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ABSTRACT

Adaptation techniques for speech recognition are very effective
in single-speaker scenarios. However, when distant microphones
capture overlapping speech from multiple speakers, conventional
speaker adaptation methods are less effective. The putative signal
for any speaker contains interference from other speakers. Conse-
quently, any adaptation technique adapts the model to the interfering
speakers as well, which leads to degradation of recognition per-
formance for the desired speaker. In this work, we develop a new
feature-space adaptation method for overlapping speech. We first
build a beamformer to enhance speech from each active speaker.
After that, we compute speech feature vectors from the output of
each beamformer. We then jointly transform the feature vectors from
all speakers to maximize the likelihood of their respective acoustic
models. Experiments run on the speech separation challenge data
collected under the AMI project demonstrate the effectiveness of our
adaptation method. An absolute word error rate (WER) reduction
up to 14 % was achieved in the case of delay-and-sum beamform-
ing. With minimum mutual information (MMI) beamforming, our
adaptation method achieved a WER of 31.5 %. To the best of our
knowledge, this is the lowest WER reported on this task.

Index Terms— feature-space adaptation, overlapping speech,
speech separation, distant speech recognition, microphone array

1. INTRODUCTION

Overlapping speech is often observed in natural conversation [1, 2].
Shriberg et al. reported in [1] that 30 % to 50 % of all utterances
contain interfering speech from another speaker in telephone conver-
sations and meetings. Speech recognition performance is degraded
when multiple talkers are speaking simultaneously [1–6].

Microphone array techniques can effectively separate overlap-
ping speech with a little distortion [3–9]. However, the separation
performance is usually insufficient for distant speech recognition due
to microphone errors, steering errors, spatial aliasing and limited di-
rectivity at lower frequencies [3–5]. Residual speech of the inter-
fering speakers could limit the gains from speaker adaptation meth-
ods such as vocal tract length normalization (VTLN) [10, §6], con-
strained maximum likelihood linear regression (CMLLR) [11–13]
and MLLR [12].

In this work, we develop a new microphone-array-based feature-
space adaptation technique for recognition of overlapping speech.
First, we build a beamformer to steer to each speaker, and compute a
speech feature vector with the beamformer’s output. The features for
each speaker contain residual interference from the other speakers.
We compute linear transforms that modify the features from each of

the speakers to maximize the likelihood of recognition hypotheses.
While conceptually similar to the well-known constrained MLLR
(CMLLR) algorithm, the key difference is that we learn the trans-
forms for all the speakers jointly. This has a dual effect – not only
does it improve the statistical match of the features for any speaker
to the recognizer, it simultaneously also attenuates the leakage from
other speakers into the features.

Experiments on the Multi-Channel Wall Street Journal Audio
Visual (MC-WSJ-AV) corpus, comprising recordings of overlapping
speech uttered by human subjects captured with circular arrays [14],
show that the proposed technique can greatly enhance speech recog-
nition accuracy obtained even with the best beamforming algo-
rithms. Moreover, the proposed method makes no assumptions
about how the separated signals for the speakers were obtained, and
can be used with any beamforming or signal separation algorithm,
making it potentially a very useful tool for signal separation and
distant speech recognition. Due to its conceptual similarity to the
CMLLR algorithm, we dub our proposed algorithm Joint CMLLR,
or JCMLLR.

The balance of this paper is organized as follows. In Section 2,
we review prior work on speech separation for distant speech recog-
nition. In Section 3, we formulate a problem; the linear transforma-
tion is described for a joint vector that consists of the feature vectors
computed from the outputs of the beamformers. Section 4 describes
an estimation algorithm for the joint linear transformation parame-
ters based on the maximum likelihood (ML) criterion. In Section 5,
we show recognition experiments on the MC-WSJ-AV corpus; over-
lapping speech uttered by real humans were captured with real circu-
lar arrays [14]. Finally, we conclude this work and describe possible
future work in Section 6.

2. RELATION TO PRIOR WORK

Figure 1 shows a contrast between conventional speech recognition
systems and our proposed system for overlapping speech. As il-
lustrated in Figure 1 a), the conventional speech recognition sys-
tem for overlapping speech typically consists of a microphone ar-
ray processing module including a speaker tracker, beamformer and
post-filter, a feature extraction module, and feature-space and model-
space adaptation components. Given a position estimated by the
speaker tracker, the beamformer is built to emphasize the sound
wave coming from the direction of interest. The beamformed sig-
nal may be further enhanced by post-filtering. The front-end of
the speech recognizer then computes the feature vector from the en-
hanced speech signals. The speech feature vector is adapted to a tar-
get speaker by an affine transformation by the CMLLR method [11–
13]. In addition, MLLR [15] is performed to adapt Gaussian pa-
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Fig. 1. Conventional and proposed procedures for recognition of
overlapping speech.

rameters of the HMM to the speaker. In our prior work [3, 8, 16],
we found that the combination of CMLLR and MLLR significantly
improves the recognition of overlapped speech.

In the case that overlapping speech is captured with distant mi-
crophones, the estimates of the speaker-dependent parameters for
any speaker will be contaminated by speech from the other speakers
due to the imperfect separation of signals from the target speaker. To
mitigate this, we consider a pre-processing step where the concatena-
tion of feature vectors for the individual speakers is decomposed into
statistically independent components based on the maximum likeli-
hood (ML) criterion. We refer to this pre-processing step as joint
CMLLR (JCMLLR). On top of JCMLLR, we apply a cascade of
conventional CMLLR and MLLR.

As it will be clear in Section 4, the formulation for JCMLLR
is similar to estimation of an unmixing matrix in independent com-
ponent analysis (ICA) [17, §9]. The main difference between our
algorithm and typical ICA methods are:

• the use of an HMM [10, §7.1.1] for the probablity model, and

• estimation of the linear transformation in the feature domain;
enabling us to use the HMMs in the speech recognizer.

We do not explicitly separate overlapping speech in the linear fre-
quency domain such as in ML-based beamforming methods [18–20].
Instead, we assume that the observed feature vector can be approx-
imately expressed as a linear combination of feature vectors of the
individual speakers.

It is also worth mentioning that since we directly work on fea-
ture vectors derived from the speech, we do not need to address
the permutation and scaling ambiguity problems encountered in the
frequency-domain blind source separation (BSS) [21].

3. LINEAR TRANSFORM FOR SPEECH SEPARATION

We assume that Ns sound sources are detected by a speaker tracking
system described in [22]. We enhance the signals coming from each
of the directions of interest by beamforming [23]. Let us denote
each speech feature vector computed from the signal associated with
a sound source n as on, where n = 1, · · · , Ns. Notice that on

could also contain interference from the remaining sources due to
imperfect separation performance by the beamformer.

Since each feature vector on combines information from all
sources (with the dominant source being n), conversely, the features
for any individual source can in turn be viewed as a function of all
feature vectors on, n = 1, · · · , Ns. We model this relationship by

the following affine transformation
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where zm represents the estimated value of the feature vector iso-
lated for the m-th sound source. Wmn is the transformation matrix
for extracting the m-th sound source from the n-th observation vec-
tor and dm is the linear shift for the m-th sound source.

For the sake of simplification, we rewrite (1) with concatenated
matrices and vectors as

z = Wo + d, (2)

where

z = [zT
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Ns ]

T , (5)

and W corresponds to the concatenated versions of the linear trans-
formation matrices in (1), respectively.

Note that Equation 2 is very similar to the affine transform em-
ployed conventional CMLLR [11, 12] to adapt features for recogni-
tion:

yn = Anon + bn. (6)

Conventional CMLLR can also be employed with zm values ob-
tained from Equation 2:

ym = Amzm + bm. (7)

During the estimation of W and d, the CMLLR parameters, Am

and bm, are held fixed.

4. JOINT CMLLR FOR SPEECH SEPARATION

4.1. Distribution of transformed variables

Let us denote a probability density function (PDF) with model pa-
rametersM for the transformed feature vector ym as pm(ym;M).
Using the well-known relationship between the PDFs of variables
related by an affine transform [17, §2.6], the log of the PDF of the
original extended vector o can be written as

log p(o;M) = log |W|+
Ns∑

m=1

log |Am|

+

Ns∑
m=1

log pm (ym;M) . (8)

Notice that feature vectors of different speakers are assumed to be
statistically independent with each other in (8).

Now let us assume that we observe NT samples of o, denoted
by o(1),o(2) · · · ,o(NT). Based on (7), we obtain the transformed
features for the speaker m at a frame t as:

ym(t) = Amzm(t) + bm. (9)



It is now straightforward to compute the log-likelihood based on (8):

L(W,d) = NT log |W|+NT

Ns∑
m=1

log |Am|

+

Ns∑
m=1

NT∑
t=1

log pm (ym(t);M) . (10)

To obtain a maximum-likelihood estimate of W and d so as to
achieve speech feature separation as well as feature-space adapta-
tion, we must maximize (10).

4.2. Cost function with HMM

We use an HMM with Gaussian mixture models (GMM) for state
output distributions [10, §8] for computing the log-likelihood (10).
Specifically, we use the HMM corresponding to the sentence (actual
or recognized in a previous pass) for the recording. Transformation
parameters are estimated using the expectation maximization (EM)
algorithm. In the E-step of the EM algorithm, we compute the a
posteriori probability of occupying the Gaussian component im for
source m at a frame t, γim(t), using the forward-backward algo-
rithm. The linear transformation parameters are then updated in the
M-step so as to maximize the following auxiliary function:

L(W,d) = κ+NT log |W|+NT

Ns∑
m=1

log |Am|

− 1

2
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NT∑
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+
(
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)T
Σ−1

im

(
ym(t)− µim

)]
, (11)

where κ is a constant that depends on the state transition probabil-
ities, Nd is the dimensionality of each feature vector ym, and µim
and Σim are the mean vector and covariance matrix for a Gaussian
component im.

4.3. Estimation Algorithm

The natural gradient algorithm [17, §3.2] [24] is perhaps one of the
most popular numerical optimization solvers in the field of ICA.
Here, we derive necessary equations to implement the natural gra-
dient algorithm. Upon taking the partial derivatives of (11) with re-
spect to W and d, we obtain the following:
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1: initialize the JCMLLR parameters: W← I and d← 0
2: repeat
3: for each beamformer’s output do
4: estimate the VTLN warp factor as in [10, §6]
5: end for
6: repeat
7: update the linear shift d with (16)
8: until the expectation of (11) converges
9: repeat

10: update the joint transformation matrix W with (15)
11: until the expectation of (11) converges
12: for each speaker m do
13: update the CMLLR parameters with zm as in [12]
14: end for
15: for each speaker m do
16: update the MLLR parameters with ym as in [12]
17: end for
18: until the expectation of (11) converges

Fig. 2. Batch algorithm for the entire adaptation process

Eq. (13) indicates the steepest direction in the Euclidean orthogonal
coordinate system. If the parameter space has a Riemannian metric
structure, the steepest direction is the natural gradient. The direc-
tion of the natural gradient is obtained by post-multiplying (13) by
WTW as

∆W =

NTI −
NT∑
t=1

Nw∑
im=1

γim (t)gim
(t,W,d) [x(t)]

T
W

T

W (14)

It is clear from (13) and (14) that computation of the natural gradient
does not require the inversion of WT in every step, which leads to
computational savings.

The transformation matrix W and linear shift d can be now up-
dated as

W ← W + α1 E {∆W} , (15)

d ← d + α2 E
{
∂L(W,d)

∂d

}
, (16)

where α1 and α2 are step parameters and E{·} is the averaging
operator over the samples. The linear shift is first estimated until the
outputs of the auxiliary function (11) converge. Given the estimate
of the linear shift, the JCMLLR matrix is updated.

Table 2 summarizes the batch algorithm for the entire adaptation
process. We perform every adaptation step including JCMLLR in an
unsupervised manner.

5. EXPERIMENTS

All the experiments reported here were conducted on the MC-WSJ-
AV data collected under the Augmented Multi-party Interaction
(AMI) project. The data set contains recordings of five pairs of
speakers where each pair of speakers reads approximately 30 sen-
tences taken from the 5000-word vocabulary of the Wall Street
Journal (WSJ) task. The data from two simultaneously active speak-
ers were recorded with two circular, eight-channel microphone
arrays. The diameter of each array was 20 cm, and the sampling
rate of the recordings was 16 kHz. As a reference, the close-talking
data were also collected with a head-set microphone. The room
size was 6.5 m × 4.9 m × 3.25 m and the reverberation time T60



was approximately 380 milliseconds. In addition to being rever-
berant, the meeting room data collected include background noise
from computers and the building ventilation. Some recordings also
contain audible noise from outside the meeting room, such as that
generated by passing cars and speakers in an adjacent rooms; see
Lincoln et al. [14] for the details of the data collection apparatus.
There are a total of 43.9 minutes of speech in the development set.

Prior to beamforming, we estimated the speaker’s position with
the Orion source tracking system [22]. Based on the average speaker
position estimated for each utterance, we built the minimum mu-
tual information (MMI) beamformer with the generalized sidelobe
canceler (GSC) structure [25]. Subject to the distortionless con-
straint for the look direction, utterance-dependent active weight vec-
tors were estimated based on the MMI criterion under the Gaussian
probability density function. The MMI beamformer is capable of
suppressing interfering sources without the signal cancellation ef-
fect encountered in conventional minimum variance distortionless
response (MVDR) beamforming. Zelinski post-filtering [26] was
further performed on the beamformed data to remove residual noise.

The feature extraction method used here was based on cepstral
features estimated with a warped minimum variance distortionless
response (MVDR) spectral envelope [27]. The MVDR models
spectral peaks more accurately than spectral valleys, which leads
to improved robustness in the presence of noise. Our speech fea-
ture analysis involved extracting 20 cepstral coefficients and global
cepstral mean subtraction (CMS) with variance normalization. The
frequency axis was warped so as to normalize the variations in vocal
tract lengths by the VTLN method [10, §6]. After that, the warped
cepstral coefficients were concatenated over 15 consecutive frames.
The dimension of the concatenated vector was then reduced to 42
with linear discriminant analysis (LDA) [28]. Following the global
CMS again in the LDA domain, we performed the global semi-tied
covariance (STC) transformation [15], also known as the maximum
likelihood linear transformation (MLLT).

The training data used for the experiments reported here was
taken from the ICSI, NIST and CMU meeting corpora as well as the
Transenglish Database (TED) corpus. The total amount of training
data is approximately 100 hours. In addition to these corpora, ap-
proximately 12 hours of speech from the WSJCAM0 corpus [29]
was used for HMM training in order to provide coverage of the
British accents for the speakers in the MC-WSJ-AV development
set. Acoustic models estimated with two different HMM train-
ing schemes were used for several decoding passes: conventional
maximum likelihood (ML) HMM training [10, §8.1], and speaker-
adapted training under the ML criterion (ML-SAT) [10, §8.1.3]. Our
baseline system was fully continuous with 3,500 codebooks and a
total of 180,656 Gaussian components. The full trigram language
model for the 5,000 word WSJ task was used for decoding.

In addition to recognition with the unadapted models, we per-
formed three adapted passes on the waveforms processed with each
of the beamforming algorithms. Each adapted pass of decoding used
a different acoustic model or speaker adaptation scheme. For each
adapted pass, the adaptation parameters were estimated using the
word lattices generated during the prior pass, as in [30]. A summary
of the adapted decoding passes follows:

1. Estimate the VTLN, JCMLLR and conventional CMLLR pa-
rameters, then decode with the acoustic model.

2. Estimate MLLR parameters for each speaker on top of the
adaptation method in the prior pass, then redecode with the
acoustic model.

3. Estimate VTLN, JCMLLR, CMLLR, MLLR parameters,

Adapted pass 1st 2nd 3rd Microphone array method Joint adaptation 

D&S beamforming without JCMLLR 73.6 59.2 56.8 
with JCMLLR 59.6 47.8 45.9 

LCMV beamforming 
without JCMLLR 58.6 47.4 45.8 

with JCMLLR 51.7 39.8 39.7 

MMI beamforming without JCMLLR 47.9 35.2 34.0 
with JCMLLR 45.5 33.2 31.5 

Head-set microphone without JCMLLR 26.5 23.4 23.0 

Fig. 3. WERs with/without the JCMLLR method

then redecode with the ML-SAT model.

Table 3 shows word error rates (WER) obtained with beam-
forming algorithms in each adapted pass. In the experiments, we
used a delay-and-sum beamformer [31], a linearly-constrained min-
imum variance (LCMV) beamformer [31, §6.7] and the MMI beam-
former [25]. For the LCMV and MMI beamformers, we place a
null on the direction of the interfering source. Table 3 also shows
the WERs obtained with the conventional adaptation methods and
JCMLLR for each beamforming method. As a reference, the WERs
for the close talking microphone (CTM) data are provided in Ta-
ble 3. It is clear from Table 3 that JCMLLR can improve recognition
performance for every beamforming method. We can observe from
Table 3 that the poorer the speech separation performance of beam-
forming is, the more significant the improvement of JCMLLR be-
comes. These results imply that JCMLLR is also capable of unmix-
ing overlapping speech although it does not directly separate a mix-
ture of speech in the linear frequency domain. It is also clear from
Table 3 that JCMLLR can consistently provide better recognition
performance in the higher adapted passes where stronger speaker
adaptation methods are used.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have described a new feature-space adaptation
method for recognition of overlapping speech. The new method
jointly estimates the constrained maximum likelihood regression
(CMLLR) parameters for the feature vectors from multiple beam-
formers so as to obtain statistically independent components based
on the ML criterion. We have confirmed the effectiveness of our
method through a set of speech recognition experiments on real
array data. We have also demonstrated that the cascade of joint
CMLLR (JCMLLR) and conventional speaker adaptation methods
further improves recognition performance.

We plan to mathematically investigate how the unmixing prob-
lem in the frequency domain can be approximated as a joint linear
transformation in the feature domain. We also plan to evaluate differ-
ent optimization algorithms for estimation of the JCMLLR parame-
ters. Combinations of JCMLLR and other feature-space transforma-
tion methods such as discriminative features [32] are also possible.
Furthermore, the framework of JCMLLR can be extended to model-
space adaptation. It is also interesting to develop incremental update
methods for this speaker adaptation scheme. These developments
could be future work.
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