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Abstract
Recent advances in automatic speech recognition (ASR) tech-
nology continue to be based heavily on data-driven methods,
meaning that the full benefits of such research are often not en-
joyed in domains for which there is little training data. More-
over, tractability is often an issue with these methods when con-
ditioning for long-distance dependencies, entailing that many
higher-level knowledge sources such as situational knowledge
cannot be easily utilized in classification. This paper describes
an effort to circumvent this problem by using dynamic contex-
tual knowledge to rescore ASR lattice output using a dynamic
weighted constraint satisfaction function. With this method, it
was possible to achieve a roughly 80% reduction in WER for
ASR in the context of an air traffic control scenario.
Index Terms: lattice rescoring, knowledge-based, context-
sensitivity

1. Introduction
Many domains are contextually very rich in that any utterance is
highly dependent on the situation in which the dialog is situated
[1]: An extreme example of such is air traffic control (ATC),
in which controllers issue verbal commands to aircraft pilots
in the controlled airspace in order to maintain aircraft separa-
tion in the airspace and to assist in landing. The commands
which a controller issues are based on the current state of the
airspace in question as well as future plans regarding incoming
aircraft, weather conditions, etc. This situational knowledge is
acquired through multiple modalities, including radar derived
aircaft state vectors (comprising the position, speed, altitude,
descent rate, reduce rate and heading), flight plans and the pre-
vious command history.

Just as contextual information is used in ATC for planning
and issuing commands, this information can be utilized to im-
prove the accuracy of automatic speech recognition in the do-
main of ATC. One simple method would be to reduce the per-
plexity of the task by constraining the number of possible ref-
erents denoted by a given ATC command to those which would
plausibly be issued the command given the current and previ-
ous state of the airspace as well as the information denoted
by the command itself. Similarly, possible airspeed and alti-
tude values could be restricted based on knowledge of the cur-
rent situation. In a grammar-based language model, this can
be achieved by reweighting rules in order to penalize them in a
particular context [2]. This procedure, however, turns out to be
unwieldy for a complex, context-dependent scenario, where the
range of possible numeric values (e.g. aircraft airspeed) may
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change depending on the particular referent (e.g. a particular
aircraft) of the sentence. Hence, in this paper, we investigate the
use of word lattice rescoring for this task. This is done in the
domain of ATC, which is particularly well-suited to this form
of context-based rescoring due to the relative regularity of the
grammar used by controllers in issuing ATC commands: ATC
commands are issued in a standardized subset of English which
is formally specified by the International Civil Aviation Organi-
zation (ICAO) [3]. Thus, concepts can easily be extracted from
ATC commands and be evaluated using contextual knowledge.

The remaining part of the paper is organized as follows:
Section 2 briefly describes the ATC task along with the gram-
mar that we use to recognize commands; Section 3 introduces
the concept of knowledge-based lattice rescoring and then ex-
plains how this form of rescoring can be applied to the task of
ATC. Finally, Sections 4 and 5 present experimental results and
a discussion.

2. ATC Task Description & Grammar
The primary objective of an air traffic controller is to maintain
the separation of aircraft in the airspace which is under con-
trol. This includes guiding approaching aircraft to their runway
threshold and safely integrating departing aircaft into an aircraft
stream passing through their sector as well as guiding passing
aircraft through the airspace. This is primarily accomplished
by issuing verbal radio commands to aircraft pilots so that the
aircraft follow a pre-planned flight plan which takes many fac-
tors into account such as other aircraft, weather and the current
capacity of the airspace.

2.1. Command format

ATC commands are issued using standardized ICAO phraseol-
ogy [3], comprising a single aircraft callsign (e.g. Air France
four one eight ∼= AF418) followed by a goal action to execute
(e.g. descend ∼= DESCENT) and a goal value to achieve during
that action (e.g. flight level seven zero ∼= FL70). Table 1 shows
a subset of the ATC command goal types that have been used in
this paper, including the corresponding value arguments.

2.2. Contextual information

The commands an ATC controller issues are dependent on
the current and past state of the airspace in question; Knowl-
edge about this state is acquired primarily through flight plans
and radar derived aircaft state vectors (comprising the position,
speed, altitude, descent rate, reduce rate and heading). In or-
der to make this process more efficient, controller assistant sys-
tems are being developed to support controllers in monitoring
the airspace as well as in planning and implementing the future
airspace state. Figure 1 shows a GUI of such a system at the



Type Values Example
DESCENT ALT descend altitude ALT feet
DESCENT FL descend flight level FL
REDUCE SPD reduce speed SPD knots
TURN DIR,HDG turn DIR heading HDG

Type Values Example
DESCENT ALT descend altitude ALT feet
DESCENT FL descend flight level FL
REDUCE SPD reduce speed SPD knots
TURN DIR,HDG turn DIR heading HDG

Table 1: Subset of the used ATC command goal types with their
corresponding value arguments. Here, ALT, FL, SPD, DIR and
HDG denote altitude in feet and flight level (in hundreds of feet
– depending on the air pressure), speed, direction (left /right)
and heading (angle in degrees), respectively.

example of an arrival manager (AMAN), which is used to assist
controllers in managing aircraft separation and flight efficiency.

  b

  a

Figure 1: The AMAN software GUI [4] used by the participants
in the experiment. Commands which are to be issued to aircraft
appear on the advisory stack (labelled as a), which is positioned
above an integrated flight information display (labelled as b),
which displays radar and flight plan data as well as other infor-
mation related to arrival management.

2.3. Grammar

A grammar corresponding to the Nuance grammar format
[5] was written to match the ATC command format de-
scribed in Figure 2. In this grammar, semantic concepts
relevant to ATC (e.g. callsigns, command goals and values)
are embedded in XML tags (e.g. two two zero knots ∼=
<airspeed> two two zero </airspeed> knots).
This allows these concepts to be easily parsed as a semantic
template (see Figure 2 for an example) [6]. For recognition,
the grammar is converted to a finite-state machine (FSM) in the
AT&T format [7] where the XML tags are mapped to special
phone symbols which do not correspond to real acoustic states
(as it is done in case of phonetic disambiguation symbols).
Whitespaces in the tags are converted to underscores (“ ”).

3. Knowledge-Based Lattice Rescoring
When using a weighted finite state transducer (WFST) decoder
[7, 8, 9], word lattices may be generated efficiently by first cre-
ating a context-dependent phone-to-word transducer lattice, as
shown in Figure 3, projecting onto the word labels and then per-
forming epsilon removal and pruning [10]. Following Wölfel
and McDonough [9], however, we perform the rescoring di-
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
CALLSIGN ADR23

COMMAND

turn

[
DIRECTION left

HEADING 250

]
Figure 2: A semantic template representing an ATC utterance
(specifically, Adria two three turn left heading two five zero),
where ADR23 is the visual representation of the callsign.

rectly on the phone-to-word transducer lattice, due to the fact
that the ASR toolkit which was used does not currently allow
the creation of weighted word lattices.
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Figure 3: Part of a context-dependent phone-to-word trans-
ducer lattice [10] with embedded XML tags. The L-b(99),
L-m(99) and AY-b(60) symbols indicate triphone clustered
acoustic states. The dotted edges indicate omitted nodes. Note
that there are costs associated to each of the edges which are not
shown for the sake of readability.

3.1. Lattice Rescoring

Given a phone-to-word transducer lattice, the score of a partic-
ular speech recognition hypothesis w = 〈ω1 . . . ωn〉 is defined
as the lowest-scoring path which outputs this sequence:

f(w) = min
Σ1...Σn
q0...qn−1

n∑
i=1

δ(qi−1,Σi, ωi, qi) (1)

where δ : Q × (Σ ∪ {ε})∗ × (Ω ∪ {ε}) × Q 7→ R is the cost
of reaching state qi from state qi−1 under input of the phone in-
put sequence Σi = 〈σi,1, . . . , σi,ni〉 and output of the word ωi

plus an arbitrary number of ε symbols. In rescoring, the evalua-
tion of the cost function δ is modified to incorporate additional
knowledge sources after the actual recognition process (Viterbi
search) by setting:

δ(·) = wlmδlm(·) + wamδam(·) + wksδks(·) (2)

where δlm and δam denote the original language model (LM)
and acoustic model (AM) scores (i.e. the log likelihood) from
decoding and where δks denotes the score under the additional
knowledge source, which is incorporated through rescoring.
The wlm, wam and wks denote the corresponding weights.

3.2. Knowledge Rescoring

Additional knowledge sources that have previously been used
for rescoring include higher-order n-grams [11] and contex-
tual articulatory knowledge [12, 13]. In this work, we consider
rescoring as a means of penalizing hypotheses which are in-
valid or unlikely in the context in which the utterance was made:



For example, in an ATC scenario (see Section 2), the command
Lufthansa five one reduce speed two two zero knots would be
invalid if there is no aircraft in the airspace with that callsign.
Likewise, such a command would be unlikely if the aircraft did
exist but is already flying at an airspeed of less than 220 knots.

In order to implement this form of knowledge-based rescor-
ing, we use semantic template structures s which represent the
meaning of the sentence or part of sentence in the lattice (see
Figure 2) [6]. These structures are filled on the fly while travers-
ing the lattice. Once a sub-structure z has been recognized com-
pletely (i.e. once the corresponding XML closing tag has been
reached — see e.g. </airline> in Figure 3), a contextual
knowledge score is applied; In this work, the knowledge score
is calculated as the weighted sum of constraint penalty functions
cj :

δks(qi−1,Σi, ωi, qi) =

J∑
j=1

ρjcj(x, z, s), (3)

where cj(·) 7→ [0, 1] measures the degree to which a certain
constraint cj is violated given the semantic context of the sen-
tence s processed so far as well as the discourse situation x (e.g.
the current state of the airspace); The ρj denote penalty scores
for violating the constraints. It is worth mentioning that this
formulation is similar to the one given in Chang et al. [14], ex-
cept that we use constraint programming for rescoring hypothe-
ses while Chang et al. [14] used it for biasing inference during
training.

3.3. Application to the ATC Task

For the ATC task, the context in which the dialog is situated
can easily be obtained from the AMAN software, such as 4D-
CARMA [15] from DLR. This software allows the retrieval of
the current state of the airspace at any time, including the call-
signs of aircraft on the radar as well as their flight information
including airspeed, altitude and heading. As a proof of concept
for knowledge-based rescoring, this information was used to ap-
ply the following (still relatively simple) semantic constraints:

• ccallsign(·), which is violated if the aircraft callsign de-
noted by a hypothesis does not refer to any aircraft in the
airspace at the time the utterance was made.

• cspd(·), which is violated if, given a command to re-
duce airspeed, the goal airspeed denoted by a hypothesis
zspd is not less than the last known airspeed of the air-
craft denoted by the hypothesis hspd (cspd(·) = [[zspd ≥
hspd]]).

• calt(·), which is violated if, given a command to descend
to a lower altitude, the goal altitude denoted by a hypoth-
esis zalt is not less than the last known altitude of the
given aircraft halt (cspd(·) = [[zalt ≥ halt]]).

All these constraints are here used in their binary form, i.e. they
return 1 if the constraint is violated and 0 otherwise.

4. Experiments
In this section, the usefulness of knowledge-based rescoring is
evaluated through a set of automatic speech recognition (ASR)
experiments. These experiments were performed on the ATC
corpus described in the next section. The experimental setup
is explained in Section 4.2, including a short description of the
ASR system. Finally, the results are presented in Section 4.3.

4.1. Corpus

Due to the unavailability of an ATC corpus which includes the
contextual information necessary for rescoring, a corpus dedi-
cated to this purpose was recorded using the 4D-CARMA soft-
ware [15] of the German Aerospace Center (DLR). For these
recordings, the participants observed a pre-scripted ATC sim-
ulation using an ATC arrival management (AMAN) software
GUI client [4] (see Figure 1), which displayed simulation data
for an airport landing scenario with 31 unique aircraft and one
runway [15]. This included displaying ATC commands (in
English), which the participants read aloud and which were
recorded using a headset. Self-identified by first language,
eight were German speakers, three were North American En-
glish speakers, and there were two Greek, one Malayalam,
one Romanian and one Russian speaker. Twelve of the speak-
ers were male and four were female. 1,107 ATC commands
were recorded in total, with an average length of 9.5 words
per sentence; This corresponds to approximately 100 minutes
of speech. Each individual recorded utterance was annotated
not only with the true sentence that was read but also with the
state of the entire ATC simulation at the time of the recording
(e.g. the aircraft on the radar, including theirs speeds, altitudes,
heading, position in relation to the radar, etc.).

4.2. Experimental Setup

The ASR system used for the experiments was the Millennium
toolkit [9] in its standard configuration. Its feature extraction is
based on Mel frequency cepstral coefficients that are obtained
using warped MVDR spectral estimation [9]. After cepstral
mean subtraction with variance normalization, 15 consecutive
frames of 20-coefficient MFCCs are concatenated and subse-
quently reduced by linear discriminant analysis (LDA). The fi-
nal features are 42-dimensional. The decoder is implemented
along the lines of Saon et al. [8]. It generates phone-to-word
transducer lattices as described in Ljolje et al. [10], which can
then further be used for rescoring. In this work, the rescoring
is performed as described in Section 3, utilizing the radar data
logged at the time each command was uttered. The best hypoth-
esis is subsequently extracted from the rescored lattice.

For the experiments, a triphone acoustic model was used
which had been trained on an amalgamation of several acous-
tic corpora of both spontaneous and scripted speech, including
the Translanguage English Database (TED) and the WSJ0 and
WSJ0CAM Wall Street Journal corpora as well as the ISL Meet-
ing Speech and the NIST Automatic Meeting Recognition cor-
pora. The pronunciation lexicon used was the freely available
SPHINX dictionary plus some manually added pronunciation
variants which allow for proper nouns (such as Lufthansa or
KLM) to be recognized when they are pronounced in German.
The grammar used in the experiments is described in Section
2.3; It has a branching factor of 7.68, covers 244,220 unique
aircraft callsigns and has a sentence perplexity of 3.9 · 109.

As evaluation metrics for speech recognition, both the
word error rate (WER) and the sentence error rate (SER) were
used. Additionally, however, we show the mean reciprocal rank
(MRR), which is often used to measure the improvement ob-
tained through rescoring. It is calculated as:

MRR(Y ) =
1

|Y |
∑
y∈Y

1

rank(y)
(4)

where Y denotes the complete set of utterances and where the
reciprocal rank of each correct hypothesisRR(y) = 1/rank(y)



is calculated by ranking each unique hypothesis in the word lat-
tice by its score.

4.3. Results

Table 2 shows the speech recognition results before and after
rescoring. The first row shows the baseline WER, SER and
MRR without rescoring (“none”). The second and third rows
show results after rescoring with the callsign contraint from
Section 3.3 as well as with additional speed and altitude con-
straints for the individual aircraft. The last row (“oracle”) shows
the best possible results that could theoretically be obtained
with an optimal rescoring algorithm (it gets the true sentence
to rank one if this sentence is contained in the lattice).

Constraints Used WER SER MRR
none 2.81 22.58 0.849
callsign 0.55 4.61 0.966
callsign, spd, alt 0.52 4.52 0.967
oracle 0.31 2.07 0.979

Constraints Used WER SER MRR
none (baseline) 2.81 22.58 0.849
callsign 0.55 4.61 0.966
callsign, spd, alt 0.52 4.52 0.967
oracle 0.31 2.07 0.979

Table 2: Word error rate, sentence error rate and mean recip-
rocal rank before and after rescoring with different constraints.
The constraints penalize callsigns that are not on the radar as
well as unlikely speeds and altitudes.

Most notable is that the callsign constraint gives a signifi-
cant improvement in both word and sentence error rate, with rel-
ative reductions of 80.4% and 79.6% over the baseline. At the
same time, the MRR is considerably higher, which means cor-
rect hypotheses get a better ranking in the n-best list. This can
be explained by the fact that the callsign constraint effectively
reduces the total number of possible callsigns from 244,220
to the number of aircraft which are currently in the controlled
airspace (in our scenario that is ≤ 10 at the time of the ut-
terance). When additionally using dynamic speed and altitude
constraints, the WER could be further reduced to 0.52, which
corresponds to a total reduction of 81.49% over the baseline.
However, the oracle results reveal that the ideal rescoring algo-
rithm could again cut the SER in half; Therefore, there is still
room for improvement.

5. Conclusions
In this paper, it has been demonstrated that the accuracy of auto-
matic speech recognition can be greatly improved by rescoring
ASR hypotheses based on contextual knowledge. In particular,
this was shown in an ATC scenario in which the required con-
textual information could be extracted from radar data about the
current state of the airspace. The declarative constraints used in
these experiments were relatively simple, but they could eas-
ily be extended to incorporate the arrival manager’s knowledge
about likely approach paths in a certain ATC situation. As an
alternative to rescoring, the knowledge constraints could also be
integrated directly into the decoder, e.g. by creating the seman-
tic templates (see Section 2.3) during decoding and then directly
applying penalties based on the given constraints. This would
allow for more aggressive pruning during beam search, which
also could have potential performance benefits.
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