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Abstract
Multiple speaker localization algorithms generally require a bi-
nary detector, which performs the source/noise classification of
the location estimates. This is mainly due to the unknown time-
varying number of sources, and to the presence of noise and
reverberation. In this paper, we propose an unsupervised learn-
ing approach based on a naive Bayesian classifier. The proposed
approach couples two speaker location features, namely, 1) the
steered response power introduced at the location estimate, and
2) the corresponding maximum likelihood error, which charac-
terizes the variance of the estimate. The latter is experimentally
shown to be highly correlated with the steered power at the loca-
tion estimate. The proposed method is further extended to con-
trol the misclassification rate through the use of a loss function.
This approach is general, and can be easily extended to integrate
more speaker/speech features. Experiments on the AV16.3 cor-
pus show the effectiveness of the proposed approach.
Index Terms: microphone arrays, multiple speaker localiza-
tion, source detection, Bayesian classification.

1. Introduction
Microphone arrays have become an essential tool for a large
number of signal processing problems. Their area of application
includes speech separation/enhancement, acoustic source local-
ization and tracking, but also more advanced approaches such
as camera steering for teleconference systems and audio-visual
tracking. Among these applications, the detection and localiza-
tion of multiple concurrent speakers from a short segment of
speech remains a difficult and open task; and that although an
abundance of localization methods have been proposed in the
literature: multi-channel cross correlation (MCCC) [1], adap-
tive eigenvalue decomposition (ED) [2, 3, 4], time difference of
arrival (TDOA)-based techniques [5, 6, 7] and steered response
power (SRP)-based techniques [8, 9], just to name a few.

A good multiple speaker localization performance cannot
be achieved without a source detector, which classifies the ob-
tained estimates to speaker/noise. This is mainly due to 1) the
presence of noise and/or reverberation, which introduces sec-
ondary peaks, and to 2) the unknown time-varying number of
sources per frame. Few attempts have been made to overcome
this problem, the authors of [10] proposed to use the distance
separating the estimates as a criterion to extract the number and
location of the sources, whereas Do et al. [11, 12] proposed to
combine the signal power with a double clustering technique to
estimate the number of speakers. In a more advanced approach,
Lathoud et al. [13] proposed an unsupervised threshold selec-
tion technique to control the false alarm rate.

Following a line of thought similar to [13], we propose to
estimate the optimal boundary between the noise and speaker

classes, using an unsupervised Bayesian classifier. Contrary to
the approaches taken in [12, 13], where a single power-based
feature is used, we propose in this work to augment the fea-
ture space with the Maximum Likelihood Error (MLE), intro-
duced at each location estimate. In doing so, the classification
boundary between the two classes becomes more obvious. This
property is of most interest in low SNR/SRR environments, as
well as in the multiple speaker case, where the signal power
emerging from the secondary speakers becomes comparable to
the noise/reverberation power.

In this framework, we first estimate the likelihood distri-
bution and the prior of each class. This is done by fitting a 3-
components mixture to each feature space. Then, the posterior
distribution of each class is obtained using a Naive Bayesian
Classifier (NBC), which combines the two features. The choice
of the mixtures is dependent on the used features. Experiments
conducted on the AV16.3 corpus show that 1) combining the
features improves the detection performance, and that 2) the
proposed unsupervised classification approach performs better
than a supervised Support Vector Machine (SVM) classifier.

We proceed in this paper by introducing the classification
features. Then, we show how these features can be used to es-
timate the likelihood distributions and the priors (Section 2).
The unsupervised Bayesian classifier is presented in Section 3.
Section 4 shows the performance of the proposed approach in
comparison with SVM. Finally, we conclude in Section 5.

2. Features Extraction And ML Estimation
In this section, we proceed by reviewing the multiple speaker
localization approach used to estimate the source(s) location,
and thereby extract the classification features. Then, we show
how the mixture distributions can be used to characterize each
feature space. Finally, we propose an online algorithm to esti-
mate the parameters of these mixtures.

2.1. Multiple Speaker Localization Approach

In a recent work [14, 15], we have proposed a novel approach to
the multiple source localization problem. This framework inter-
prets each normalized Generalized Cross Correlation function
(GCC) as a probability density function (pdf) of the Time Dif-
ference of Arrival (TDOA). This pdf is then approximated by a
Gaussian mixture (GM) distribution using either the Weighted
Expectation Maximization (WEM) algorithm from [15] or its
practical approximation in [14]. The resulting TDOA Gaussian
mixtures are mapped to the location space using the location-
TDOA mapping, given by (1). The approach proposed in [14]
combines the GMs using a probabilistic interpretation of the
Steered Response Power (pSRP), whereas the approach pro-
posed in [15] maximizes the TDOA joint pdf in the location



space. The rest of this section presents a brief introduction to
the mathematical formulation of these two frameworks.

Formally, let M and Q denote the number of micro-
phones and corresponding pairs, respectively, and let mh de-
note the positions of the microphones, h = 1, . . . ,M . The
location-TDOA mapping between the location s and the TDOA
τq(s), introduced by the source s at the microphone pair q =
{mg,mh} is given by

τq (s) = (‖s−mh‖ − ‖s−mg‖) · c−1 (1)

where c denotes the speed of sound in the air.
The GM approximating the normalized GCC function (inter-
preted as a pdf of the TDOA) of the q-th microphone pair, is
given by

p(τ q) =

Kq∑
k=1

wq
k · N

q
k (τq, µ

q
k, (σ

q
k)2) (2)

where µq
k, σ

q
k and wq

k denote the mean, standard deviation and
mixture weight of the k-th component. The probabilistic SRP
SRPprob of a given location s is then given by [14]
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Q∑
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whereas the ML approach maximizes the location likelihood
distribution given by [15]

p(s) ≈
Q∏

q=1

Kq∑
k=1

wq
k · N

q
k (τ q(s), µq

k, (σ
q
k)2) (4)

The source location estimate se is obtained by 1) extract-
ing from each GM distribution the Gaussian component
(wq

se , µ
q
se , σ

q
se) where the source is dominant. Then, 2) cal-

culating the restriction of (3) and (4) on the space region where
se is dominant. Finally, 3) the optimal location estimate is ob-
tained using a numerical optimization algorithm. These two ap-
proaches however use two different detection methods to clas-
sify a location estimate se to source/noise estimate. In [14], the
decision is based on the probabilistic power coming from that
particular location, that is

se is a source if SRPprob(se) > Pnoise (5)

where Pnoise is a predefined threshold, whereas [15] accom-
plishes this task by comparing the MLE ε(s) to a predefined
threshold Γ. This is done according to

se is a source if ε(se) =

Q∑
q=1

(
τ q(se)− µq

se

σq
se

)2

< Γ (6)

The difficulty with these two detection approaches lies in the
choice of the decision thresholds. The latter is dependent on the
environment and the distance to the microphone array. There-
fore, a static threshold might not be well suited to the location
changes, as it might poorly perform in unseen environments.
In this work, we propose an unsupervised learning approach,
which improves the detection performance by combining these
two approaches. This approach is easy to adapt to possible lo-
cation changes, using an online learning process, and provides
different decision boundaries in different environments.

2.2. Cumulative Steered Response Power Feature

Similarly to the approach taken in [14], we propose to use the
steered power as the first detection feature. This approach how-
ever, does not simply consider the power coming from a sin-
gle location, it rather considers the cumulative power emerging
from the estimate region of dominance. This cumulative steered
response power (CSRP) is calculated according to

CSRPse=

∫
Se
SRPprob(s) · ds (7)

≈
∫
S

Q∑
q=1

wq
se ·N

q
se(τq(s), µq

se , (σ
q
se)2)·ds ≈

Q∑
q=1

wq
se(8)

Se represents the space region where the acoustic event gener-
ating se is dominant. The equation (8) is obtained by mapping
S to the different TDOA spaces (see [15] for more details).

Let {(si, ci)}NT
i=1 denote the set ofNT location estimates si

and their corresponding CSRP values ci, obtained in T frames.
We propose to separate the source from the noise by fitting a 3-
components mixture distribution to the data in the CSRP space.
This mixture is obtained by maximizing the likelihood of the
CSRP estimates {ci}NT

i=1 using the Expectation-Maximization
(EM) algorithm [16].
Formally, the EM algorithm estimates a mixture distribution of
the form

fcsrp(s) = wcsrp
n · Gcsrpn (c) + wcsrp

s · fcsrp
s (c) (9)

Gcsrpn (.) is a Gaussian distribution approximating the likelihood
distributions of the noise, whereas fcsrp

s (.) is a “Gaussian +
uniform” mixture distribution approximating the likelihood dis-
tribution of the sources (Figure 1-b). fcsrp

s (.) is given by

fcsrp
s (c) ∝ Gcsrps (c) + Ucsrp

s (c) (10)

where Gcsrps (.) is a Gaussian distribution and Ucsrp
s is a uni-

form distribution. wcsrp
n and wcsrp

s denote the noise and source
priors, respectively. The uniform distribution Ucsrp

s is intro-
duced to model the high CSRP values, which are poorly mod-
eled by Gcsrps .

2.3. Maximum Likelihood Error Feature

The second classification feature is the Maximum Likelihood
Error (MLE) given by eq (6). This feature is correlated with the
nature of the acoustic sources. More precisely, we expect the
MLE to be large for diffused noise, but low for “point” sources.
Actually, the SRP shows that the diffused sources are charac-
terized by flat peaks, whereas the point sources map to sharp
peaks. This property is mainly due to the nature of the GCC
peaks, representing the same source but in different microphone
pairs. For a diffused noise, the peaks are generally flat, and
might map to different peaks in the location space. As a result,
the variance of the estimate is expected to be large and the MLE
tends to increase, and vice versa (Figure 1-a).

We propose to use the approach presented in Section 2.2 to
estimate the noise and source likelihoods, with the exception of
using different distributions. Formally, let {(si, erri)}NT

i=1 de-
note the set ofNT location estimates si and their corresponding
MLE values erri, obtained in T frames. We propose to use a
3-components mixture distribution :

fmle(s) = wmle
s · Γmle

s (err) + wmle
n · fmle

n (err) (11)

where Γmle
s (.) is a Gamma distribution approximating the like-

lihood distribution of the source MLE, whereas fmle
n (.) is a
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(a) Estimates variance vs power
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(b) Mixture fit of the CSRP feature
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(c) Mixture fit of the MLE feature
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Figure 1: The figure in (a) illustrates the high correlation between the variance of the SRP peaks generating the estimates and the
cumulative SRP, this figure shows clearly that the estimates map to two distinct classes. The graph in (b) and (c) show an example of
the maximum likelihood mixture distributions approximating the CSRP distribution and the MLE distribution, respectively. The graph
in (d) shows an example of a classification boundary obtained with the NBC.

“Gaussian + uniform” mixture distribution approximating the
likelihood distribution of the noise. fmle

n (.) is given by

fmle
n (err) ∝ Gmle

n (err) + Umle
n (err) (12)

Similarly to eq. (10), Umle
n is introduced to model the high MLE

values, which are poorly modeled by Gmle
n . The CSRP and the

MLE features are combined in Section 3 to improve the detec-
tion performance.

2.4. Online Parameter Estimation

Acoustic source localization applications, such as camera steer-
ing and audio-visual tracking, often require an online local-
ization performance. Therefore, the source/noise classification
should be also performed online. Algorithm 1 proposes an ap-
proach that accomplishes an online estimation of the distribu-
tions parameters from Section 2.2 and 2.3. The proposed algo-

Algorithm 1 : Online Parameter Estimation

1. Initialize the distributions parameters randomly
2. Let T be the re-estimation period.
for each time t multiple of T do

3. Set the initial parameters to the current parameters.
4. Keep the estimates from the last N frames.
5. Re-estimate the parameters using the EM algorithm.

end for

rithm takes into account any possible changes in the distance,
number of speakers and noise conditions, which might affect
the detection performance. Therefore, only the last N frames
are used to re-estimate the parameters. It is worth mentioning
that N should not be too small as well.

3. Unsupervised Bayesian Classifier
3.1. Naive Bayesian Classifier

The detection task can be improved by fitting a mixture dis-
tribution to the joint 2-D feature space, formed by the CSRP
and the MLE features. Such an approach is beneficial, because
it incorporates the correlation between the two features, which
would lead to a more realstic model. The distribution of the
2-D data however narrows the possible choices of the mixture
distribution (Figure 1-d), which can efficiently maximize the
likelihood, and thereby accurately models the estimates. This
problem can be solved by maximizing the likelihood of the data

in each feature space (Section 2.2 and 2.3), and then combin-
ing the resulting distributions using a Naive Bayesian Classi-
fier (NBC) [17]. Formally, let {Xi = (si, ci, erri)}NT

i=1 be the
set of augmented estimates, and let α be the classifier decision,
α ∈ {source,noise}. The posterior probability of the decision
α given an estimate X = (s, c, err) is given by

p(α|X) =
p(X|α) · p(α)

p(X)
(13)

The NBC assumes the independence of the features [17], and
expresses the likelihood distribution according to

p(X|α) =

2∏
k=1

p(Xk|α) = p(c|α)× p(err|α) (14)

Replacing the terms in (13) and (14) by their expressions from
(9), (10), (11) and (12) leads to the following unsupervised clas-
sifier

p(source|X) ∝ fcsrp
s (c) · Γmle

s (err) · wcsrp
s · ·werr

s (15)

p(noise|X) ∝ Gcsrpn (c) · fmle
n (err) · wcsrp

n · wmle
n (16)

The decision α is independent of the probability of the es-
timate X . Therefore, p(X) is ignored in eq. (15) and
(16). X is considered to be generated by an actual source if
p(source|X) ≥ p(noise|X).

3.2. Loss Function For Noise Control

Acoustic source localization approaches are generally com-
bined with a large number of applications, some of which may
require a reduced noise rate, such as beamforming techniques
[18], whereas other applications, such as the audio-visual track-
ing approaches [7, 19], are more robust against noise, and ex-
pects a high frequency of correct estimates, even if that leads to
an increasing noise rate. The variety of these approaches require
more flexibility in the acoustic source classification. This idea is
successfully implemented using the loss function [17, 20]. For-
mally, let λ(α|g), be the loss incurred for deciding α knowing
that g is the true class, with α, g ∈ {source,noise} = {S,N}.
The risk associated with taking the decision α given the esti-
mate X is calculated according to

R(α|X) = λ(α|S) · p(S|X) + λ(α|N ) · p(N|X) (17)

The classification according to the minimum-risk decision rule
is obtained by deciding S whenR(S|X) ≤ R(N|X) and vise
versa. This rule is equivalent to



Table 1 : Source/Noise Classification Results
Sequences SVM + CSRP SVM + MLE SVM + CSRP + MLE NBC + CSRP + MLE

R P F R P F R P F R P F
seq18-2p-0101 0.46 0.85 0.60 0.94 0.33 0.49 0.83 0.67 0.74 0.86 0.62 0.72
seq24-2p-0111 0.42 0.80 0.55 0.94 0.27 0.45 0.83 0.56 0.66 0.82 0.60 0.69
seq40-3p-0111 0.26 0.92 0.41 0.81 0.56 0.67 0.58 0.82 0.68 0.63 0.79 0.70
seq45-3p-1111 0.30 0.55 0.40 0.89 0.26 0.40 0.70 0.42 0.52 0.71 0.42 0.53
seq37-3p-0001 0.10 0.91 0.17 0.77 0.49 0.60 0.72 0.61 0.66 0.76 0.57 0.66

Table 1 : Source/Noise Classification Results
Sequences SVM + CSRP SVM + MLE SVM + CSRP + MLE NBC + CSRP + MLE

R P F R P F R P F R P F
seq18-2p-0101 0.46 0.85 0.60 0.94 0.33 0.49 0.83 0.67 0.74 0.86 0.62 0.72
seq24-2p-0111 0.42 0.80 0.55 0.94 0.27 0.45 0.83 0.56 0.66 0.82 0.60 0.69
seq40-3p-0111 0.26 0.92 0.41 0.81 0.56 0.67 0.58 0.82 0.68 0.63 0.79 0.70
seq45-3p-1111 0.30 0.55 0.40 0.89 0.26 0.40 0.70 0.42 0.52 0.71 0.42 0.53
seq37-3p-0001 0.10 0.91 0.17 0.77 0.49 0.60 0.72 0.61 0.66 0.76 0.57 0.66

λ(N|S)− λ(S|S)

λ(S|N )− λ(N|N )
≥ p(N|X)

p(S|X)
(18)

λ(S|S) and λ(N|N ) represent the loss incurred for making the
right decision. Therefore, these two parameters are generally set
to 0. On the other hand, setting λ(N|S) = λ(S|N ) = 1 leads
to the NBC (Section 3.1). The noise rate can be then controlled
by adapting the ratio of these two parameters.

4. Experiments and Results
We evaluate the proposed approach using the AV16.3 corpus
[21], where human speakers have been recorded in a smart
meeting room (approximately 30m2 in size) with a 20cm 8-
channel circular microphone array. The sampling rate is 16
kHz and the real mouth position is known with an error ≤ 5cm
[21]. The AV16.3 corpus has a variety of scenarios, such as
stationary or quickly moving speakers and varying number of
simultaneous speakers. The source localization experimental
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Figure 2: Example of classification with SVM.

setup used in these experiments is the similar to that proposed
in [15]. More precisely, the signal was divided into frames of
512 samples (32ms); the GCCs were calculated using PHAT
[22] weighting; and a voice activity detector was used in order
to suppress silence frames. The multiple speaker localization
approach provides 6 estimates per frame (Nmax in [14, 15]),
whereas the number of simultaneous speakers varies between 0
and 3. The proposed approach is compared to the classical Sup-
port Vector Machine (SVM) [17, 20] approach with quadratic
kernel (Figure 2). Using different kernels did not improve
the results. The SVM training data is obtained by calculating
the MLE and CSRP features for all locations given by the se-
quences ground truth, as well as for noise locations selected
randomly. The reported results were obtained with a training
on the audio sequence seq02-1p-0000, and then testing on the
remaining multiple speaker sequences from the corpus. The re-

sults are reported in terms of the Recall (R), Precision (P) and
F-measure (F). These measures are given by

P =
True Positive

True Positive + False Positive
(19)

R =
True Positive

True Positive + False Negative
(20)

F = 2 · R · P
R+ P

(21)

The values of these measures are between 0 and 1. The higher
they are, the better the classification is. The recall represents the
fraction of actual source(s) estimates that is correctly classified,
whereas the precision reports the fraction of estimates which
are correctly classified. Finally, the F-measure is a weighted
harmonic mean of precision and recall. This measure is very
relevant in assessing the overall performance.

Table 1 presents the results of the multiple source detec-
tion task using the SVM approach, when it is combined with
each feature separately, as well as when the features are jointly
used. These results show that combining the MLE and CSRP
features leads to better classification results. More precisely, we
can see that using the MLE feature alone, leads to a good recall
performance but very poor precision. On the other hand, using
the CSRP feature alone results in a good precision performance
but a poor recall. Combining these two features, however pro-
vides more information to the SVM classifier, which success-
fully increases the F-measure of all sequences. We can also see
that, contrary to the “MLE only” and “CSRP only” results, the
recall and precision performance of the joint features experi-
ments are balanced. We can conclude from these results that
combining the MLE and CSRP features increases the detection
performance.

Table 1 also reports the results of the proposed unsuper-
vised Bayesian classifier. These results show clearly that the
proposed classifier performs slightly better than SVM. This is
mainly due to the dependency of the features on the source lo-
cation and the number of speakers. These two factors highly
affect the signal power level and the SNR. Therefore, using a
single training data to classify the different scenarios proposed
by the AV16.3 corpus leads to a sub-optimal performance. The
proposed classifier however adapts easily to these changes. This
is due to the self-learning approach, which uses the data itself
to infer the best boundary that explains the two classes.

5. Conclusion
We have proposed an unsupervised Bayesian classifier to the
multiple speaker detection task. The proposed approach uses
the maximum likelihood error and the cumulative SRP as clas-
sification features, and uses a naive Bayesian technique to com-
bine their distributions. This approach also provides a flexible
framework to control the noise rate, and can be easily extended
to integrate more speaker/speech features.
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