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ABSTRACT

This paper presents a novel filtering approach for tracking multiple
concurrent speakers with a microphone array. In this framework,
a Kalman filter bank that evolves in time according to a temporal
Hidden Markov Model (HMM) is proposed. This approach was de-
signed to overcome two major problems that occur in spontaneous
speech; namely, 1) the speaker overlap. This problem is solved us-
ing a bank of parallel Kalman filters that track multiple simultaneous
speakers, and 2) the high discontinuity of spontaneous speech caused
by short breaks and silences. This is solved using an HMM that al-
lows speakers to change their state (speaking, silent, etc.) over time.
The actual active speakers number and locations are extracted from
the active filters using a second Kalman filter. Experiments on the
AV16.3 showed an average tracking rate improvement of 8% com-
pared to a short-term clustering approach, while being 7 times faster.

Index Terms— Microphone array, multiple speaker tracking,
Kalman filter, hidden Markov model

1. INTRODUCTION

Multiple object tracking is an open research topic that has a wide
number of applications. More particularly, multiple speaker tracking
using microphone arrays has become an essential tool to develop ro-
bust solutions to a large number of signal processing problems, such
as (multi-party) speech separation/enhancement, speaker diarization,
etc. Classical acoustic source tracking approaches consist of two
stages : 1) Extracting the measurements, which can be either Time
Differences Of Arrival (TDOA) at the sensor pairs [1, 2], or noisy
location estimates obtained with a Steered Response Power (SRP)-
based technique [3, 4, 5]. 2) These measurements are then processed
by a filtering approach, such as Particle Filters (PF) [6, 7] or Kalman
Filter (KF)-based approaches [8, 9]. In the multiple speaker case,
these two steps are generally combined with a multimodal estima-
tion framework, which allows the tracking of multiple instantaneous
speakers, such approaches include the joint probabilistic data asso-
ciation filter [10], the multiple model particle filter [11] and the
extended Kalman particle filter [12], to name but a few.

Despite their relative success, these approaches were mainly
designed to overcome few classical problems of multiple object
tracking, such as the non-linearity of the state space model dynam-
ics [4, 8, 10], the robustness to noise [2, 12], and the correct estima-
tion of the number of speakers [13]. These approaches however, did
not address two main problems related to the speech nature, namely,
1) the high discontinuity of spontaneous speech, where an active
speaker becomes frequently inactive for a short time (100-300ms),
and 2) the suppression problem, were the dominant speaker masks
the remaining speakers. These two problems reduce the speaker de-
tection rate, and thereby makes the tracking of acoustic sources pos-

sible only in short-term i.e., while a speaker is talking without being
suppressed. To overcome this problem, Lathoud et al. [14] proposed
a short-term clustering (STC) approach, which extracts the speakers
trajectories as short-term location clusters.

Following a line of thought similar to [14], we propose a novel
multiple speaker short-term tracking framework, which consists of a
bank of parallel KFs tracking multiple instantaneous speakers. More
particularly, the state of each filter is updated according to a temporal
Hidden Markov Model (HMM) that models 1) the frequent and short
transitions in a speaker state (silent, speaking, etc.), as it models 2)
the time-varying number of speakers, by allowing new speakers to
appear (birth state) and existing speakers to disappear (final state). In
doing so, the proposed approach presents a more realistic and flex-
ible model to the multiple speaker tracking problem. this approach
overcomes the above mentioned problems using short-term process-
ing, similarly to [14], but proposes a more realistic model through
use of the KF bank and the integrated HMM.

In the remaining part of this paper, we proceed by reviewing
the location measurements detector that we have previously devel-
oped [15, 16, 17] (Section 2). Section 3 presents the single ob-
ject tracking framework. Then, we introduce the proposed multiple
speaker tracking framework in Section 4. Section 5 demonstrates
the effectiveness of the proposed filter by means of an experimental
study conducted on the AV16.3 corpus [18], including a comparison
to the STC approach [14]. Finally, we conclude in Section 6.

2. MULTIPLE LOCATION MEASUREMENT DETECTOR

The location measurements detector aims at providing multiple in-
stantaneous location estimates at each time frame. These mea-
surements are then processed by the proposed tracking framework,
which filters them over time to estimate the short-term speak-
ers trajectories. In this work, we use our previously developed
multiple speaker localization framework as a measurement detec-
tor [15, 16, 17]. This framework consists of 1) a multiple instanta-
neous location estimator [15, 16] that extracts a fixed number of po-
tential location estimates per frame, followed by 2) an unsupervised
Bayesian classifier [17], that controls the noise rate by classifying
the resulting estimates into noise/speaker.

2.1. Multiple Instantaneous Location Estimator

In a recent work [15, 16], we have proposed a novel approach to
the multiple source localization problem. This framework interprets
each normalized Generalized Cross Correlation function (GCC) as a
Probability Density Function (pdf) of the TDOA. This pdf is then ap-
proximated by a Gaussian mixture (GM) distribution using either the
Weighted Expectation Maximization (WEM) algorithm from [16] or
its practical approximation in [15]. The resulting TDOA Gaussian
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Fig. 1: One second of spontaneous speech showing an example,
where the instantaneous location detector fails in producing location
measurements (stars) during short silence/low energy frames.

mixtures are mapped to the location space using the location-TDOA
mapping given by (1). The approach proposed in [15] combines
the GMs using a probabilistic interpretation of the Steered Response
Power (SRPprob), whereas the approach proposed in [16] maxi-
mizes the TDOA joint pdf in the location space. The rest of this sec-
tion presents a brief introduction to the approach proposed in [15],
which is used in this work as a measurement detector.

Formally, let M and Q denote the number of microphones and
corresponding pairs, respectively, and let mh, h = 1, . . . ,M , de-
note the positions of the microphones. The location-TDOA map-
ping between the location s and the TDOA τ q(s), introduced by the
source s at the microphone pair q = {mg,mh}, is given by

τ q (s) = (‖s−mh‖ − ‖s−mg‖) · c−1 (1)

where c denotes the speed of sound in the air.
The GM approximating the normalized GCC function (interpreted
as a pdf of the TDOA) of the q-th microphone pair, is given by

p(τ q) =

Kq∑
k=1

wq
k · N

q
k (τ q, µq

k, (σ
q
k)2) (2)

where µq
k, σ

q
k and wq

k denote the mean, standard deviation and mix-
ture weight of the k-th component, k = 1, . . . ,Kq , respectively.
The probabilistic SRP of a given location s is given by [15]

SRPprob(s) ∝
Q∑

q=1

Kq∑
k=1

wq
k · N

q
k (τ q(s), µq

k, (σ
q
k)2) (3)

The source location estimate se is obtained by 1) extracting from
each GM distribution the Gaussian component (wq

se , µ
q
se , σ

q
se)

where the source is dominant. Then, 2) calculating the restriction
of ( 3) on the space region Se where se is dominant. Finally, 3)
the optimal location estimate is obtained via numerical optimization
(see [15, 16] for more details).

2.2. Noise Rate Control

The multiple speaker localization approach provides a fixed num-
ber of instantaneous estimates (6 estimates per frame in this work).
Given that the number of active speakers changes over time, a classi-
fication step is required to exclude the unlikely measurements. This
is done using an unsupervised Bayesian Classifier (BC) [17] that
uses two location features to classify the location measurements to
noise/speaker. More precisely, we calculate, for each location esti-
mate se, the Cumulative SRP (CSRP) feature given by

CSRP (se) =

∫
Se
SRPprob(s) · ds ≈

Q∑
q=1

wq
se (4)

and the Maximum Likelihood Error (MLE) feature defined as

ε(se) =

Q∑
q=1

(
τ q(se)− µq

se

σq
se

)2

(5)

The EM algorithm is then used to estimate the probability distribu-
tion of each feature separately as a 2-component mixture distribution
(noise+speaker). The resulting distributions are then combined us-
ing a naive Bayesian classifier that classifies each of the location
estimates to noise/speaker (see [17] for more details).

3. SINGLE OBJECT TRACKING FRAMEWORK

The problem of tracking a time-varying system state st based on
a sequence y1:t = {y1, . . . , yt} of corresponding measurements is
usually formulated as a Bayesian estimation problem in which

1. A process model st = f(st−1, vt) is used to construct a prior
p(st|y1:t−1) for the state estimation problem at time t.

2. Then, the joint predictive distribution p(st, yt|y1:t−1) of state
and observation is constructed according to a measurement model
yt = h(st, wt).

3. Finally, the posterior distribution p(st|y1:t) is obtained by condi-
tioning the joint predictive density p(st, yt|y1:t−1) on the mea-
sured observation Yt = yt.

vt and wt are, respectively, the process and measurement noise. The
dynamics f , h and the initial posterior distribution form what is
known as the Dynamic State Space Model (DSSM). The recursion
of the above mentioned transformations form the Bayesian tracking
framework. This framework has a closed form solution in the case
where f , h are linear and vt, wt are Gaussian (this is the case in
our problem). In this case, all the involved random variables remain
Gaussian at all times and the posterior distribution p(st|y1:t) can
be obtained as a conditional Gaussian distribution. This solution is
generally known as Kalman filter.

In this work, we propose to track the speaker location st using
this recursive Bayesian framework on the following DSSM

Process Model : st = f(st−1, vt) = st−1 + vt (6)
Measurement Model : yt = h(st, wt) = st + wt (7)

The proposed DSSM assumes that the speaker is stationary at each
time transition. This assumption is reasonable given the short time
frame that is considered in this work (32ms).

Section 4 introduces a generalization of this framework to a spe-
cial multiple measurement/object case, where objects switch state
from active to inactive (and vice versa) for a short period of time.

4. PROPOSED KALMAN FILTER BANK

Multi-party spontaneous speech utterances can be looked at as a se-
quence of sporadic and concurrent events [14, 19]. More precisely,
1) speech utterances are generally short and interspersed with many
short silences, which results in a sequence of short and isolated seg-
ments of speech [14]. Furthermore, the sporadic nature of sponta-
neous speech increases in the multiple concurrent speaker scenario,
where the dominant speaker suppresses the remaining speakers. This
property automatically decreases the performance of classical track-
ing approaches. More precisely, these approaches often require that
the object of interest is continuously observable over, relatively, a
long period of time. This assumption is violated in the spontaneous
speech case, where the instantaneous location estimates (from Sec-
tion 2) are often unavailable during silences and during the speech



segments with low energy (Fig. 1). Moreover, the fast-changing
speaker turns and the varying number of active speakers encoun-
tered in multi-party speech require very complex models, that allow
the fast and concurrent transitions in the speaker turns.
The remaining part of this section presents a novel short-term fil-
tering approach that incorporates these two characteristics. This is
done using a KF bank that 1) models the multiple concurrent speaker
scenario, and 2) allows speakers to change their state (speaking,
silent,...etc) according to a HMM.

4.1. Short-Term Tracking Filter

The Short-Term Tracking (STT) filter proposes to track multiple
speaker using a dynamic bank of KFs running independently and
in parallel. Each filter in this bank estimates a single speaker short-
term trajectory using the DSSM and the recursive Bayesian estima-
tion framework from Section 3. Furthermore, the state of each filter
is updated according to a temporal HMM (Fig. 2 is a simplified il-
lustration of the proposed HMM). More precisely, a filter can be

1. In the hidden “Birth” state (B). In this state, the filter is initialized
to track potential emerging targets.

2. Active (A), this hidden state corresponds to filters that are track-
ing the current active targets in the scene. These include 1) speak-
ers from the previous frame that remained active, 2) speakers that
went inactive for a short period of time (100-300ms) and became
active again and 3) the new targets that just appeared in the scene.

3. Inactive (I), this hidden state models the short silence/break time
frames as well as frames with low speech energy (see example in
Fig. 1). This phenomenon causes a lack of measurements. There-
fore, the filter becomes inactive.

4. Dead (D). This final state models filters that went inactive for a
long period of time. This mainly occurs when speakers change
turns or when a speaker stops talking. Filters that reach this state
are automatically removed from the filter bank.

DI

bi→d

bi

A

ba→i

bi→a

ba

B

bb→d

bb→a

bb

Fig. 2: A simplified HMM illustrating the filter state update at time
t, given the observed filter activity.

4.2. Multiple Speaker Tracking Framework

This section introduces the mathematical formulation of the multiple
speaker short-term tracking framework. Let Bt = {Ft,k}Nt

k=1 be a
bank of Nt KF running in parallel at time t. Bt can be divided to
three disjoint banks according to each filter state

Bt = {Fa
t,k}

Na
t

k=1

⋃
{F i

t,k}
Ni

t
k=1

⋃
{Fb

t,k}
Nb

t
k=1 (8)

where Ba
t = {Fa

t,k}
Na

t
k=1, Bi

t = {F i
t,k}

Ni
t

k=1 and Bb
t = {Fb

t,k}
Nb

t
k=1

are the bank of active, inactive and potential (new speakers) filters,
respectively. Na

t , N i
t and Nb

t are their respective cardinality. Let
Bt−1 be the filter bank at time t−1 and let st and yt be the (location)
state and observation random variables at time t, respectively. The
goal here is to estimate the updated posterior distribution pk(st|y1:t)
of each filterFt,k, k = 1, . . . , Nt in the filter bank Bt at time t. This
time propagation of the posterior distribution is done in four steps :

Step 1. State prediction step: This step uses the process model
given by (6) to calculate the prior distribution pk(st|y1:t−1), k =
1, . . . , Nt of each filter Ft,k ∈ Bt.

Step 2. Joint predictive distribution: In this step, we propagate the
predicted prior distribution, calculated in the previous step, from the
state space to the augmented joint state-observation space according
to the measurement model given by (7). We obtain then Nt joint
predictive distributions pk(st, yt|y1:t−1), k = 1, . . . , Nt.
In fact, these two steps run the classical Bayesian tracking steps 1
and 2 from Section 3 on Nt parallel Kalman filters.

Step 3. Confidence region estimation: For each filter Ft,k, k =
1, . . . , Nt, the joint predictive distribution pk(st, yt|y1:t−1) is
marginalized on the state space to obtain the predicted observation
distribution pk(yt|y1:t−1), which characterizes the most likely re-
gion to contain the next measurement. This distribution is then used
to define the measurement confidence region Ckt of the filter Ft,k

Ckt =Gate=
{
Yt ∈ location space|pk(Yt|y1:t−1) ≥ pconfid

}
(9)

pconfid is the confidence threshold (a probability).

Step 4. Target-measurement association and filter bank update:
Let Yt = {Y 1

t , . . . , Y
Mt
t } be theMt measurements received at time

t, and let At,k be the target-measurement binary random variable
associated to Ft,k. The measurement Y m

t is associated to the target
Ft,km (At,km = 1) if and only if Y m

t ∈ Ckm
t . Then, the corre-

sponding posterior distribution pkm(st|y1:t) is updated according to
step 3 of the single object Bayesian tracking framework (Section 3).

After the target-measurement association step, the observations
(if there is any) Ȳ l

t , l = 1 . . . , N̄t that were not associated to any
target are used to initialize potential new speakers. More precisely,
N̄t Gaussian distributionsN (st, Yt,Σinit), where the means are the
observations, are added to the filter bank Bb

t . These filters are con-
sidered to be at the birth state (Fig. 2).

4.3. Update of the Filters State

Once we propagate the posterior distribution of all filters in Bt, we
proceed to the update of each filter state according to the proposed
HMM (see illustration in Fig. 2). The new state of each filter is
estimated based on its observed activity ta,k, which is calculated on
a context/history window of duration Tc. Formally, let Lf be the
frame length in seconds, we calculate the active duration of Ft,k at
time t according to ∆ ta,k = Lf · (

∑t
j=t−Tc

Aj,k), whereas its
inactive duration is given by ∆ ti,k = Tc − ∆ ta,k. The filter
activity is defined as ta,k = max(∆ta,k −∆ti,k, 0).

Let T t
a,k be the observed filter activity at time t. The new state of

the filter Ft,k is the one that maximizes the following probabilities

bb→a =

{
1 if

∫ T t
a,k

0 fb(θb, x) · dx ≥ pbirth
0 otherwise

(10)

ba = bi→a = At,k (11)
ba→i = 1−At,k (12)

bb = bi = psurvival =

∫ T t
a,k

0

fs(θs, x) · dx (13)

bi→d = bb→d = pdeath = 1− psurvival (14)

fx(θx, .) (x ∈ {b, s}) are two pdfs (with parameters θx) modeling
the birth and survival processes, respectively. Following the classical
use of the exponential pdf as distribution modeling the life duration
of objects, these two pdfs are considered to be two exponential dis-
tributions with respective means µb and µs.



Table 1 : Precision rate ps, trajectory estimation rate tr and real-time factor t
seq11-1p-0100 seq18-2p-0101 seq24-2p-0111 seq40-3p-0111 seq37-3p-0001
ps tr t ps tr t ps tr t ps tr t ps tr t

STT 92.2 78.4 4.8 94.4 90.7 4.7 83.7 59.4 4.7 92.2 86.3 4.8 93.6 90.1 4.7
STC 87.9 69.8 33.4 85.0 81.5 42.0 81.6 63.7 32.0 94.1 75.7 37.8 90.6 82.2 36.4

Table 1 : Precision rate ps, trajectory estimation rate tr and real-time factor t
seq11-1p-0100 seq18-2p-0101 seq24-2p-0111 seq40-3p-0111 seq37-3p-0001
ps tr t ps tr t ps tr t ps tr t ps tr t

STT 92.2 78.4 4.8 94.4 90.7 4.7 83.7 59.4 4.7 92.2 86.3 4.8 93.6 90.1 4.7
STC 87.9 69.8 33.4 85.0 81.5 42.0 81.6 63.7 32.0 94.1 75.7 37.8 90.6 82.2 36.4

Table 2 : Speaker detection rate (dr) and average root-mean-square error (degree)
seq11-1p-0100 seq15-1p-0100 seq18-2p-0101 seq24-2p-0111 seq40-3p-0111 seq37-3p-0001
STT STC STT STC STT STC STT STC STT STC STT STC

dr of speaker 1 78.4 69.8 41.4 40.6 61.5 51.6 48.5 55.0 44.9 39.2 37.3 28.8
dr of speaker 2 — — — — 56.9 53.1 42.5 34.3 44.7 38.5 72.0 66.2
dr of speaker 3 — — — — — — — — 64.4 56.8 48.7 46.7

Average dr 78.4 69.8 41.4 40.6 59.2 52.3 45.5 44.6 51.3 44.8 52.7 47.9
Average RMSE 3.14 2.90 1.13 1.48 2.10 1.96 2.54 3.07 4.95 6.56 2.48 2.47

Table 2 : Speaker detection rate (dr) and average root-mean-square error (degree)
seq11-1p-0100 seq15-1p-0100 seq18-2p-0101 seq24-2p-0111 seq40-3p-0111 seq37-3p-0001
STT STC STT STC STT STC STT STC STT STC STT STC

dr of speaker 1 78.4 69.8 41.4 40.6 61.5 51.6 48.5 55.0 44.9 39.2 37.3 28.8
dr of speaker 2 — — — — 56.9 53.1 42.5 34.3 44.7 38.5 72.0 66.2
dr of speaker 3 — — — — — — — — 64.4 56.8 48.7 46.7

Average dr 78.4 69.8 41.4 40.6 59.2 52.3 45.5 44.6 51.3 44.8 52.7 47.9
Average RMSE 3.14 2.90 1.13 1.48 2.10 1.96 2.54 3.07 4.95 6.56 2.48 2.47

The update of the filters state according to the proposed HMM
leads to a new bank of active filters Ba

t = {Fa
t,k}

Na
t

k=1. Although
Ba

t can be considered to be the final set of active speakers, the in-
dependent update of the filters, at each time frame, leads to a high
perturbation in the number of active filters over time. This is often
undesirable. Therefore, we use the estimated number of active fil-
ters Ba

t as a measurement in a second KF that smooths the number
of active speakers over time.

5. EXPERIMENTAL SETUP AND RESULTS

We evaluate the proposed approach using the AV16.3 corpus [18],
where human speakers have been recorded in a smart meeting room
(approximately 30m2 in size) with a 20cm 8-channel circular micro-
phone array. The sampling rate is 16 kHz and the real mouth posi-
tion is known with a 3-D error ≈ 1.2cm [18]. The AV16.3 corpus
proposes a variety of scenarios, such as stationary and quickly mov-
ing speakers, varying number of simultaneous speakers, etc. In the
experiments reported below, the signal was divided into frames of
512 samples (32ms). The instantaneous location estimates [15] and
the speaker/noise classification task [17] were accomplished using
the same setting proposed in [17]. We also use the same evalua-
tion method proposed in [16], which estimates a 2-components GM
Gn + Gs that separates the ”noise+speaker(s)“ tracking estimates.

The evaluation statistics are derived from the component rep-
resenting the speaker estimates. More precisely, the results are re-
ported in terms of 1) the precision rate ps, 2) the tracking rate tr ,
this is calculated as the correct tracking duration w.r.t. the duration
of frames with a (at least one) ground truth location, 3) the individual
speaker detection rate dr , 4) the average Root-Mean-Square Error
(RMSE), and finally 5) the real-time factor t of the complete frame-
work, on a standard Pentium(R) Quad-Core i5-3550 CPU clocked
at 3.30GHz. Similarly to the work proposed in [14, 19], the track-
ing is limited to the azimuth angle. This is due to the far-field as-
sumption as well as to the small size of the microphone array. The
proposed approach however is general and can be applied to 3-D
tracking problems with other types of microphone arrays, such as the
distributed arrays. The tracking parameter setting is as follows, the
birth mean is set to µb = 0.3s whereas µs = 0.1s. The latter aims at
excluding filters with a decreasing activity near to 0. The birth prob-
ability pbirth = 0.8, the confidence probability is pconfid = 10−3,
whereas the duration of the context/history window is Tc = 1s.

Table 1 and Table 2 present the performance of the proposed
short-term tracking (STT) approach on different sequences from the
AV16.3 corpus, and compares it to the complete short-term cluster-
ing (STC) framework proposed in [14, 19]. This framework consists

of 1) an instantaneous detection-localization approach, followed by
2) an automatic threshold that controls the false alarm rate. The ob-
tained estimates are then 3) clustered into speech utterances using
a short-term clustering approach. Finally, 4) a speech/non-speech
classification is performed to discard estimates from non-speech
frames (more details can be found in the PhD. thesis [19]). The
STC results were generated using the public/free original code [19],
using the same parameter setting explained above.

Table 1 shows a clear improvement of the STT over the STC
approach. More precisely, the STT achieves longer correct tracking
trajectories (the increased correct tracking duration rate tr) while
achieving comparable or improved precision rate ps. Moreover, the
time-factor t shows that the STT is 7-8 times faster than the STC.
We can also conclude from this table that the proposed approach
achieves a very satisfying tracking rate (average tr ≈ 81%) and that
it mostly tracks the correct acoustic sources (average ps ≈ 91%).

Table 2 analyzes the distribution of the precision ps and the
tracking rate tr results from Table 1 on the individual instantaneous
speakers. We can see clearly that the proposed approach highly
increases the speaker detection rate dr without compromising the
RMSE, which is comparable for both approaches. We can also see
that for sequences which contain very long and frequent intentional
segments of silence. Namely, seq15-1p-0100 and seq24-2p-0111.
For these sequences, the performance of the STT decreases and be-
comes comparable to the performance of the STC. This is mainly
due to the absence of a speech/non-speech classifier that uses speech
cues to reject the noise estimates during long silence/noise frames.
As a result, the STT tracks noise sources during these long segments
of silence/noise. The STC however, integrates such a classifier. Ta-
ble 2 shows also that the detection rates dr of the multiple speaker
sequences are low compared to the corresponding tracking rate tr .
This is mainly due to the absence of the simultaneous speaker mea-
surements caused by the speaker suppression problem, as well as the
high active/inactive transition rate.

6. CONCLUSION

We have proposed a novel multiple speaker short-term tracking
framework that incorporates the spontaneous/conversational speech
properties. This approach consists of a Kalman filter bank that
evolves in time according to a hidden Markov model. Experiments
on the AV16.3 showed a clear improvement compared to a short-
term clustering framework. The proposed approach however does
not learn the HMM parameters, nor does it investigate the HMM
structure, which can highly affect the tracking performance. This
will be part of the future work.
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