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Abstract
In this work, we present a model-based Wiener filter whose fre-
quency response is optimized in the dimensionally reduced log-
Mel domain. That is achieved by making use of a reasonably
novel speech feature enhancement approach that has originally
been developed in the area of speech recognition. Its combi-
nation with Wiener filtering is motivated by the fact that sig-
nal reconstruction from log-Mel features sounds very unnatu-
ral. Hence, we correct only the spectral envelope and preserve
the fine spectral structure of the noisy signal. Experiments on
a Wall Street Journal corpus showed a relative improvement of
up to 24% relative in PESQ and 45% relative in log spectral
distance (LSD), compared to Ephraim and Mallah’s log spec-
tral amplitude estimator.
Index Terms: speech enhancement, Bayesian estimation, sig-
nal reconstruction

1. Introduction
It is well-known that the presence of background noise can sig-
nificantly degrade the quality and intelligibility of speech. Next
to direct consequences, such as listener fatigue, it can cause fur-
ther degradations in subsequent processing steps. This in par-
ticular concerns LPC based speech coders, which are optimized
for operation in a noise-free environment. Hence, the develop-
ment of such devices in the early 1970s also triggered serious
research efforts into speech enhancement methods, starting with
Weiss’s spectral subtraction [1], Calahan’s Wiener filter [2] as
well as Lim and Oppenheim’s iterative variant thereof [3]. The
aim of all these methods is to improve the subjective quality
of speech, and, nonetheless, they also introduce filtering arti-
facts such as “musical noise”. This can be attributed to the facts
that (1) the optimization is not done in a domain that is percep-
tually relevant; that (2) it is extremely difficult to get accurate
estimates of the short-time (power) spectral densities of clean
speech and noise; and that (3) the effect of the relative phase
between speech and noise is disregarded.

More recent approaches have tried to address these points
by working in the perceptually more relevant logarithmic spec-
tral magnitude domain [4, 5, 6], by exploiting the super-
Gaussian character of speech [7] or by using strong prior mod-
els for how clean speech looks like [8, 9, 10, 5, 6]. Especially
Burshtein and Gannot [5] as well as Nilsson et al. [6] took
an interesting new approach, which employs noise compensa-
tion methods that were originally developed in the area of au-
tomatic speech recognition. In this paper, we further pursue
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this approach by using a spectral domain Wiener filter whose
frequency response is determined based on a Gaussian mixture
model (GMM) of the clean speech distribution. The novel as-
pects of the work are in particular that

1. we optimize the frequency response of the filter in the
logarithmic Mel (log-Mel) domain and thereby correct
the perceptually relevant part of the spectral envelope
rather than the spectral fine structure.

2. we determine the frequency response of the Wiener fil-
ter based on a very recent minimum mean square error
(MMSE) speech feature enhancement approach [11, 12]
instead of using the log-normal approximation [6].

3. we model the effect of noise to log-Mel speech spectra
under consideration of the relative phase [13].

The performed experiments show significant gains in non-
stationary noise environments over state-of-the-art implementa-
tions [14] of spectral subtraction, Wiener filtering and Ephraim
and Mallah’s log-spectral amplitude estimator. The remaining
part of this paper is organized as follows. Section 2 briefly re-
views the Bayesian speech feature enhancement approach taken
in [11, 12]. All the variables in that section denote log-Mel
speech spectra. The operations are performed component-wise.
Section 3 explains how the clean speech signal can be recon-
structed either by direct re-synthesis or by application of a
Wiener filter. Section 4 finally presents experimental results on
the MC-WSJ-AV corpus [15], with different types of noise from
the NOISEX-92 database [16] added at various signal-to-noise
ratios.

2. Bayesian Speech Feature Enhancement
The speech feature enhancement approach taken in [11, 12]
aims at suppressing noise in log-Mel speech features based on
a Gaussian mixture model of the clean speech distribution:

p(x) =

K∑
k=1

ckN (x;μX|k,ΣX|k). (1)

In this equation, ck, μX|k and ΣX|k denote the prior proba-
bility, mean and covariance matrix, respectively, of the k-th
Gaussian component. Then, further modeling background noise
N as a Gaussian random variable with distribution p(n) =
N (n;μN ,ΣN ), the joint distribution of clean speech X and
noisy speech Y can be obtained through the following transfor-
mation of random variables:[

X
Y

]
= f̃

([
X
N

])
with f̃

([
x
n

])
=

[
x

f(x,n)

]
(2)
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where f(x,n) = x+Ep(α){log(1+en−x+2α
√
en−x)} is the

phase-averaged interaction function from [13], which describes
the MMSE relationship between noisy speech, clean speech and
noise in the log-Mel domain. In this work, the transformation
in (2) is approximated with a sequence of unscented transforms,
as described in [11, 17]. The result is a joint Gaussian mixture,

p

([
x
y

])
=

K∑
k=1

ckN
([

x
y

]
;

[
μX|k
μY |k

]
,

[
ΣX|k ΣXY |k
ΣY X|k ΣY |k

])
,

with which the MMSE estimate x̂i of clean speech given noisy
speech yi can be approximated according to [18, 12]:

x̂i =

∫
xip(xi|yi)dxi

≈
K∑

k=1

p(k|yi)
(
yi − (μY |k − μX|k)︸ ︷︷ ︸

Δk

)
. (3)

We call this approximation mode-dependent bias correction
(MDBC) as it corrects (subtracts) the bias Δk introduced to
each mode weighted with the posterior probability p(k|yi) of
being in that mode. Following [18, 12], p(k|yi) is evaluated
with Bayes rule:

p(k|yi) =
ckN (yi;μY |k,ΣY |k)∑K

k′=1 ck′N (yi;μY |k′ ,ΣY |k′)
. (4)

The required noise distribution p(n) can be estimated with the
expectation maximization algorithm, as explained in [17, 12].
Alternatively, the joint distribution can be learned from a joint
clean / noisy speech training corpus [18].

3. Clean Speech Reconstruction
The Bayesian speech feature enhancement approach from
the previous section provides a minimum mean square error
(MMSE) estimator for log-Mel clean speech features. The re-
sulting, cleaned features are typically passed on to the speech
recognizer, possibly after application of a discrete cosine trans-
form as well as further processing steps such as cepstral mean
and variance normalization [18, 11, 17, 12]. In this work, how-
ever, we are interested in re-synthesizing the speech signal.
Hence, we follow the approaches taken in [5] and [6] and either
invert all the feature extraction steps up to the magnitude do-
main and then multiply by the noisy phase; or use the estimated
clean speech features for constructing the frequency response of
an adaptive Wiener filter. Both these approaches are explained
in more detail in the following.

3.1. Direct Reconstruction from Log-Mel Features

Similar as proposed in [5] for log magnitude spectra, the speech
signal can be reconstructed from log-Mel features by invert-
ing the feature extraction steps and subsequently multiplying
by the original phase of the noisy speech signal. For log-Mel
features, the feature chain consists of a short-time Fourier trans-
form (FFT), followed by a component-wise magnitude square,
multiplication by an M × N triangular Mel filterbank matrix
W and, finally, logarithmic compression. Put into equations,
log-Mel features are calculated according to:

xi = log (W · PXi) with PXi =
∥∥∥FFT

{
xsig
i

}∥∥∥2

Figure 1: Block diagram of the model-based Wiener filter with
speech feature enhancement (SFE).

where xsig
i denotes the i-th block of samples and where PXi

denotes the power spectral density. Conversely, given an esti-
mated clean speech feature x̂i in the log-Mel domain, the corre-

sponding power spectral density P̂Xi can be approximated as:

P̂Xi = W† · exp(x̂i) (5)

where W† denotes the N ×M Moore-Penrose pseudoinverse
of W. Hence, the sample block xsig

i can be reconstructed as

xsig
i = IFFT

{√
P̂Xi · ej arg(Yi)

}
,

where IFFT denotes the inverse Fourier transform and where
arg(Yi) is the phase spectrum of the observed noisy speech sig-
nal. The reconstructed signal is obtained by overlapping and
adding the xsig

i .
The use of log-Mel features has several advantages. Firstly,

log-Mel features emulate both the logarithmic frequency and
intensity perception of the human auditory system and thereby
operate in a domain that is perceptually relevant. Secondly, they
capture the spectral envelope and thereby the formants, which
are most important for intelligibility. Thirdly, their distribution
is easier to learn, as they are dimensionally reduced and as they
are more Gaussian (due to the averaging). All these advantages
are, however, matched by the fact that they also destroy the fine
spectral structure, especially if M << N . This introduces se-
vere degradations of the sound quality.

3.2. Model-Based Wiener Filtering

In order to avoid the unnatural, synthetic sounding voice, which
results from direct reconstruction, we decided to use the clean
speech estimate x̂i from Section 2 for driving a Wiener filter.
That is achieved by taking the clean speech power spectral den-

sity estimate P̂Xi from (5) and then calculating the frequency
response of the Wiener filter according to:

Hi(ω) =
P̂Xi(ω)

P̂Xi(ω) + P̂Ni(ω)
=

P̂Xi(ω)

P̂Yi(ω)
, (6)

as shown in the diagram in Figure 1. Note, in particular, that we

approximate the power spectral density P̂Yi of the noisy signal
as W† · exp(yi). This is an important detail, as the use of
this smoothed version of the original power spectral density PYi

yields a spectral envelope Wiener filter that preserves the fine
spectral structure. The resulting frequency response is shown in
Figure 2, with the surface plot exemplifying the filters variation
in time over 60 frames of a noisy utterance.

It is noteworthy to mention that Nilsson et al. [6] took a
similar approach. In that work, however, the power spectral
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Figure 2: Example of the frequency response of the proposed
Wiener filter, plotted in log(H(ω) + 1) for better visibility.

shift 16 32 64 128 256

PESQ 2.474 2.4860 2.432 2.358 1.886

shift 16 32 64 128 256

PESQ 2.474 2.4860 2.432 2.358 1.886

Table 1: Effect of the shift factor on the PESQ, for model-based
Wiener filtering of the MC-WSJ-AV corpus [15] contaminated
with 5dB factory(2) noise from the NOISEX-92 database [16].

densities PXi and PNi of clean speech and noise were obtained
with parallel model combination, under a log-normal assump-
tion. Spectral envelope filtering was not performed as the ap-
proach operates in the log-spectral domain. The effect of the
relative phase was ignored.

3.3. Implementation Details

In our implementation of model-based Wiener filtering, all the
processing was done at 16kHz. For calculating the short-time
Fourier transform, we cut the signal into frames of 256 samples
and then applied a Hamming window. These frames were then
further processes as described in Section 3.2, under considera-
tion of the following implementation details.

Frame Shift: Instead of using a frame-shift of 160 samples1, as
in our speech recognition system, we investigated how different
frame-shifts affect the sound quality. Informal listening tests
seemed to indicate that the smaller the frame shift the less was
the amount of crackling present in the processed audio file. This
was confirmed by computing PESQ scores [14] (shown in Table
1). As the sound quality did not further improve with frame-
shifts smaller than 32 samples, we used this number in all of the
following experiments.

Mel Filterbank: As a Mel filterbank we used 30 triangular
shaped Mel filters, which covered a total frequency range of
0-7kHz. The pseudo-inverse of the Mel filterbank matrix was
calculated via singular value decomposition.

Smoothing: In order to avoid strong inter-frame fluctuations
of the frequency response Hi, we further smoothed the power
spectral densities PXi and PYi in time. This was achieved by
first-order recursive averaging,

PXi = αPXi−1 + (1− α)PXi ,

PYi = αPYi−1 + (1− α)YXi ,

with smoothing factor α. Based on the experimental results
from Figure 3, we chose a smoothing factor of α = 0.85.

1this corresponds to a window overlap of 62.5%
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Figure 3: Effect of the smoothing factor α on the PESQ, under
the same conditions as in Table 1.

4. Experiments
In order to evaluate the performance of the proposed Wiener fil-
ter under controlled conditions, we performed a series of exper-
iments on the close-talking channel of the Multi-Channel Wall
Street Journal Audio-Visual (MC-WSJ-AV) corpus [15]. This
corpus consists of 352 utterances spoken by 10 speakers, with a
total recording length of 40 minutes. Different noise conditions
were simulated by adding noise from the NOISEX-92 database
[16] at different signal-to-noise ratios (SNRs). The performance
of the proposed speech enhancement algorithms was evaluated
by calculating perceptual evaluation of speech quality (PESQ)
scores [14] as well as the log spectral distance (LSD) [14] be-
tween clean and estimated clean speech spectra.

Figure 4 shows the PESQ scores we obtained for noisy and
enhanced speech. The noise conditions range from relatively
stationary car driving noise (volvo) over factory noise (fac-
tory2) up to highly non-stationary babble noise (babble), added
with SNRs of 0, 5 and 10dB, respectively. Speech enhance-
ment results are given for Berouti’s spectral subtraction (SS)
[19], Scalart and Filho’s Wiener filter (WF) [20], [14, §6.10],
Ephraim and Malah’s MMSE log spectral amplitude estimator
(log-MMSE) [4], the proposed model-based Wiener filter (SFE-
WF) from Section 3.2 as well as the the direct reconstruction ap-
proach (SFE-REC) from Section 3.1. The bar plots clearly show
that the proposed SFE-WF algorithm outperforms all the other
methods in non-stationary noise. The largest gain was achieved
for 0dB babble noise, with an improvement of 0.35 (24.0% rel-
ative) over log-MMSE and an improvement of 0.58 (47.2% rel-
ative) over SS. In stationary noise (volvo), the SFE-WF per-
formed comparably to log-MMSE, with an average PESQ of
3.49 in both cases.

Figure 5 shows log-spectral distances (LSDs) for the same
noise conditions and enhancement techniques that were used
during calculation of the PESQ scores in Figure 4. When com-
paring these plots, however, it should be taken into account that
improvements in PESQ mean higher scores wile improvements
in LSD mean lower values. Hence, Figure 5 shows that the pro-
posed model-based Wiener filter (SFE-WF) consistently outper-
formed the log-spectral amplitude estimator (log-MMSE) in all
noise conditions. Another interesting result is that spectral sub-
traction performed surprisingly well. For babble noise at 0dB it
even outperformed the SFE-WF, by 5.4% relative. With Volvo
noise, however, spectral subtraction performed 50.0%, 39.0%
and 29.6% relative worse than the SFE-WF.

Informal listening tests revealed that spectral subtraction
and Wiener filtering suffered from musical noise [14], espe-
cially at lower SNRs. The model-based Wiener filter as well as
the log spectral amplitude estimator, on the other hand, did not
seem to be affected by this problem. But they introduced other
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Figure 4: PESQ scores for different noise types and enhance-
ment techniques, averaged over the MC-WSJ-AV corpus. The
best achievable score is 4.5. The worst is 1.0.
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Figure 5: Log-spectral distance (LSD) in dB, for different noise
types and enhancement techniques. The lower the distance, the
closer is the signal to the original utterance, i.e. the better.

filtering artifacts, such as a dampened and somewhat distorted
sound in case of log-MMSE and a slight “crackling” sound in
case of the SFE-WF. At very low SNRs (0dB and below) the
SFE-WF enhanced sound started to have a synthetic character.
Moreover, the noise seemed to get integrated into the voice of
the speaker, which might be a result of keeping the noisy fine
spectral structure.

Regarding the above experiments, it should be noted that
we used Loizou’s implementations [14] of spectral subtraction,
Wiener filtering and log-spectral amplitude estimation. The re-
quired noise estimates were obtained with Martin’s statistical
model based voice activity detector [21], as described in more
detail in [14, §11.2]. For speech enhancement with the model-
based Wiener filter as well as the direct reconstruction approach
from Section 3.1, we used speaker-dependent Gaussian mixture
models with 128 components. With a model of this size and a
frame-shift of 32, the enhancement ran in approximately 3 times
real time, on a 3.00GHz Intel Xeon 5100 CPU.

5. Conclusions
We have proposed a novel, model-based Wiener filter that cor-
rects the spectral envelope of the speech signal based on a rea-
sonably novel speech feature enhancement approach in the log-
Mel domain. Its superior performance with respect to non-
stationary noise-suppression has been shown in a comparison
with state-of-the-art implementations of standard speech en-
hancement methods.
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