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Abstract

In this work, we demonstrate that the most widely-used model
for the relationship between noisy speech, clean speech and
noise in the log-Mel domain is inaccurate due to its disregard
of the phase. Moreover, we show how a more exact model can
be derived by averaging over the phase in the log-Mel domain,
and how this can profitably be applied to particle filter based se-
quential noise compensation. Experimental results confirm the
superiority of the phase-averaged model for both clean speech
estimation in general and the particle filter in particular. Reduc-
tions in word error rate of up to 17% relative were obtained on
a large vocabulary task.
Index Terms: model, relative phase, noise compensation

1. Introduction
In [1] Acero gave a formula for the relationship between noisy
speech, clean speech and noise in the log power spectral do-
main, which would later be used in a large variety of ap-
proaches: parallel model combination (PMC) [2], vector Taylor
series (VTS) [3], sequential expectation maximization (EM) [4],
interacting multiple models (IMMs) [5] and, more recently, par-
ticle filters (PFs) [6, 7]. All of these approaches use an auxiliary
clean speech model, either a Gaussian mixture model (GMM)
[3, 4, 5, 7] or a hidden Markov Model (HMM) [2, 6], to map the
probability density function (pdf) of clean speech to the pdf of
noisy speech, based on the formula given in [1], which we from
now on refer to as the standard model.

The standard model is deficient in that it does not take ac-
count of the relative phase between speech and noise nor its dis-
tribution. Usually it is argued that the phase is zero in average
and hence the phase term can be neglected. We show that this
assumption introduces systematic errors in the log-Mel domain.
Admittedly, modeling the phase is not entirely new, as Deng has
previously derived a phase-dependent model, which has turned
out to be beneficial for speech feature enhancement [8, 9]. The
approach proposed here deviates from Deng’s approach in two
points: first, we do not make the Gaussian assumption, and sec-
ond, we average the model instead of maintaining a probabilis-
tic phase term.

In addition to demonstrating the superiority of the phase-
averaged model over the standard model with respect to clean
speech estimation, we show how it can profitably be applied to
particle filter based sequential noise compensation.
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2. A phase-averaged model
In this section, we derive a phase-averaged model for the rela-
tionship between noisy speech, clean speech and noise in the
log-Mel domain. This will be done in the following order: first
a phase-dependent model is established in Section 2.1. Then
the distribution of phase factors is investigated in Section 2.2.
Section 2.3 finally shows how the averaging can be performed
and how it can be implemented efficiently.

In what follows, all of the vector multiplications are con-
sidered to be element-wise, as are the functions of vectors; e.g.
for x = [x1 . . . xn]T : cos(x) = [cos(x1) . . . cos(xn)]T .

2.1. A phase-dependent model

Denoting magnitude spectra of noisy speech, clean speech and
noise by Y , X and N respectively, their relationship in the
power spectral domain can be shown [9] to be

Y 2 = X2 +N2 + 2 cos(θ)XN, (1)

where θ is the vector of relative phases betweenX andN . Typ-
ically, the phase term 2 cos(θ)XN is omitted based on the ar-
gument it is zero on average, such that

Y 2 = X2 +N2. (2)

This is perfectly reasonable for the power spectral domain.
Note, however, that when (2) is translated into the log-Mel do-
main to obtain the standard model equation given in [1],

y = log (ex + en) , (3)

a nonlinear transform is applied. The problem with that is that
the mean Ep(f(x)) [f(x)] of a nonlinearly transformed pdf is
not necessarily equal to the transformed mean f(Ep(x) [x]) of
the original pdf. So the effect of the phase term might not be
zero on average after taking the logarithm. And indeed it is not,
as can be seen in Figure 1, which compares equation (3) – the
log of the mean of (1) – to the mean of the log of (1) – the
phase-averaged model proposed in this paper.

In the Mel frequency domain equation (1) becomes:

Ỹ = X̃ + Ñ + 2α
√
X̃Ñ , (4)

where the Ỹ , X̃ , Ñ are the products of Y 2, X2, N2 with the
Mel filterbank matrix W and where α is the vector of phase
factors

αi =

∑
kWi,k cos(θk)XkNk√

X̃iÑi
with −1 ≤ αi ≤ 1 as derived in [9]. Some speech feature
enhancement approaches require solving equation (4) for X̃:

X̃ =

(
±
√
Ỹ + (α2 − 1)Ñ −α

√
Ñ

)2

,
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Figure 1: Noisy speech power y as a function of noise power n
in the log-Mel domain calculated with the standard model (3),
as well as with the phase-averaged model (8) proposed in this
paper. Note that the averages are dependent on the frequency
bin.

where 1 denotes a vector of ones. Going to the log-Mel domain
by replacing Ỹ , X̃ and Ñ with ey, ex and en respectively gives

ex =
(
±
√
ey + (α2 − 1)en −α

√
en
)2

,

which can be solved for x by pulling
√
ey out of the square and

then taking the logarithm:

x = y ± log
(√

u− v
)2︸ ︷︷ ︸

,f±(y,n,α)

, (5)

where u , 1 + (α2 − 1)en−y and v , α
√
en−y. Note that

this solution exists only if ui ≥ 0 and (
√
ui − vi) 6= 0 for all i.

The corresponding Jacobian is

df(y,n,α)

dy
= diag

(
1

u± v
√

u

)
︸ ︷︷ ︸

,f ′±(y,n,α)

, (6)

where diag(·) denotes the operator that translates a vector to
a diagonal matrix, and the fraction denotes a component-wise
vector division. As the translation of equation (4) to the log-
Mel domain was derived in [9],

y = x + log
(
1 + en−x + 2α

√
en−x

)
︸ ︷︷ ︸

,g(x,n,α)

, (7)

we now have phase-dependent equations for x = f(y,n,α),
dx/dy = f ′(y,n,α) and y = g(x,n,α). The aim is to av-
erage these with respect to the phase factors, which requires
knowledge of their distribution.

2.2. Distribution of the phase factors

Deng [9] argued that the phase factors follow a zero-mean Gaus-
sian distribution and learned the variance terms accordingly. An
alternative is to directly use the empirical distribution, which
can be obtained in a controlled experiment, by adding known

speech and noise signals and computing the phase factors of the
corresponding Mel spectra according to

αi =
Ỹi − X̃i − Ñi

2
√
X̃iÑi

,

where i is an index over the Mel frequency bins. Figure 2 shows
the resulting distribution for the multi-channel Wall Street Jour-
nal audio visual corpus [10] training set and factory noise from
the NOISEX-92 database [11].
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Figure 2: Empirical distribution of the phase factors αi.

Another approach is to approximate the empirical distribu-
tion by simulation. Assuming the relative phase is uniformly
and independently distributed in the power spectral bins, the
vector θ of relative phases can be simulated by drawing sam-
ples θ(j) with θ(j)k ∼ U[0,π], the uniform distribution on [0, π].
The corresponding phase factors can be approximated by mul-
tiplying the θ(j) with the Mel filterbank matrix and then taking
the cosine of the components, respectively:

α
(j)
i ≈ cos

(∑
kWi,kθ

(j)
k

)
.

The resulting simulated empirical distribution showed a high
degree of similarity to the empirical distributions obtained in ex-
periments. In particular, the empirical distribution did not vary
strongly for different noise types. These claims are supported
by the plots in figure 3, which show the variance and kurtosis for
the simulation as well as for tank (leopard) and factory noise.

Figures 2 and 3 further show that the phase factor distribu-
tion is definitely not Gaussian in the lower frequency bins. Note
that a Gaussian distribution corresponds to a kurtosis1 of 3.0, a
uniform distribution to a kurtosis of 1.8.

2.3. Averaging over the phase factors

Making use of the phase factor distribution we can now average
(5), (6) and (7) with respect to α. In the following we show
how these averages can be computed with Monte Carlo integra-
tion and how they can be stored in a table to obtain an efficient
runtime implementation through table lookups. Defining

f̃(z,α) , log
(√

1 + (α2 − 1)ez −α
√
ez
)2

g̃(z,α) , log
(
1 + ez + 2α

√
ez
)

1We compute the kurtosis as the fourth central moment divided by
the variance square.
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Figure 3: Variance and kurtosis of the distribution of phase fac-
tors for the simulation, tank (leopard) and factory noise

f , f ′ and g can be written

f±(y,n,α) = y ± f̃(n− y,α)

f ′±(y,n,α) = f̃ ′±(n− y,α)

g(x,n,α) = x + g̃(n− x,α)

where f̃ ′±(z,α) , f ′±(y,n,α) results from equation (6) by
replacing (n− y) by z in the u and v terms. Now f±, f ′± and
g can be averaged with respect to α by averaging the f̃(z,α),
f̃ ′±(z,α) and g̃(z,α) with respect to α. This can be done by
Monte Carlo integration, i.e. by using a setM of samples from
the empirical distribution of phase factors. Assuming the phase
factors are stochastically independent the average of g̃(z,α)
can be approximated as

E[g̃(zi, αi)] ≈
1

|M|
∑

α∈M

g̃(zi, αi). (8)

For f̃+(z,α) and f̃−(z,α) we must consider only those α ∈
M that result in valid solutions, characterized by ui ≥ 0 and
(
√
ui− vi) 6= 0. This implies that for each Mel frequency bin i

we work on a subsetMi ⊆ M of samples, and the average of
f̃±(z,α) can be approximated as

E[f̃±(zi, αi)] ≈
1

2|Mi|
∑

αi∈Mi

f̃+(zi, αi) + f̃−(zi, αi) (9)

if we average the two solutions, f̃+(z,α) and f̃−(z,α). The
phase-averaged Jacobian can be obtained in the same way, i.e.
by averaging f̃ ′±(z,α) for those α that result in solutions with
respect to f̃±(z,α):

E[f̃ ′±(zi, αi)] ≈
1

2|Mi|
∑

αi∈Mi

f̃ ′+(zi, αi)+f̃
′
−(zi, αi). (10)

As on-line Monte Carlo integration is computationally ex-
pensive we store precomputed averages in a table. Then, at run-
time, the phase-averaged model can be implemented through
table lookups:

f(yi, ni) ≈ yi + E[f̃(ni − yi, αi)] (11)

df(yi, ni)/dyi ≈ E[f̃ ′(ni − yi, αi)] (12)
g(xi, ni) ≈ xi + E[g̃(ni − xi, αi)] (13)

In addition to the averages we store the probabilities

ci(zi) ,
|Mi|
|M| (14)

of f̃±(zi, αi) being a valid solution, which will be needed in
the upcoming section.

3. Application to particle filter based
sequential noise compensation

Recently particle filters [7, 12, 13] have been used to track the
noise portion of noisy speech features in order to compensate
for distortions introduced by the noise. The particle filter ap-
proach can be described as keeping a set of noise hypotheses
that are propagated according to a dynamical system model.
The dynamical system model can be autoregressive as in [7, 13],
dynamical autoregressive as described in [14], or a transition
based on Polyac averaging and feedback [12]. In addition to be-
ing propagated forward in time, the noise hypotheses are pruned
at each time instant t by multiplying hypotheses that have a high
relative likelihood and removing hypotheses that have a low rel-
ative likelihood. Thereby the likelihood is evaluated as

py(yt|n(j)
t ) = px(f(yt,nt))

∣∣∣∣det
(
df(yt,nt)

dyt

)∣∣∣∣ , (15)

where px is an auxiliary clean speech Gaussian mixture model
and where f(yt,nt) = log(eyt − ent) is the standard model
equation solved for x. The multiplication by the absolute Jaco-
bian determinant is due to the transformation of the probability
density from py to px.

The phase-averaged model can be integrated by replacing
the standard model equation and its Jacobian by (11) and (12).
However, we further have to multiply (15) by

∏
i ci(nt,i−yt,i)

to compensate for the fact that different noise hypotheses re-
sult in a different number of solutions of (5) with respect to the
phase factor α. Clean speech estimation has to be modified
accordingly if the straight-forward approach [13] is used:

E [xt|y1:t] ≈
∑
j

f(yt,n
(j)
t )py(yt|n(j)

t ). (16)

4. Experiments
In order to compare the performance of the phase-averaged
and the standard model, we performed a simulation in which
known clean speech and noise signals were mixed at 0 dB.



Clean speech came from the test set of the multi-channel Wall
Street Journal audio visual (MC-WSJ-AV) corpus [10]. As a
disturbance, we chose the factory1 noise from the NOISEX-
92 database [11]. The resulting noisy speech features were en-
hanced with either the standard equation or the phase averaged
model, using the perfectly known noise sequence. As the true
clean speech features were known, the mean squared error of
the estimated clean speech features could be computed. It was
477.4 per frame for the standard equation, but only 153.9 for
the phase-averaged model, clearly showing the superiority of
the phase-averaged model.

In the experiments reported below, the feature extraction of
our ASR system was based on Mel frequency cepstral coeffi-
cients (MFCC)s, where a triangular Mel filterbank was used.
After cepstral mean subtraction (CMS) with variance normal-
ization, 15 consecutive frames of 13-coefficient MFCCs were
concatenated and subsequently reduced by linear discriminant
analysis (LDA) to obtain the final 42-dimensional feature. The
decoder used in the experiments is based on the fast on-the-
fly composition of weighted finite-state transducers (WFSTs),
as described in [14, §8]. It produces word lattices which are
then optimized with WFST operations as described in [15]. The
triphone acoustic model was trained with 30 hours WSJ0 and
12 hours WSJCAM0 data, resulting in 1,743 fully continuous
codebooks with a total of 70,308 Gaussians. The auxiliary clean
speech GMM with 128 mixture components was trained on the
same data set.

We evaluated the phase-averaged particle filter (pa-PF) de-
scribed in Section 3 through a series of automatic speech recog-
nition experiments. These experiments were conducted for
speakers 16-25 of the MC-WSJ-AV corpus. The corresponding
352 utterances were artificially contaminated by adding various
noise-types from the NOISEX-92 database at different signal-
to-noise ratios (SNR)s. Table 1 shows the results in comparison
to the baseline (no PF) as well as to the particle filter described

10 dB 15 dB 20 dB
noise PF 1st 2nd. 1st 2nd 1st 2nd

none 63.7 34.5 55.2 25.8 47.4 22.4
fac std 65.8 44.3 52.0 32.1 46.8 27.4

pa 53.7 31.1 45.7 24.4 44.1 21.7
none 66.3 46.7 48.2 32.1 42.6 23.0

ops std 64.0 47.3 48.9 30.7 41.8 23.9
pa 63.2 44.3 46.7 29.8 40.4 22.1

none 81.0 56.0 70.3 36.9 64.1 27.3
eng std 84.6 71.7 72.3 51.5 64.0 36.6

pa 73.3 48.4 63.1 33.0 57.0 24.2

Table 1: Word error rates (WER)s for the particle filter used
in [13] (std), the particle filter with the phase-averaged model
(pa) and the baseline (none), each for the unadapted (1st) and
adapted (2nd) pass. For clean speech the WER was 41.9% and
20.5% respectively. The added noise was either factory2 (fac),
destroyer-ops (ops) or destroyer-eng (eng) noise.

in [13] (std-PF), for a first, unadapted speech recognition pass
as well as for an adapted pass using maximum likelihood lin-
ear regression (MLLR) [16] feature space adaptation. In all
cases investigated, the pa-PF performed best. With factory2
noise it achieved a relative improvement of 15.7%, 17.2% and
7.0% over the baseline on the unadapted pass, which reduced to
9.3%, 5.4% and 3.1% on the adapted pass. The std-PF failed to
improve over the baseline in more than half of all cases, which
was especially severe on the adapted pass. It performed even

worse when the fast acceptance test [13] was not used. This is
due to the problems with sample attrition and dropouts reported
in [13]. The pa-PF completely overcomes those problems with-
out having to resort to an acceptance test.

5. Conclusions
The experiments confirm that the proposed model is consider-
ably superior to the standard model. For clean speech estima-
tion the mean squared error of the phase-averaged model has
been shown to be a third that of the standard model. Moreover,
it has been shown to improve particle filter based speech fea-
ture enhancement. Maybe other approaches can benefit from
that too.
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