
Dedicated Backing-Off Distributions for Language Model Based Passage
Retrieval

Munawar Hussain, Andreas Merkel and Dietrich Klakow
Spoken Language Systems

Saarland University, Saarbrücken, 66123, Germany
{Munawar.Hussain|Andreas.Merkel|Dietrich.Klakow}@lsv.uni-saarland.de

Abstract

Passage retrieval is an essential part of question
answering systems. In this paper we use statisti-
cal language models to perform this task. Pre-
vious work has shown that language modeling
techniques provide better results for both, doc-
ument and passage retrieval.
The motivation behind this paper is to define new
smoothing methods for passage retrieval in ques-
tion answering systems. The final objective is to
improve the quality of question answering sys-
tems to isolate the correct answer by choosing
and evaluating the appropriate section of a docu-
ment.
In this work we use a three step approach. The
first two steps are standard document and passage
retrieval using the Lemur toolkit. As a novel con-
tribution we propose as the third step a re-ranking
using dedicated backing-off distributions. In par-
ticular backing-off from the passage-based lan-
guage model to a language model trained on the
document from which the passage is taken shows
a significant improvement.
For a TREC question answering task we can in-
crease the mean average precision from 0.127 to
0.176.

1 Introduction
Recently lot of work has been carried out on open-domain
Question Answering Systems. These QA Systems include
an initial document and/or passage retrieval step. Retrieved
passages are then further processed using a variety of tech-
niques to extract the final answers. The passage retrieval
method strongly influences the performance of QA Sys-
tem. This is especially true for real systems where com-
putational resources are limited. A good passage retrieval
system will mean that only small number of top ranked pas-
sages needs to be analyzed to find the answer. In this paper
we compare the existing retrieval methods, both traditional
and language modeling based, for document and passage
retrieval. We have used the AQUAINT document collec-
tion as training and test corpus. Out of all methods tested,
by choosing the best passage retrieval method as our base-
line, we define and test new language models to improve
retrieval performance. These language models are defined
on different data collections (passage collection, document
collection, corpus) and are interpolation based unigram lan-
guage models.

The rest of this paper is organized as follows. Related
work is discussed in Section 2. Section 3 discusses docu-
ment retrieval. Section 4 presents the passaging of docu-
ments and passage retrieval performed. Section 5 explains
the process of re-ranking. We conclude the paper by dis-
cussing our results and future work in Section 6.

2 Related Work
This section discusses the state of the art in the field of
passage retrieval.

Passage retrieval is an important component of QA Sys-
tems and it directly influences overall performance.

C. L. A. Clarke et. al. [Clarke et al., 2000] developed
the MultiText system, which implements a technique to ef-
ficiently locate high-scoring passages. Passages are deter-
mined based on queries and can start and end at any term.
Each document is ranked by combined scores of its pas-
sages. Their system was based on traditional IR techniques.

A language modeling based approach was used by An-
dres Corrada-Emmanuel et. al. [Corrada-Emmanuel et al.,
2003]. They examined the effectiveness of language mod-
els in passage ranking for a question answering system,
they showed how language model approaches used recently
for document retrieval can be applied to answer passage re-
trieval.

Dell Zhang et. al. [Zhang and Lee, 2003] also developed
a language modeling approach to passage question answer-
ing. Their system consists of a question classification com-
ponent and a passage retrieval component.

Stefanie Tellex et. al. [Tellex et al., 2003] carried out
a Quantitative Evaluation of Passage Retrieval Algorithms
for Question Answering. They evaluated MITRE’s passage
retrieval algorithm presented by Light, the Okapi BM25
weighting scheme, the MultiText algorithm, IBM’s passage
retrieval algorithm, SiteQ’s passage retrieval algorithm, Al-
icante’s passage retrieval algorithm, ISI’s passage retrieval
algorithm, and one new algorithm of their own called Vot-
ing. They implemented a voting scheme that scored each
passage based on its initial rank and also based on the num-
ber of answers the other algorithms returned from the same
document.

Some work has been done to improve the document re-
trieval by performing passage retrieval.

James P. Callan [Callan, 1994] examined passage level
evidence in document retrieval. Three different approaches
were taken to determine passage size and location: para-
graphs, bounded paragraphs, and fixed-length windows.

Use of language modeling for passage retrieval and com-
parison with document-based retrieval was done by Xiaoy-
ong Liu et. al. [Liu and Croft, 2002]. They also made a

Dataset Label
AQUAINT collection C
Retrieved document collection dc
Retrieved document for a given query dc(qi)
Single document d
Query collection Q
Single query qi

Single passage p
Passage collection pc

Table 1: Labels used for datasets

comparison with results from the INQUERY search engine.
Deng Cai et. al. [Cai1 et al., 2004] explored the use of

page segmentation algorithms to partition web pages into
blocks and investigated how to take advantage of block-
level evidence to improve retrieval performance in the web
context.

3 Document Retrieval
This section explains our experimental setup for document
retrieval. The retrieved document set will be later used for
passage retrieval.

3.1 Dataset
The training document set or corpus for evaluation is the
AQUAINT collection that consists of 1,033,461 documents
taken from the New York Times, the Associated Press,
and the Xinhua News Agency newswires. We selected
AQUAINT as some well established standard task, which
is helpful to compare our work with the state of the art.
Our question set for evaluation contains 50 factoid ques-
tions, from TREC topic 1394 to 1443, that look for short,
fact-based answers. These topics cover a range of different
question type classifications, such as:

• Location: ”In what country did the game of croquet
originate?”

• People: ”Who was the first person to run the mile in
less than four minutes?”

• Time Point: ”When did the shootings at Columbine
happen?”

• Amount: ”How old do you have to be to get married
in South Carolina?”

While conducting document/passage retrieval we are not
using this classification information. Some of these ques-
tions do not have answers within the corpus. In all our ex-
periments, stemming is applied. No stop word removal is
performed, since we do not want to be biased by any artifi-
cial choice of stop words and we believe that the effects of
stop word removal should be better achieved by exploiting
language-modeling techniques. Relevance judgments are
obtained from the judged pool of top retrieved documents
by various TREC participating retrieval systems. Table 1
shows the different datasets and the label used for them in
this paper.

3.2 System Architecture for Document Retrieval
The inputs to the system are the corpus and a set of ques-
tions. The output is a ranked list of documents for each
question. Bellow is an explanation of each of the system
components.

KeyFileIndexer & Stemmer: This component builds a
key file index of AQUAINT corpus. Stemming is done
along with indexing, using the Krovetz stemmer. The
generated index is used by each retrieval method.

Question Stemmer: It is responsible for converting ques-
tions into queries by stemming them. Again the
Krovetz stemmer is used for stemming. These queries
are used by the retrieval methods to perform document
retrieval.

Retriever: This component is responsible for the actual
retrieval of documents. There are number of retrieval
methods that we have tested. Retrieval methods are
explained in following section.

3.3 Experimental Methods
A number of popular retrieval techniques exist, which in-
clude both traditional and language modeling techniques.
We evaluate the performance of some of these techniques
on our test data. The retrieval methods evaluated in this sec-
tion are standard TFIDF, OKAPI, and the language model-
ing framework. The Dirichlet Prior, Jelinek-Mercer, and
Absolute Discounting smoothing methods are the three
methods that we have tested. They belong, in general sense,
to the category of interpolation-based methods, in which
we discount the counts of the seen words and the extra
counts are shared by both the seen words and unseen words.
The Lemur toolkit is used to run the experiments, because
it is efficient and is optimized for fast retrieval. The Lemur
toolkit is specially designed for research work. It provides
both traditional and language modeling based retrieval al-
gorithms and has been used by many research groups in the
IR community. The basic idea behind the language model-
ing approach is to estimate a language model for each doc-
ument and rank documents by the likelihood of the query
according to the language model.

3.4 Evaluation Methodology
Our goal is to study the behavior of individual retrieval
methods and smoothing techniques as well as to compare
different methods. Unlike traditional retrieval techniques,
in case of language modeling retrieval technique, for each
smoothing method we experiment with a wide range of pa-
rameter values. In each run, the smoothing parameter is set
to the same value across all queries and documents. (While
it is certainly possible to set the parameters differently for
individual queries and documents through some kind of
training procedure, it is beyond the scope of our work.)
In order to study the behavior of a particular smoothing
method, we examine the sensitivity of non-interpolated av-
erage precision to variations in a set of selected parameter
values. Along with finding the optimal value of smoothing
parameters, we also need to find the optimal number of re-
trieved documents N. Therefore we first fix the number of
retrieved documents by comparing the non-interpolated av-
erage precision for varying number of documents retrieved,
using each retrieval method. For the purpose of comparing
smoothing methods, we first optimize the performance of
each method using the non-interpolated average precision
as the optimization criterion, and then compare the best
runs from each method. The optimal parameter is deter-
mined by searching over the entire parameter space.

3.5 Experimental Results
This section explains results obtained from different re-
trieval methods. We first derive the expected influence

Figure 1: Document Retrieval with varying number of doc-
uments retrieved. For Dirichlet Prior the value of prior is
set to 2000, for Jelinek-Mercer the value of λ is set to 0.8
and for Absolute Discounting the value of δ is set also to
0.8.

of number of documents retrieved by plotting the non-
interpolated average precision against document number
for each retrieval method. We examine the sensitivity of
retrieval performance by plotting the non-interpolated av-
erage precision at N documents against different values of
the smoothing parameter. Following section explains the
reason for retrieving a finite number of N documents per
query.

Document size tuning
In this section, we study the behavior of each retrieval tech-
nique for different numbers of documents retrieved. We ex-
amine the sensitivity of retrieval performance by plotting
the non-interpolated average precision, with fixed smooth-
ing parameter for this experiment where required, against
different number of documents retrieved. The smoothing
parameter values are taken from previous work [Zhai and
Lafferty, 2001]. For Dirichlet Prior the value of prior is
set to 2000, for Jelinek-Mercer the value of λ is fixed at
0.8, and similarly for Absolute Discounting the value of
δ is preset to 0.8. The plot in Fig 1 displays the non-
interpolated average precision for different number of doc-
uments retrieved. It can be seen that with increase in doc-
ument number, performance also increases. It can also
be seen that the increase in performance after 500 docu-
ments is relatively marginal. All retrieval methods show
this trend. For number of retrieved documents N greater
than 500 the cost of computing is significantly larger com-
pared to the gain in performance. Therefore N is fixed at
500. Overall the Dirichlet Prior performed best by far. One
reason for this could be that our queries on average are not
verbose. Our experiments support the claim that language
modeling techniques perform better than traditional ones,
as TF-IDF and OKAPI performed worse. Another notice-
able fact is that performance ordering of retrieval methods
is independent of the number of retrieved documents.

Parameter tuning for language modeling techniques
In this section, we study the behavior of individual smooth-
ing methods. We examine the sensitivity of retrieval perfor-
mance by plotting the non-interpolated average precision
at 500 retrieved documents against different values of the
smoothing parameter. Following is the analysis of our re-
sults.

Figure 2: Plot of non-interpolated average precision against
smoothing parameter, with smoothing parameter varying
from 0.01 to 0.99. Number of retrieved documents fixed at
500.

Figure 3: Plot of non-interpolated average precision against
prior (µ). Dirichlet Prior with prior varying from 500 to
5000. Number of retrieved documents fixed to 500.

For Jelinek-Mercer, the value to λ is varied between zero
and one. The plot in Fig 2 shows non-interpolated aver-
age precision for different settings of λ. As depicted in
plot, optimal value of λ is near 0.5, which indicates that
our queries are of mixed length. According to [Zhai and
Lafferty, 2001], for short queries optimal point is around
0.1 and for long queries optimal point is generally around
0.7. This is because long queries need more smoothing and
less emphasis is placed on the relative weighting of terms.

Dirichlet Prior: For Dirichlet Prior, the value of prior
µ is varied between 500 and 5000 with intervals of 500.
The plot in Fig 3 illustrates the non-interpolated average
precision for different settings of the prior sample size. As
mentioned in [Zhai and Lafferty, 2001], the optimal prior
µ vary from collection to collection and depends on query
lengths. For our dataset and questions it is around 1000.

Absolute Discounting: For Absolute Discounting, the
value to δ is varied between zero and one. The plot in Fig 2
shows non-interpolated average precision for different set-
tings of d. The optimal value of δ is near 0.8, which forti-
fies the claim by [Zhai and Lafferty, 2001] that the optimal
value for δ tends to be around 0.7.

Overall the Dirichlet Prior performed best using prior
of 1000 and 500 retrieved documents. Then came Ab-
solute Discounting, which is better than Jelinek-Mercer.
The good performance of Dirichlet Prior is relatively in-

Method Parameter MAP
Dirichlet Prior µ = 1000 0.254
Jelinek-Mercer λ = 0.5 0.219
Absolute Discounting δ = 0.8 0.219
TFIDF - 0.185
OKAPI - 0.130

Table 2: Non-interpolated average precision for best run of
each retrieval methods. With µ of 1000, δ of 0.8, and λ of
0.5

sensitive to the choice of µ. Indeed, many non-optimal
Dirichlet runs are also significantly better than the optimal
runs for Jelinek-Mercer and Absolute Discounting. This
is because our queries are not long. As for long queries,
Jelinek-Mercer is supposed to perform the best. Accord-
ing to [Zhai and Lafferty, 2001], Jelinek-Mercer is much
more effective when queries are more verbose. As dis-
played by Table 2, TF-IDF performed slightly worse than
Jelinek-Mercer, while OKAPI performed even worse.

4 First Pass Passage Retrieval
Passage retrieval is mainly used for three purposes. Firstly,
passage retrieval techniques have been extensively used in
standard IR settings, and have proven effective for docu-
ment retrieval when documents are long or when there are
topic changes within a document. Secondly, from an IR
system user’s standpoint, it may be more desirable that the
relevant section of a document is presented to the user than
the entire document. Thirdly, passage retrieval is an in-
tegral part of many question answering systems. We are
performing passage retrieval for question answering sys-
tems. This section explains our methodology to establish
a baseline using existing techniques developed for passage
retrieval, which include both traditional and language mod-
eling based retrieval methods. For our experiments, we
first retrieve documents (Section 3), then split these docu-
ments into passages. We call these passages ”passage doc-
uments”, and use collection of these passage documents as
a corpus for retrieval of passages relevant to each query.

4.1 Experimental Setup
This section explains our setup for passage retrieval.

Passage Making
Passages are created using the following procedure. The
top 500 retrieved documents are selected (early tests
showed that increasing this number had no significant ef-
fect on system performance), see Section 3 for details of the
document retrieval. The selected documents are then split
into passages by a ”passage maker”. Our passage making
technique is based on document structure [Berger and Laf-
ferty, 1999] [Agichtein and Gravano, 2000] [Clarkeet al.,
2000]. This entails using author-provided marking (e.g. pe-
riod, indentation, empty line, etc.) as passage boundaries.
Examples of such passages include paragraphs, sections,
or sentences. Since our corpus is nicely structured (SGML
form), we used paragraphs as passages.

Dataset
The query topics are the same as used for document re-
trieval (Section 3). For each query we have a distinct corpus
consisting of passages created from the top 500 retrieved
documents. See Section 3 for more on document retrieval.

Figure 4: Passage Retrieval with varying number of re-
trieved passages. For Dirichlet Prior the value of prior is
set to 1000, for Jelinek-Mercer the value of λ is set to 0.4
and for Absolute Discounting the value of δ is set also to
0.4.

Experimental Methods
For passage retrieval we used the same set of retrieval
methods as for document retrieval explained in Section 3.
Likewise, the evaluation methodology is the same as for
document retrieval (Section 3).

4.2 Experimental Results

We first derive the expected influence of the number of
passages retrieved by plotting the non-interpolated average
precision against the size of the retrieved passage set for
each retrieval function. Then, we examine the sensitivity
of retrieval performance by plotting the non-interpolated
average precision at N passages against the different values
of the smoothing parameter.

Passage document size tuning
In this section, we study the behavior of each retrieval tech-
nique for different number of retrieved passages, which
is similar to what we did for document retrieval in Sec-
tion 3. We examine the sensitivity of retrieval performance
by plotting the non-interpolated average precision, with
fixed smoothing parameter where required, against the dif-
ferent number of retrieved passages. For Dirichlet Prior
the value of the prior µ is set to 1000, for Jelinek-Mercer
the value of λ is set to 0.4, and for Absolute Discounting
the value of δ is set also to 0.4. The plot in Fig 4 shows
the non-interpolated average precision for different number
of retrieved passages. It can be seen that with increase in
number of retrieved passage documents, performance also
increases. But the increase in performance after 500 pas-
sages is relatively marginal. This trend is approved by all
retrieval methods. For passage document number N greater
than 500 the cost of computing is significantly large com-
pared to gain in performance. Therefore the passage doc-
ument number N is fixed at 500. Overall Dirichlet Prior
performed best. Our experiments also show that there is no
significant performance difference between retrieval meth-
ods, i.e. the curves are pretty close to each other. Perfor-
mance of OKAPI is slightly worse than language modeling
techniques. TF-IDF showed worse performance. Another
noticeable fact is that Dirichlet Prior performance improves
significantly for N between 1 and 10.

Figure 5: Plot of non-interpolated average precision against
smoothing parameter, with smoothing parameter varying
from 0.01 to 0.99. Number of retrieved passages fixed at
500.

Figure 6: Plot of non-interpolated average precision against
prior (µ). Dirichlet Prior with prior varying from 500 to
5000. Number of retrieved passages fixed at 500.

Parameter tuning for language modeling techniques
In this section, we study the behavior of individual smooth-
ing methods, as we did for document retrieval in Section 3.
We examine the sensitivity of retrieval performance by
plotting the non-interpolated average precision at 500 pas-
sages against different values of the smoothing parameter.
Below is an analysis of our results.

Jelinek-Mercer smoothing: For Jelinek-Mercer, the
value of λ is varied between zero and one. The plot in
Fig 5 shows non-interpolated average precision for differ-
ent settings of λ. As depicted in plot, optimal value of λ
is near 0.4, which indicates that our queries are of mixed
length. According to [Zhai and Lafferty, 2001], for short
queries optimal point is around 0.1 and for long queries op-
timal point is generally around 0.7. As long queries need
more smoothing and less emphasis is placed on the relative
weighting of terms.

Dirichlet Prior: The value of Dirichlet Prior µ is varied
between 1 and 5000 with intervals of 500. The plot in Fig 6
illustrates the non-interpolated average precision for differ-
ent settings of the prior sample size. As mentioned in [Zhai
and Lafferty, 2001], the optimal priors µ vary from collec-
tion to collection and depends on query lengths. For our
dataset and questions it is around 500.

Absolute Discounting: The value of δ is varied between

Method Parameter MAP
Dirichlet Prior µ = 500 0.127
Jelinek-Mercer λ = 0.4 0.114
Absolute Discounting δ = 0.3 0.113
TFIDF - 0.105
OKAPI - 0.096

Table 3: Non-interpolated average precision for best run of
each retrieval methods

zero and one. The plot in Fig 5 shows the non-interpolated
average precision for different settings of d. The optimal
value of δ is near 0.3.

Overall the Dirichlet Prior performed best using µ of 500
and 500 retrieved passage documents. Then came Jelinek-
Mercer, which is slightly better than Absolute Discount-
ing. But the performance difference is not very significant.
OKAPI performed slightly worse than Absolute Discount-
ing while TF-IDF performed even worse.

Table 3 gives a comparison of the best run by each tech-
nique.

5 Passage Re-Ranking
This section explains our language models, which are based
on an interpolation smoothing scheme. Since Lemur is
not flexible enough to implement such custom models, we
shifted to our own language modeling toolkit. This toolkit
is very flexible in generating custom language models. It
uses perplexity to rank the documents. To check the simi-
larity between the two toolkits, an experiment was carried
out using Jelinek-Mercer smoothing technique to regener-
ate the results produced by Lemur. These results confirmed
the validity of results generated by our toolkit.

5.1 Experimental Setup
Our experimental setup consists of document collections
generated by experiments explained in previous sections.
Following sections explain our datasets, experimental
methods, and the system architecture.

Dataset
The query topics are the same as used for document re-
trieval (Section 3). The corpus C for evaluation is the
AQUAINT collection that consists of documents taken
from the New York Times, the Associated Press, and the
Xinhua News Agency newswires. Also, we have the doc-
ument collection dc and the passage collection pc obtained
from our previous experiments. All these collections are
stemmed and no stop word removal is performed.

Evaluation Methodology
Our toolkit uses perplexity to rank the documents. For
the purpose of studying the behavior of an individual lan-
guage model, we select a set of representative parameter
values and examine the sensitivity of non-interpolated aver-
age precision MAP to the variation in these values. In ques-
tion answering mean reciprocal rank (MRR) is also widely
used. We checked the correlation of MRR and MAP on
question answering tasks. For consistency with the docu-
ment retrieval, we report MAP throughout the paper.

Experimental Methods
Our experimental methods are language modeling based.
We have defined a number of language models using
Jelinek-Mercer smoothing techniques.

Language Model Label
Interpolation between language models for pas-
sage and relevant document collection.

pdclm

Interpolation between language models for pas-
sage and relevant passage collection.

ppclm

Interpolation between language models for pas-
sage and single document from which passage
is taken.

pdlm

Interpolation between language models for pas-
sage and complete corpus.

pClm

Table 4: Labels used for language models

5.2 System Architecture for Passage Re-Ranking
This section explains complete architecture of our experi-
mental setup. We have defined and tested a series of lan-
guage models; Table 4 gives a listing of these language
models, which are explained in following sub sections.
Language models explained in this section utilize the vo-
cabulary closed with the query and the value of interpola-
tion parameter is varied between zero and one. The main
difference between these models is the background collec-
tion.

Language Model I (pdclm)
This language model is defined as linear interpolation be-
tween unigram language models defined on passage and
related document collection. Where each passage is taken
from related retrieved passages (Section 4) and related doc-
ument collection consists of 500 top ranked documents re-
trieved (Section 3), for a given query. As perplexity is given
by the formula

PP = exp[−
∑
w

f(w) log P (w)]

where f(w) is the relative frequency of words in the query
and the probability is

P (w) = (1 − λ)Pml(w|p) + λP (w|dc),

where Pml is maximum likelihood of word w in passage
p. Fig 7 explains complete setup to re-rank passages using
this language model.

Standard Tree: It contains statistical information for
given passage being ranked. We build one standard
tree per passage. This tree is the basis of the passage
language model.

Background Standard Tree: It consists of statistical in-
formation for the complete document collection used
for the backing-off language model.

Re-ranker: It is responsible to re-rank the collection of
500 related passages per query. It utilizes standard tree
and background tree containing statistical information
required by language models.

Vocabulary: Our word list consists of all the words in doc-
ument collection closed with words from the query.

Language Model II (ppclm)
This language model is similar to pdclm explained above
with the related passage collection consisting of 500 top
ranked passages retrieved as the background collection.
For this language model the probability is

P (w) = (1 − λ)Pml(w|p) + λP (w|pc),

Figure 7: Re-ranking setup for the pdclm language model.

Figure 8: Dataset flow diagram for the pdlm language
model.

Language Model III (pdlm)
Here again the language model differs from pdclm in the
background collection. The background collection is the
single document from witch the passage was extracted i.e.
the document containing the passage being ranked. For this
language model, the probability for calculating the perplex-
ity is

P (w) = (1 − λ)Pml(w|p) + λP (w|d),

Fig 8 explains complete setup to re-rank passages using
this language model.

Re-ranker: Same as in Section 5.2.

Vocabulary: Our word list consists of all the words in the
single document containing the passage being ranked,
closed with words from query.

Standard Tree: Same as in Section 5.2.

Background Standard Tree: It consists of statistical in-
formation for the single document containing the pas-
sage being ranked. We build one standard tree per
document.

Language Model IV (pClm)
For this language model the background collection is the
complete corpus (AQUAINT document collection). The
probability for calculating the perplexity is

P (w) = (1 − λ)Pml(w|p) + λP (w|C),

Figure 9: Plot of non-interpolated average precision against
λ. Jelinek-Mercer b/w passage and different background
collections with λ varying from 0.01 to 0.99.

5.3 Experimental Results
This section discusses the results of our experiments.
Jelinek-Mercer smoothing is used in all of the experiments
with the value of λ varied from 0.01 to 0.99. We first repro-
duce Jelinek-Mercer smoothing results of passage retrieval
(Section 4) with a pdclm language model. Then other lan-
guage models are defined and tested to improve baseline.

Language Model I (pdclm)
This language model is a reproduction of the language
model with Jelinek-Mercer smoothing used in Section 4. It
reproduces our previous results, which confirmed the valid-
ity of results generated by our language modeling toolkit.
The plot in Fig 9 shows non-interpolated average precision
for different settings of λ. It illustrates that the optimal
value of λ is near 0.4.

Language Model II (ppclm)
Fig 9 shows the results using this language model by line
with cross as points. The optimal value for λ is 0.05. Ac-
cording to [Zhai and Lafferty, 2001] small λ means more
emphasis on relative term weighting, which means that the
passage collection has a smaller role in ranking than pas-
sage itself. This might be due to small size of passages and
variety in topics they discuss. With this language model we
observe a 20% decrease over the baseline.

Language Model III (pdlm)
The line with squares in Fig 9 shows the results using this
language model. The optimal value for λ is 0.70. The value
of λ near middle of the parameter space suggests that both
passage and document collection are equally important for
ranking. The document is given a bit more importance than
the passage, which is quite understandable as passages are
of small size and sometimes they miss some related terms
from query. With this language model we have more then
38% improvement over the baseline, which is quite a sig-
nificant improvement. This is no surprise as both document
and passage being used discuss the same topic. The related
document size is relatively small compared to the docu-
ment or passage collection, which also contributes to the
improvement in results.

Language Model IV (pClm)
Fig 9 shows, using line with diamonds, the results using
this language model. The optimal value of λ is 0.01. A
small λ means more emphasis on relative term weighting,

Method Lambda MAP
pdclm 0.40 0.114
ppclm 0.05 0.101
pdlm 0.70 0.176
pClm 0.01 0.032

Table 5: Non-interpolated average precisions for the best
run of each language model. Passage re-ranking using the
document language model for smoothing improves MAP
by 39% over the best result from Lemur.

which means that corpus have nearly no role in ranking the
passages. This is because of large size of corpus, with lots
of irrelevant terms. It is also clear from Fig 9 that this lan-
guage model performed worse than all our proposed mod-
els.

Table 5 display best results by each language model.

6 Conclusion and Future Work
We have studied the problem of language model smooth-
ing in the context of passage retrieval for QA Systems
and compared it with traditional models, including TF-IDF
and OKAPI. We then examined three popular interpolation-
based smoothing methods (Jelinek-Mercer, Dirichlet Prior,
and Absolute Discounting), and evaluated them using the
AQUAINT retrieval testing collection.

First we performed document retrieval. Our experiments
showed that the Dirichlet Prior performed the best with
prior of 1000 and that keeping the number of documents
retrieved to 500 is both efficient and sufficient. Then we
carried out passage retrieval and observed that again the
Dirichlet Prior performed the best with a prior of 500 and
that keeping the number of passages retrieved to 500 is suf-
ficient. With these experiments we established a baseline
value. We have defined a number of language models based
on the Jelinek-Mercer smoothing technique, and found out
that interpolation between language model for passage and
single document from which passage is extracted provided
more then 38% improvement, which is quite significant for
QA Systems.

Table 6 gives list of best runs for document retrieval, pas-
sage retrieval and re-ranking experiments. Our best per-
forming language model can be used for real QA Systems.
We have used one of the basic approaches to passage gen-
eration. One problem with our approach is that it does not
take care of the topic shift within a passage. It also does not
consider topics which spread over multiple passages. Other
more sophisticated passaging techniques could further im-
prove our proposed language model. The language models
we have proposed and tested are all unigram models. As
previous work depicts, higher order language models will
improve retrieval performance.

It is also very important to study how to exploit the
past relevance judgments, the current query, and the cur-
rent database to train the smoothing parameters, since, in
practice, it would not be feasible to search the whole pa-
rameter space as we did in this paper. One possibility to
determine the parameters automatically could be the use of
Leaving-one-out.

References
[Clarke et al., 2000] C. Clarke, G. Cormack, D. Kisman

and T. Lynam. Question answering by passage selection

Step Method Lambda MAP
Document Retrieval Dirichlet Prior µ = 1000 0.254
Passage Retrieval Dirichlet Prior µ = 500 0.127
Re-ranking pdlm λ = 0.70 0.176

Table 6: Summary of results.

(Multitext experiments for TREC-9). In Proceedings of
the Ninth Text REtrieval Conference (TREC-9), 2000.

[Corrada-Emmanuel et al., 2003] A. Corrada-Emmanuel,
W. Bruce Croft and Vanessa Murdock. Answer Passage
Retrieval for Question Answering. In CIIR Technical
Report IR-283, 2003.

[Ponte and Croft, 1998] J. Ponte and W.B. Croft. A lan-
guage modeling approach to information retrieval. In
Proceedings of ACM SIGIR, pp. 275-281, 1998.

[Berger and Lafferty, 1999] A. Berger and J. Lafferty. In-
formation Retrieval as statistical translation. In Proceed-
ings of ACM SIGIR, pp. 275-281, 1999.

[Zhang and Lee, 2003] A. Berger and J. Lafferty. A Lan-
guage Modeling Approach to Passage Question An-
swering. In Proceedings of the Text REtrieval Confer-
ence (TREC 2003), pp. 489, 2003.

[Tellex et al., 2003] Stefanie Tellex, Boris Katz, Jimmy
Lin, Aaron Fernandes and Gregory Marton. Quanti-
tative Evaluation of Passage Retrieval Algorithms for
Question Answering. In Proceedings of the 26th annual
international ACM SIGIR conference on Research and
development in information retrieval, pp. 41 - 47, 2003.

[Callan, 1994] James P. Callan. Passage-level evidence
in document retrieval. In Proceedings of the 17th an-
nual international ACM-SIGIR conference on research
and developments in information retrieval, pp. 302-310,
1994.

[Liu and Croft, 2002] Xiaoyong Liu and W. Bruce Croft.
Passage Retrieval Based On Language Models. In
CIKM conference, pp. 375-382, 2002.

[Cai1 et al., 2004] Deng Cai1, Shipeng Yu2, Ji-Rong Wen
and Wei-Ying Ma. Block-based Web Search. In Pro-
ceedings of the 27th annual international ACM SIGIR
conference on Research and development in information
retrieval, pp. 456-463, 2004.

[Zhai and Lafferty, 2001] Chengxiang Zhai and John Laf-
ferty. A Study of Smoothing Methods for Language
Models Applied to Ad Hoc Information Retrieval. In
Proceedings of the 24th annual international ACM SI-
GIR conference on Research and development in infor-
mation retrieval, pp. 334-442, 2001.

[Agichtein and Gravano, 2000] E. Agichtein and L. Gra-
vano. Snowball: Extracting Relations from Large Plain-
Text Collections. In Proceedings of the 5th ACM In-
ternational Conference on Digital Libraries, pp. 85-94,
2000.

[Clarkeet al., 2000] C. Clarke, G. Cormack and E.
Tudhope. Relevance ranking for one to three term
queries. In Information Processing and Management,
pp. 291-311, 2000.

