is intended and necessary, as the objective –

a “natural-sounding” sentence – is difficult to capture

in terms of a formal sentence-generation model.

The algorithm has an anytime flavor: When a valid

solution, i. e. a complete sentence, is found, we continue
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looking for other sentences of better quality; the search

stops only when the state space is exhausted, or a time

limit is reached. Then, all complete sentences are ex-

tracted from the chart, and are evaluated by a refined

quality objective for the final ranking, such as a neural

network trained with more features than the n-grams

used during the search [29, 38, 30, 39, 32].

One characteristic of OpenCCG search spaces, and

a huge source of performance difficulties, are dead ends,

i. e., search nodes that cannot be completed into valid

sentences. There are at least two major sources of dead-

ends: (a) wrong grammar categories that cannot any-

more be completed into a sentence conveying the de-

sired semantics; (b) applying combination rules in the

wrong order. The former arises, e. g., when selecting

an intransitive verb, with a category allowing no di-

rect object, for a sentence that requires such an object.

An example for the latter is the partial sentence “this

restaurant has”, which is a dead-end in our example as

we cannot concatenate it with anything expressing that

the restaurant is Eritrean – recall that we cannot insert

new strings within the partial sentence.

Difficulty (a) is inherent to surface realization, and

poses an interesting challenge to dead-end detection (we

get back to this later). Difficulty (b) is more harmless,

in the sense that it is an artifact of the way the combina-

tion rules are designed. Chunking has been designed as

an optimization to counter-act this artifact (amongst

other things) [36, 37]. It identifies sub-sentences in a

preprocessing stage, and forbids combining nodes that

refer to different sub-sentences until the semantics with-

in each sub-sentence have been fully covered. For exam-

ple, chunking avoids combining “restaurant” with “has”

until it has been combined with “Eritrean”.

3 New Complex Optimization Objectives in

Natural Language Generation

Traditionally, natural language generation systems have

mostly focussed on generating text for some fixed qual-

ity objective (e.g., grammaticality). More recently how-

ever, there is an increased interest in more flexible types

of generation targets. In particular, how to automati-

cally generate utterances with an optimal trade-off be-

tween complexity and conciseness for a specific user in

a given situation? An example use case would be an in-

car spoken dialog system. In this kind of setting, what

is “optimal” changes based on the driving situation.

Passengers adapt to the difficulty of driving conditions,

speaking less overall, using less complex utterances, and

speaking more about traffic when drivers face a chal-

lenging task [5, 10]. Remote conversation partners, e. g.

on a cell phone, do not adapt to the driver’s cognitive

load (as they can’t directly observe it), and are there-

fore more likely to exceed the driver’s channel capac-

ity, increasing the likelihood of an accident. Balancing

communicative efficiency against, e.g., safety concerns

therefore requires the development of adaptive natural

language generation systems which can target different

levels of information density in different contexts.

In psycholinguistics, [15] has suggested the informa-

tion-theoretic notion of surprisal for quantifying the

processing difficulty caused by a word. Surprisal is de-

fined as the Shannon Information [33], i. e., the negative

log probability of a word in context (Equation 1), where

context is usually operationalized as the preceding se-

quence of words (Equation 2):

surprisal(wn) = −logP (wn|context) (1)

= −logP (wn|w1w2...wn−1) (2)

Here, wi denotes the ith word in the sentence. In this

formulation, a word carries more information, and is

more difficult to process, when it is less predictable

based on the preceding words. Likewise, a word that

is totally predictable carries no new information, and

is easy to process. This formulation of surprisal has

been shown to correlate with reading times [25, 6] and

the N400 component of electroencephalographic (EEG)

event-related potentials (ERPs) [12], suggesting that

surprisal is a valid measure of comprehension difficulty.

On the production side, the task of the producer

is to distribute information across the utterance. Hu-

man speakers appear to be sensitive to information den-

sity, altering their use of optional linguistic markers in

a way that avoids large peaks in surprisal [26]. The

uniform information density hypothesis (UID; [19, 20])

observes that rational speakers should want to commu-

nicate as much information as possible without over-

whelming their listener, leading speakers to use a rela-

tively uniform information distribution near the chan-

nel capacity, the maximum amount of information com-

prehensible to their listener. Initial evidence suggests

that NLG systems sensitive to information density pro-

duce outputs more highly rated by humans [31, 9].

For example, consider the case where we want to

convey the message shown in Figure 1; the two alter-

native verbalizations shown in (a) and (b) differ in in-
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formation density1: (a) has an average surprisal of 7.15

bits per word while (b) has 7.84 bits per word, meaning

that (b) is more informationally dense than (a). This

suggests that (a) should be preferred over (b) in situa-

tions where the user cannot give their full attention to

the linguistic task. Note however, that utterance (b) is

the one that conveys information more uniformly, with

an average change in surprisal from word to word of

2.44 bits, versus 3.31 bits in (a).

More detailed information on UID and surprisal may

be found in [4], published in this same issue.

Another measure is propositional idea density, which

has been shown to affect reading times and recall [22].

The semantic representation can then be used to cal-

culate the number of words used to convey a proposi-

tion. For example, (a) and (b) contain 9 and 7 words

respectively though they encode the same 5 proposi-

tions from Fig. 1, resulting in idea densities of 0.555

and 0.714, respectively. On this analysis, therefore, (a)

is less informationally dense and may be easier to read.

Another possible objective is minimizing the length

of syntactic dependencies [13, 14]: in a nutshell, how far

apart related words are placed in the sentence. Such

features have been shown to improve surface realiza-

tion quality in a generate-and-rank approach [31] where

complete solutions are first generated and then ranked.

But they have yet to see use during the generation pro-

cess coming up with the solutions in the first place.

4 Challenges for AI Search Algorithms

Current surface realizers do, generally speaking, ex-

hibit reasonable performance, yet significant deficien-

cies remain to be overcome. In particular, they often

do not succeed in generating grammatically valid sen-

tences within the given runtime limit, which in practice

is typically small, in the order of one second. In such

cases, they have to resort to other approximate methods

that relax the grammar rules. Apart from these basic

issues relevant to sentence realization as it stands, new

challenges are posed by the more complex optimization

objectives as just discussed. We list some concrete chal-

lenges and ideas in what follows.

Dead-end detection. As we have outlined, dead-

ends are a major issue in OpenCCG (and related) search

spaces. The same can be said of the search spaces in

1 Surprisal values based on [7] obtained from
http://tinyurl.com/pltagdemo

manifold AI problems, and there is a wealth of ideas

whose potential in sentence realization is worth explor-

ing. The AI Planning literature in particular has re-

cently considered a variety of approaches towards dead-

end detection. In particular, many known heuristic func-

tions (critical paths [16], abstraction [11, 17, 18], partial

delete-relaxation [23]) have this capability, and could be

useful in sentence realization problems. Planning lan-

guages are powerful enough to capture the category (as

well as semantic) aspects of CCG search nodes and node

combination rules, so a compilation approach could be

feasible in principle. In practice, implementing the tech-

niques natively, and exploiting the particular structure

of CCG specifications, seems more promising.

Partial-order reduction. As in many other search

problems, surface realization search spaces may contain

permutative transition paths leading to identical search

states. Partial-order reduction techniques (e. g. [34, 28,

1, 35]), originating in Verification and well established

also in AI Planning, are a possible remedy which, to

our knowledge, remains unexplored in NLG.

Predictive scoring functions. Scoring functions

in OpenCCG evaluate search nodes based solely on

their partial-solution content, without any predicition

of possible completions. This can (obviously) be detri-

mental. For example, if we want to keep information

density below a threshold, or keep syntactic dependen-

cies short, then the score of partial sentences should

take into account how we may be able to cover the

remaining semantics. The obvious remedy, from an AI

heuristic search perspective, is to devise relaxations that

complete a search node α(X) into an approximate full

sentence α. Arbitrary optimization objectives can then

be evaluated on α, and be taken as an estimate of the

quality of the best possible completion of α(X). But,

for this to make sense, we need to ensure that α does

indeed correspond to a best possible completion. This

is a known problem in AI for good-natured objectives

that decompose over the structure of the solution, like

additive action costs. But what if the optimization ob-

jectives are non-local, not decomposing as easily?

Non-local optimization objectives. The tradi-

tional optimization objectives in sentence realization,

and all the more so the new complex optimization ob-

jectives discussed in Section 3, depend on context. N-

grams depend on the neighboring words. Surprisal de-

pends on the sentence prefix. Uniform density distri-

bution is a property of the sentence as a whole, so de-
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pends on the sentence parts already fixed during the

search. The same applies to the length of syntactic de-

pendencies. To approximate best possible completions,

the computation of relaxed solutions must take into ac-

count such complex objectives. In some approaches, like

abstractions (projections and merge-and-shrink), this

might be relatively straightforward as we can apply

non-local criteria to abstract solution paths. In other

approaches, like (partial) delete-relexation methods, this

is less clear. One possibility could be a limited post-

optimization of relaxed solutions (within each call to

the predictive scoring function), so that the objectives

can, again, be applied to complete sentences.

Target-value search. In adaptive language gen-

eration systems, in particular when we wish to adapt

information density as appropriate in the current user

context, the objective often is not to minimize a func-

tion, but instead to find a solution whose score is close

to a particular value of that function. This is known

as target-value search, a topic that has been considered

in AI graph search already [24, 27], but has not been

given extensive attention. Substantial challenges still

remain on the AI side itself, in particular pertaining to

the design and computation of heuristic functions: The

“best possible completion” is now no longer the cheap-

est possible path postfix, but instead one whose cost

corresponds to the “remaining target cost” as closely as

possible. This raises completely new challenges for AI

Planning heuristics. It raises more complex challenges

still for non-local optimization objectives, cf. above.

In conclusion, there is a lot of work still to do, but

many ideas from AI Search and Planning appear to be

promising for better NLG surface realization. We hope

that our paper can contribute to making this happen.
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