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Abstract—We have recently proposed a novel Gaussian mixture
filter for nonlinear, non-Gaussian tracking problems. It is based
on splitting and merging Kalman filters in order to increase the
level of detail in likely regions of state space and reduce it in
unlikely ones. In this work, we apply the above mentioned filter
for tracking the mouth of a speaker under adverse conditions, i.e.
in a shaky car environment, with off-the shelf camera equipment
and severe compression artifacts. A Viola-Jones based detector
identifies possible locations, which are then treated as multiple
observations in a Bayesian filtering framework.

I. INTRODUCTION

Tracking visual objects in a real environment is a nontrivial
task. This is due to many reasons: light conditions can change
abruptly; there might be compression artifacts; also, the cam-
eras can shake when mounted on a movable object such as a
laptop or, in our case, a car driving along a highway at 55 miles
per hour [1]. The task of this work was to track the mouth
of a speaker under such conditions – a necessary prerequisite
for doing audio-visual speech recognition on the AVICAR [1]
corpus. As tracking performance is crucial in this scenario, we
developed a novel Gaussian mixture filter (GMF) [2], which,
in contrast to the data association approaches taken in [3],
[4], is truly able to handle concurrent hypotheses (multiple
observations). Possible object locations are obtained with a
Viola-Jones [5] detector, which we constrain to regions where
the object is expected by the Bayesian filter. That discards
unlikely locations and thereby increases the speed of both
detection and tracking. The remaining part of this paper is
organized as follows: In Section II we present the new filter.
In Section III we describe the Viola-Jones based tracker.

II. TRACKING WITH MULTIPLE OBSERVATIONS

The objective of tracking can be formulated as to keep track
of a system state xt evolving in time t, where the evolution of
the system state is considered to follow an underlying physical
process, modeled by a process equation:

xt = ft(xt−1, wt), wt ∼ N (wt; 0, ΣW ). (1)

In this equation, ft is the state transition function, wt is Gaus-
sian process noise, which is introduced in order to account for
uncertainties. In tracking applications, the system state itself
is considered unknown but related to observations yt through
a measurement equation

yt = ht(xt, vt), vt ∼ N (vt; 0, ΣV ), (2)

where ht denotes the measurement function, vt denotes Gaus-
sian measurement noise. With these models at hand, we
now briefly sketch the probably most well-known tracking
algorithm: the Kalman filter (KF).

A. The Kalman Filter

For the Kalman filter, the functions f and h are required to
be linear, as only then the filtering density – that is p(xt|y1:t)
with y1:t , {y1, . . . , yt} – remains Gaussian while being
propagated in time. Then following [6], the operation of the
Kalman filter can be described as:

1) prediction: constructing the joint predictive Gaussian
distribution p(xt, yt|y1:t−1) of the next state and obser-
vation, Xt and Yt, given the process and measurement
models – specified by (1) and (2) – as well as the
observation history y1:t−1.

2) update: conditioning that joint Gaussian distribution on
the realized observation Yt = yt, in order to obtain
p(xt|y1:t).

Alternating between these two steps propagates the filtering
density p(xt|y1:t) in time. The minimum mean square error
(MMSE) state estimate x̂t is obtained by taking the expectation
E{xt|y1:t} of the filtering density.

B. Handling Multiple Observations by Splitting Filters

The Kalman filter was designed to receive a single ob-
servation yt at time t. And though, in virtually any applied
tracking scenario several, possible observations candidates
yt = {y1

t , . . . , yKt
t } are available, some of which may be

due to the object of interest, some of which may be due to
clutter 1. This gap is usually bridged by taking the single most
likely observation or by applying the more sophisticated Prob-
abilistic Data Association Filter (PDAF), which first combines
the measurements in a weighted sum and according to their
influence; then feeds the resulting, single observation into a
Kalman filter [3]. This procedure is computationally simple,
but clearly suboptimal as it disregards the individual hypothe-
ses implicated by the observations. Moreover, the assumptions
of the PDAF might be ill-suited to visual tracking, where
objects can indeed spawn multiple observations and where
clutter tends to occur in specific regions of the image. In this
work, we try to approximate the ideal solution to the multiple
observation problem, which consists in performing the update

1misdetections occurring at random, not related to the objects being tracked



stage of the KF once per observation. That can be achieved
by duplicating each KF Kt− 1 times and then assigning each
of the resulting filters to one of the observations. Propagating
the filters as well as their posterior probabilities through time
gives a Gaussian mixture filtering density:

Let there be Nt−1 filters {Kn
t−1|n = 1, . . . , Nt−1} at time

t − 1, with Gaussian filtering densities p(xt−1|Kn
t−1, y1:t−1)

and weights p(Kn
t−1|y1:t−1). Then, at time t, all of the filtering

densities are predicted according to step 1 of the KF; each
Kn

t−1 is split into Kt filters {Kn,k
t−1|k = 1, . . . ,Kt}; Kn,k

t−1 is
assigned to the k-th observation yk

t ; and the corresponding
filtering density p(xt|Kn,k

t−1, y1:t) is obtained by performing
step 2 of the KF. Consequently, the overall filtering density
p(xt|y1:t) becomes a Gaussian mixture:

p(xt|y1:t) =
Nt−1∑
n=1

Kt∑
k=1

p(xt|Kn,k
t−1, y1:t)p(Kn,k

t−1|y1:t)︸ ︷︷ ︸
=p(xt,Kn,k

t |y1:t)

, (3)

where the p(xt|Kn,k
t−1, y1:t) are multivariate Gaussian distribu-

tions and where the p(Kn,k
t−1|y1:t) are their weights. Similar as

in [7], the weights – i.e. the posterior probabilities – can be
evaluated with Bayes’ rule:

p(Kn,k
t−1|y1:t) =

p(yk
t |K

n,k
t−1, y1:t−1)p(k)p(Kn

t−1|y1:t−1)∑Kt

k′=1 p(yk′
t |K

n,k′

t−1 , y1:t−1)p(k′)
,

where p(Kn
t−1|y1:t−1) is the filter’s weight from the previous

iteration and where p(k) = 1/Kt is the prior probability,
i.e. certainty, associated with observation yk

t . The observation
likelihood p(yk

t |K
n,k
t−1, y1:t−1) of the (n, k)-th filter is obtained

by marginalizing the joint predictive distribution from step 1
of the KF over xt. At the end of each iteration, the filters are
relabeled as Kl

t = Kn,k
t−1 with l = (n− 1)Kt + k. After, Nt is

set to (Nt−1 ·Kt) and t is incremented by 1.

C. Merging Filters

Running the ideal filter from above results in a Gaussian
mixture filtering density, whose number of components grows
exponentially in time. That is very impractical from a com-
putational point of view. Hence, we reduce the number of
components by merging the filters successively in pairs. For
that, the filter Kn

t with the lowest posterior probability p(Kn
t )

is selected and its similarity to all the other filters Km
t , m 6= n,

is determined as described in [7]. Subsequently, Kn
t is merged

with the most similar filter Km
t . Repeating this procedure

until N filters remain limits the computational complexity to
running N ·max(Kt) filters in parallel.

III. VIOLA-JONES BASED OBJECT TRACKING

In order to track objects with a Kalman filter, we not only
have to specify the process and measurement equations, but
also need a detector that actually provides measurements of
the specified type. In this work, we decided for the Viola-Jones
detector [5] – a fast and accurate detector for visual objects that
is based on a cascade of weak classifiers. The main motivation
behind this choice is that by using Viola-Jones we avoid the
problem of modeling and updating appearance (see [4]).

A. A Linear Model for Tracking
As a process model, we use a simple zeroth-order linear

dynamic model that is based only on the object’s position pt

as well as its scale st:[
pt

st

]
=
[
pt−1

st−1

]
+N

([
0
0

]
,

[
Σ∆P 0

0 Σ∆S

])
,

where Σ∆p specifies the variability in position, Σ∆S specifies
the variability in scale. For the measurements we consider a
similar model with additive Gaussian noise.

B. Spatially Constrained Viola-Jones Detection
In initial experiments, the mouth location – as detected by

the Viola-Jones detector – tended to jump in successive frames.
In some cases, the mouth could not be found at all, probably
due to poor image quality or due to the difficult lighting
conditions in the driving car scenario. For these reasons, we
tuned the detector to yield a large number of hypotheses
and left it to the Bayesian filter to determine their relevance.
That, however, caused a new problem: the large number
of measurements immensely increased the computation time
spent in the tracking algorithm. Hence, we decided to use
the “gating” technique proposed in [8], which consists in
calculating confidence ellipses for the predicted observation
density p(yt|y1:t−1) from step 1 of the KF; and then discarding
measurements that lie outside this region. We slightly modified
this scheme by determining a rectangular region that includes
all confidence ellipses – stemming from different filters – and
then constraining the Viola-Jones detector to that region. The
beauty of this approach is that the region searched by the de-
tector is determined within the Bayesian filtering framework.
Under normal conditions, only a small portion of the image
is evaluated. With increasing state and, thereby, observation
uncertainty, the search region increases automatically.
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