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ABSTRACT

This paper presents a novel approach for detecting and lo-
calizing multiple speakers using a microphone array. In this
framework, the classical Steered Response Power (SRP) tech-
nique is combined with a novel two-step search strategy to re-
duce the computation cost. The approach taken here performs
the localization by 1) using the spatial information provided
by each Generalized Cross Correlation (GCC) function to re-
duce the search space to a few subspaces that are likely to con-
tain a source. From these, the most likely region is extracted
as the subspace that maximizes the Cumulative SRP. Then,
2) the optimal source location is estimated using the classi-
cal search approach in the reduced space. The source/noise
detection is further improved using an unsupervised Bayesian
classifier. Experiments on the AV16.3 corpus show that the
proposed method is approximately 47 times faster than the
classical SRP, without any noticeable degradation of the lo-
calization performance.

Index Terms— Steered response power, multiple speaker
localization, microphone arrays.

1. INTRODUCTION

Acoustic source localization using microphone arrays has be-
come an essential tool for developing more robust and accu-
rate solutions to a large number of signal processing prob-
lems, such as speech separation/enhancement and speaker di-
arization/tracking. Acoustic source localization approaches
can be divided into two main categories: two-step approaches,
where the source location is extracted by virtue of geometrical
intersection [1, 2] and single-step approaches, which aim at
inferring the source location directly from the signals, such as
multi-channel cross correlation (MCCC) [3], adaptive eigen-
value decomposition [4], and the well-known SRP based tech-
niques (e.g. [5, 6, 7]). Although the SRP approach is robust
and reliable, it is computationally expensive as it requires a
fine discretization of the space for a better localization preci-
sion. Dmochowski et al. [6] proposed to overcome this issue
by reducing the search space through inverse mapping of the
Time Difference Of Arrival (TDOA), whereas Do et al. [7]
used iterative reduction search strategies to estimate the op-
timal source location. Other improvements of the SRP made
use of spatial averaging techniques. This idea was investi-
gated in [8] using a sector-based approach. A similar method

was proposed in [9] based on mapping compact volumes in
the location space to closed intervals in the TDOA space.

Following a line of thought similar to [8, 9], we propose a
novel framework. It combines the advantages of search space
reduction strategies [6, 7] and spatial averaging techniques
[8] by i) using the spatial information introduced by each mi-
crophone pair GCC function to partition the TDOA space into
a set of intervals of dominance (Section 3.1), ii) using all the
resulting partitions and the array geometry to reduce the loca-
tion space to few regions, which are likely to contain a source
(Section 3.2). This is followed by iii) extracting the speaker
subspace as the region which maximizes the cumulative SRP
(Section 3.3), and iv) performing the classical SRP search in
the reduced space.

In doing so, the proposed approach drastically decreases
the computation cost by reducing the search space. On top
of that, it improves the multiple speaker localization perfor-
mance through use of the cumulative SRP. The extension to
multiple speakers is straight-forward (Section 3.4). Finally,
the effectiveness of the proposed method is demonstrated by
means of an experimental study in Section 5, including com-
parisons to the conventional SRP, and MCCC approaches on
a single speaker localization task, and to the probabilistic SRP
[10] on a multiple speaker localization task.

2. THE CONVENTIONAL SRP APPROACH

The arrival of sound waves at a microphone array intro-
duces TDOAs between the individual microphone pairs. This
TDOA depends on the source location s as well as the posi-
tions mh, h = 1, . . . ,M , of the microphones where M de-
notes the number of microphones. More precisely, the TDOA
introduced at the microphone pair q = {mg,mh} is given by

τq (s) = (‖s−mh‖ − ‖s−mg‖) · c−1 (1)

where c denotes the speed of sound in the air. The SRP ap-
proach uses these TDOAs to construct a spatial filter (delay-
and-sum beamformer) which scans all possible source loca-
tions. The speaker position is subsequently extracted as that
position where the signal energy is maximized. These steps
can be implemented efficiently using the GCC function [5].



2.1. Generalized Cross Correlation

Let sg(t) denote the signal received at microphone mg , g =
1, . . . ,M . Then the generalized cross correlation (GCC)
function Rq of the microphone pair q = {mg,mh} is given
by

Rq(τ) =
1

2π

∫ 2π

0

ψ(ω)Sg(ω)S
∗
h(ω)e

jωτdω (2)

where Sg/h(ω) denotes the short-time Fourier transforms of
sg/h(t) and where ψ(ω) denotes a pre-filter. A common
choice of ψ(ω) is the phase transform (PHAT) weighting [11].

2.2. SRP-based Single Speaker Localization

The steered response power returned from a particular loca-
tion s can be calculated as [5]:

SRP (s) = 4π

Q∑
q=1

Rq(τq(s)) +K (3)

whereQ denotes the number of microphone pairs. K is a con-
stant introduced by the auto-correlation of each microphone
(see [5] for more details). Therefore, K is ignored in the rest
of the paper. Once the SRP has been calculated for each posi-
tion s, the source location estimate ŝ is determined according
to [5]:

ŝ = argmax
s

SRP (s). (4)

Scanning all possible source locations on a discrete grid over
the 3-D/2-D space is computationally expensive. Section 3
introduces a novel approach to overcome this problem.

3. PROPOSED APPROACH

The GCC function has been widely used to estimate the
TDOA introduced by a source at the microphone pairs. Under
ideal conditions – more precisely, in noise-free/reverberation-
free environments and under the assumption of signals orig-
inated by point sources – the GCC function is proportional
to a shifted delta function, where the shift is given by the
TDOA generated by the source at the microphone pair. In
practice, however, the presence of noise and reverberation in-
troduce secondary peaks. Furthermore, diffuse sound sources
may flatten the peaks, causing high GCC values to span over
TDOA intervals, which map to connected regions instead
of point locations. Hence, we propose to characterize each
acoustic event in the room by an interval of TDOA values,
which is centered at a GCC peak. In particular, we assume
that all the GCC values in this interval were generated by the
same source.

3.1. Acoustic Dominance-based TDOA Space Partition

In contrast to classical TDOA-based source localization ap-
proaches [1, 2], which obtain the source location by mapping
GCC peaks to the location space, we propose to associate
each acoustic event with the TDOA interval where the source

is assumed to be dominant. The reseulting intervals are subse-
quently called the intervals of dominance. An acoustic event
can be generated by actual sources (speech, coughs, laughs,
etc.) or by noise sources (projector, door slams, etc.). Multi-
paths reflections from reverberation are considered acoustic
events of “virtual” noise sources.

Formally, let Kq be the number of GCC peaks of the q-th
microphone pair at time t and let {τ1q , . . . , τ

Kq
q } be the corre-

sponding TDOA values. For ease of notation, the time index
t is dropped in the rest of the paper. Then the TDOA obser-
vation space [−τmaxq , τmaxq ] with τmaxq = ‖mh −mg‖ · c−1
can be expressed as the union of the intervals of dominance
Ikq , k = 1, . . . ,Kq:

]− τmaxq , τmaxq ] =

Kq⋃
k=1

Ikq (5)

The k-th interval of dominance Ikq associated to the k-th
peak/acoustic event is given by

I1q =
[
−τmaxq , τ1,maxq

]
and Ikq =

]
τk,minq , τk,maxq

]
(6)

Here, τk,minq and τk,maxq are given by

τk,minq = max {τq | τq ≤ τkq , ∂Rq(τq) = 0} (7)

τk,maxq = min {τq | τq ≥ τkq , ∂Rq(τq) = 0} (8)

where τkq is the TDOA corresponding to the k-th GCC peak
and where ∂Rq denotes the first derivative of Rq . In words,
τk,minq and τk,maxq represent the left and right feet of the k-
th peak τkq of the GCC function (see example Fig. 1-b). The
intervals of dominance {Ikq }

Kq

k=1 are mutually disjoint. There-
fore, these intervals map to mutually disjoint sets of loca-
tions. Furthermore, mapping each microphone pair TDOA
space partition leads to a new partition of the location space.
This important property is very useful to extract the location
subspaces which are likely to contain a source (Section 3.2).

3.2. From the TDOA Space to the Location Space

The search space reduction is obtained by mapping all TDOA
space partitions to the location space, followed by the inter-
sections of the resulting location space partitions. Consider-
ing only non-empty intersections yields a few likely regions
of the location space.

Formally, let Iq = {Ikq }
Kq

k=1 be the TDOA space parti-
tion of the q-th microphone pair, and let S denote the location
space. Then each interval Ikq maps to a subspace of locations
given by

Skq = {s ∈ S | τq(s) ∈ Ikq } (9)

Mapping all the intervals {Ikq }
Kq

k=1 leads to a partitioning
Sq = {Skq }

Kq

k=1 of the location space S, with

S =

Kq⋃
k=1

Skq (10)
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Fig. 1: Figure 2: The graphs in (a) exemplifies the SRP approach for a frame with two speakers. The figure (b) illustrates the
GCC-based TDOA space partition to intervals of dominance. The graph in (c) presents the subspaces of dominance resulting
from mapping all the TDOA spaces partitions. Finally, the graph in (d) illustrates the classification approach used in Section 4.

The localization of an acoustic source A requires the extrac-
tion of the intervals of dominance {IAq }

Q
q=1 where A is dom-

inant. Each of these intervals is then mapped to a location
subspace SAq according to eq (9). The region of dominance
SA associated with the source A is defined as follows :

SA=
Q⋂
q=1

SAq ={s∈S | ∀q ∈ {1, . . . , Q} :τq(s)∈IAq } (11)

Given eq (11), we can conclude that the acoustic source lo-
calization problem can be reduced to extracting the space re-
gions of dominance, which are expressed as intersections of
{Skq }

Kq

k=1, q = 1, . . . , Q. Theoretically, the number of all pos-
sible intersections is large and equal to

∏Q
q=1Kq . In practice

however, most of these intersections are empty. This is due to
the physical constraints introduced by the microphone pairs.
More precisely, if SA,P represents the sub-intersection of the
first P microphone pairs (P ≤ Q) then the volume of SA,P
decreases when P is increased. For all true sources, it can be
expected for a given number P that

∀q ∈ {P + 1, . . . , Q},∃Skpq ∈ Sq : SA,P ⊂ Skpq (12)

The intersection of SA,P with the remaining sets of the par-
tition Sq are mostly empty (when P is large enough). This
drastically decreases the number of intersections that need to
be performed. The experiments conducted in this paper have
shown that such a property occurs when P ≥ 4.

The extraction of all intersections is analytically in-
tractable. Hence, we propose an alternative iterative solution
(Algorithm 1). This is done using eq (11), which shows that
each region of dominance Sd is defined by the set of inter-
vals of dominance which map to it. Therefore, the extraction
of dominant subspaces reduces to finding all possible combi-
nations of the intervals of dominance. Formally, this can be
done using a coarse grid (15◦ to 30◦ or 50 to 100 cm). The
grid resolution is chosen such that at least one location falls
into each Sd. Then, for each location s0 in this grid (dots in
Fig. 1-c), the associated intervals of dominance Is0q are ex-
tracted such that τq(s0) ∈ Is0q .

Algorithm 1 : Extraction of the Subspaces of Dominance

Let G be the coarse grid.
Let DS be the set of the subspaces of dominance.
∀q ∈ {1, . . . , Q} calculate the TDOA partition {Ikq }

Kq

k=1
for each s0 ∈ G do
∀q ∈ {1, . . . , Q} find ks0,q such that τq(s0) ∈ I

ks0,q
q

if {Sks0,q
q }Qq=1 /∈ DS then

Add {Sks0,q
q }Qq=1 to DS .

end if
end for

3.3. The Cumulative SRP

The space reduction approach is based on extracting those
subspaces where each acoustic event is dominant. Hence, in
the absence of spacial aliasing, we can assume that the contri-
bution of other sources is negligible in each of the subspaces.
As a consequence, all the signal power coming from that re-
gion is assumed to be generated by the same acoustic source.
Formally, let A be an acoustic source. The SRPA associated
with A is given by the restriction of eq (3) on the subspace of
dominance SA. That is

SRPA(s) = SRP (s) · 1SA(s) (13)

where 1SA(s) is the indicator function, which is 1 if s ∈ SA
and 0 otherwise. Given the definition in eq (11), we can fur-
ther simplify (13) to

SRPA(s) ∝
Q∑
q=1

Rq(τq(s)) ·
Q∏
q=1

1IAq
(s) (14)

Now, we define the cumulative SRP (C-SRP) of the sourceA,
denoted bySRP c(A), as the sum of steered power originating
from all locations s in the region of dominance SA. More
precisely, SRP c(A) is calculated according to

SRP c(A)=
∫
S
SRPA(s) · ds =

∫
SA

SRP (s) · ds (15)

≈
Q∑
q=1

∫
IAq

Rq(τq)·dτq ≈
Q∑
q=1

∑
τq∈IAq

Rq(τq) (16)



Table 1 : Single Speaker Localization Results
Approaches seq01-1p-0000 seq02-1p-0100 seq03-1p-0100

dr σs,θ σs,φ t dr σs,θ σs,φ t dr σs,θ σs,φ t
MCCC 31.81 1.87 11.64 ∞ 77.85 1.81 8.54 ∞ 69.67 1.49 5.42 ∞

SRP 33.79 2.09 13.57 55.58 78.64 1.74 9.67 55.77 69.88 1.46 6.31 55.74
PA 30.08 1.90 10.83 1.16 76.52 1.71 7.92 1.17 69.41 1.47 6.76 1.16
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Table 2 : Multiple Speaker Detection Rate dr (%)
seq18-2p-0101 seq40-3p-0111 seq37-3p

PA pSRP PA pSRP PA pSRP
S 1 54.19 51.72 27.28 23.79 31.25 32.59
S 2 45.78 45.92 32.25 25.72 59.65 28.52
S 3 — — 47.44 56.32 40.29 9.74
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Table 3 : Multiple Speaker Localization Results
seq18-2p-0101 seq40-3p seq37-3p
PA pSRP PA pSRP PA pSRP

σs,θ 1.78 2.22 2.67 1.95 2.44 3.0
σs,φ 4.50 8.93 8.92 6.59 8.25 8.20
ps 0.87 0.86 0.77 0.74 0.79 0.53
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The region of dominance SA is extracted as the one with
the highest cumulative SRP. Then, the optimal location esti-
mate sAopt is obtained using the classical approach in the re-
duced space SA. This is done by maximizing the SRP out-
put on a sub-grid of locations, centered on the initial location
s0(∈ SA) given by the coarse grid (from Algorithm 1). All
the sub-grids are calculated offline.

3.4. Multiple Speaker Localization Algorithm

The proposed acoustic source localization approach can be
easily extended to the multiple speaker case. Algorithm 2
presents one possible extension using an iterative approach.
The algorithm is iterative in order to overcome the one-to-
many aspect of the TDOA-location mapping (eq (1)), which
causes each interval Ikq to map to more than one subspace.
This idea is implemented by successively zeroing the restric-
tion of the GCC function on Is

opt
n
q (step 6). The sub-grid used

in the second search step (step 4) is calculated offline by as-
sociating each location s0 in the coarse grid G to a small grid
centered on s0. In the case whereNmax is unknown, it can be
simply overestimated.

Algorithm 2 : Multiple Speaker Localization Algorithm

Let Nmax be the maximum number of speakers.
Extract the set of regions of dominance DS (Algorithm 1)
for n = 1 : Nmax do

1. ∀S ∈ DS : calculate C(S) = SRP c(S)
2. Find Smaxn = argmaxS C(S)
3. Define Coptn = C(Smaxn )
4. Find soptn = argmaxs SRP

Smax
n (s) on a sub-grid

5. Add (soptn , Coptn ) to the set of potential speakers
6. Set the restriction ofRq on Is

opt
n
q to 0

end for

4. NOISE/SOURCE CLASSIFICATION

The proposed method extracts the source location as the one
with the highest cumulative SRP, but it does not consider

whether this location has been generated by an actual source
or by secondary peaks. This problem becomes more diffi-
cult in the multiple speaker scenario, where the secondary
peaks, resulting from the one-to-many mapping of the TDOA-
location relationship, become comparable to the low-energy
speakers. In this work, we propose to accomplish this task
using an unsupervised Bayesian classifier. The proposed ap-
proach uses the cumulative SRP values Coptn , n = 1, . . . , Ne
(Ne = Nmax×number of frames), as a classification feature.
Then, a 2-component Gaussian mixture fit is calculated us-
ing the Expectation-Maximization (EM) algorithm (Fig. 1-d).
More precisely, the 2-Gaussian mixture fit is given by

f(C) = wn · fn(C|noise) + ws · fs(C|source) (17)

where fn(.) and fs(.) represent the likelihood distributions
of the noise and speaker estimates respectively. wn and ws
denote the corresponding priors. The posterior probability of
source/noise given an estimate s, with a cumulative SRP equal
to C, is calculated according to

p(source|s) =
ws · fs(C|source)

wn ·fn(C|noise)+ws ·fs(C|source)
(18)

p(noise|s) = 1− p(source|s) (19)

The location estimate s is considered to be an actual source
if p(source|s) > p(noise|s). The classification task can be
performed at the end of the localization, as it can be done on-
line, by updating the Gaussian mixture parameters after each
T frames.

5. EXPERIMENTS AND RESULTS

We evaluate the proposed approach using the AV16.3 corpus
[12], where human speakers have been recorded in a smart
meeting room (approximately 30m2 in size) with a 20cm
8-channel circular microphone array. The sampling rate is
16 kHz and the real mouth position is known with an error
≤ 5cm [12]. The AV16.3 corpus has a variety of scenarios,
such as stationary or quickly moving speakers, varying num-
ber of simultaneous speakers, etc. In the experiments reported
below, the signal was divided into frames of 512 samples



(32ms); the GCCs were calculated using PHAT [11] weight-
ing; and a voice activity detector was used in order to suppress
silence frames. The localization task is performed in the en-
tire 3D space but, due to the far-field assumption in which the
range is ignored, the results are limited to the direction of ar-
rival (DOA). More precisely, the results are reported in terms
of the detection rate dr and the standard deviations of the az-
imuth σs,θ, and elevation σs,φ. These measures are obtained
by fitting a 2-component Gaussian mixture to the estimates
error. We also report the real-time factor t on a standard Pen-
tium(R) Dual-Core CPU clocked at 2.50GHz. In the multiple
speaker scenario, we also report the percentage of correct es-
timates ps. The detection threshold of the probabilistic SRP
(pSRP) [10] is chosen such that the resulting false alarm rate
is equal to that of the proposed approach.

Table 1 presents the performance of the proposed ap-
proach (PA) on single source sequences, and compares it to
two well-known approaches, namely the SRP [5] and the
MCCC [3]. Note that in these experiments the detection
approach from Section. 4 was not used, and Nmax was set
to 1. The coarse grid resolution used in the pSRP and the
PA is 20◦ × 20◦ × 30cm for the azimuth, elevation and
range, respectively, whereas the resolution of the SRP, MCCC
and the reduced search grid (second step of the approach) is
1◦×1◦×10cm. The latter has a size of 30◦×40◦×4m. The
merits of applying the proposed approach to multiple speaker
localization are shown in Tables 2 and 3, which present re-
sults for sequences with a varying number of simultaneous
speakers (between zero and three). In these experiments
Nmax = 4.

The results in Table 1 show that the performance of the
proposed approach is comparable to the other approaches.
More precisely, the standard deviation of the azimuth σs,θ
and elevation σs,φ as well as the detection rate dr are compa-
rable, whereas the proposed approach (PA) is approximately
47 times faster than the classical SRP, with an almost-real
time performance on a standard machine. That is without any
noticeable degradation of the performance. This result illus-
trates the efficiency of the proposed approach. The MCCC
approach however is very slow (noted∞ in the Table 1) due
to the calculation of the correlation matrix determinant for all
locations at each frame. Regarding the multiple speaker sce-
narios in Tables 2 and 3, we can see that the C-SRP performs
slightly better than the pSRP approach. This improvement ap-
pears clearly in the increased percentage of correct estimates
ps and the average detection rate dr of each speaker. This im-
provement is due to the C-SRP, which locates the most likely
regions to contain the speakers. It is also worth mentioning
that the proposed unsupervised classification approach leads
to a FAR ≈ 10% for all experiments. Whereas the detec-
tion approach used in the pSRP approach leads to different
FARs when the threshold is fixed. This result makes the pro-
posed unsupervised classification technique more attractive.
Regarding the real-time factor, we have also found that the
C-SRP is 3 times faster than the pSRP.

6. CONCLUSION

We have proposed a novel framework to the multiple speaker
localization problem. This approach proposes a two-step
search strategy to reduce the computation cost of the clas-
sical SRP, without any noticeable degradation of the perfor-
mance. The proposed framework also presents a cumulative
SRP, which improves the multiple speaker detection rate. This
approach however does not address the problem of suppressed
sources, that occurs in the multiple speaker case. This is part
of our future work.
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