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Abstract
This paper investigates the use of acoustic echo cancella-
tion components in a speech separation system. The ba-
sic system uses a classical beamformer architecture, which
separates the speech from different speakers based on spa-
tial diversity. In order to get a better suppression of con-
current speech, we add a residual echo suppression stage,
which has originally been developed in the area of acous-
tic echo cancellation. The speech separation performance
of the proposed system is evaluated by means of automatic
speech recognition experiments. The results show a clear
improvement over standard beamforming and postfiltering
approaches, with a word error rate of 44.2% compared to
68.1% for a superdirective beamformer (SDB) and 59.8%
for an SDB with Zelinksi postfilter.

1 Introduction
Sound capturing systems for hands-free speech recognition
[1] typically employ a spatial filter which extracts the sig-
nal from the desired speaker while suppressing noise and
reverberation (under the assumption that these come from
other directions). This approach works reasonably well
in practice. But the PASCAL Speech Separation Chal-
lenge (SSC-II) [2, 3] has demonstrated that spatial filter-
ing alone is insufficient for separating concurrent speech
(i.e. speech from two simultaneous speakers, whose mix-
ture is received at the microphones). Hence, the authors
of [2, 3] proposed to use specialized cross-talk cancella-
tion postfilters which exploit the spectral sparsity of speech
through binary time-frequency masking. In this work, we
present an alternative to these approaches. It consists of
using the residual echo suppression technique from [4] in
order to (1) estimate the residual at the output of two beam-
formers – each one steered at one of the speakers – and to
then (2) suppress the estimated residual with a Wiener fil-
ter. This approach can be interpreted as removing that part
which both beamformer outputs have in common. Hence,
it should be expected to improve the separation.

Figure 1 again gives an overview of the proposed ap-
proach. It consists of a spacial filtering stage, which ex-
ploits the fact that speakers tend to reside at different loca-
tions in the room. This allows us to separate their speech
by directing one beamformer at each of the speakers. Fol-
lowing [2], we here use a superdirective design [5], which
is an appropriate choice for reverberant environments [6]
such as the office room in which the SSC-II has been
recorded [7]. This spatial separation stage is followed by
a residual echo suppression stage, which further improves
the separation quality by suppressing the residual at the
beamformer outputs.
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Figure 1: Proposed speech separation system with two
beamformers and a residual echo suppression stage.

The remainder of the paper is organized as follows. In
Section 2 we briefly describe the beamforming techniques
which are used in this work. This is followed by Section
3, which explains cross-talk cancellation based on time-
frequency masking [2, 3, 8]. Section 4 describes the pro-
posed approach of using residual echo suppression for this
purpose. Section 5 finally presents the experimental re-
sults, including a discussion.

2 Beamforming
Beamforming is a way to influence the directivity of a mi-
crophone array. It is used to filter signals from a certain di-
rection. Signals from other directions are attenuated. The
filter characteristic of a microphone array is determined by
both the array geometry, i.e. the positions m1, . . . ,mM of
the microphones, and the filter coefficients of the channels.
For the following, let us denote the signal at the i-th mi-
crophone by xi(t) and let us further denote its Fourier co-
efficients by Xi(ω). Then beamforming (in the frequency
domain) can be described as a multiplication of the Fourier
coefficients X(ω) = [X1(ω) · · · XM(ω)] of the individual
microphone signals with a weight vector W(ω):

Y (ω) = [W ∗1 (ω) · · · W ∗M(ω)]︸ ︷︷ ︸
,WH

·

X1(ω)
...

XM(ω)

 . (1)

In order to steer the array into a particular direction – de-
noted by the azimuth θ and elevation φ – we further define
the array manifold vector

V(ω) =
[
e− jωτ1 · · · e− jωτM

]T (2)

where the time delays τi = −(aT mi/c) are calculated un-
der the far-field assumption with a denoting the directional
cosine a , [cosθ sinφ sinθ sinφ cosφ ]T and with c de-
noting the speed of sound.



2.1 MVDR Beamforming
In order to design an optimized beamformer, we may wish
to minimize the noise power at the output of the beam-
former. For that, let us express X(ω) as a superposition
of the desired signal S(ω)V(ω) with multi-channel noise
N(ω): X(ω)= S(ω)V(ω)+N(ω). Then writing the out-
put of the beamformer as

Y (ω) = WH(ω)S(ω)V︸ ︷︷ ︸
YS(ω)

+WH(ω)N(ω)︸ ︷︷ ︸
YN(ω)

, (3)

it becomes clear that the minimization of the noise output
power is equivalent to minimizing the variance of YN(ω):

E
{
|Yn|2

}
= WH(ω)Σnn(ω)W(ω). (4)

where Σnn(ω) is the power spectral density (PSD) matrix
of the noise. As we do not wish the desired signal S(ω)
to be either attenuated or amplified, we further use the dis-
tortionless constraint WH(ω)V(ω) = 1. This leads to the
minimum variance distortionless response (MVDR) beam-
former whose weight vector is the solution of the following
optimization problem:

min
W

WH
ΣnnW subject to WHV = 1 (5)

where the dependency on ω has been dropped for the
sake of readability. This optimization problem can now
be solved with a Lagrange multiplier; and it yields:

Wmvdr(ω) =
Σ−1

nn (ω)VH(ω)

VH(ω)Σ−1
nn (ω)V(ω)

. (6)

2.2 Homogenous Noise Fields
In the particular case of a homogeneous noise field (i.e. the
noise power is the same in each point) [5], the noise PSD
matrix Σnn(ω) can be written Σnn(ω) = Φnn(ω)Γnn(ω)
where Φnn(ω) denotes the noise power and where Γnn(ω)
is the noise coherence matrix whose coefficients

(Γnn)i, j(ω) =
Φnin j(ω)√

Φnini(ω)Φn jn j(ω)
(7)

denote the coherence of the noise at the i-th and j-th micro-
phone channels. Now plugging Σnn(ω) = Φnn(ω)Γnn(ω)
into the MVDR solution from above, we find that the
weight vector W(ω) becomes

Wmvdr(ω) =
Γ−1

nn (ω)V(ω)

VH(ω)Γ−1
nn (ω)V(ω)

(8)

as the Φ−1
nn (ω) in the nominator and denominator cancel.

Hence, in a homogenous noise field the beamformer is de-
pendent on the noise coherence only.

2.3 Delay and Sum Beamforming
Choosing the identity matrix as a noise coherence matrix,
i.e. Γnn = I, yields the well-known delay-and-sum (DSB)
beamformer. Its weight vector is calculated according to:

Wdsb(ω) = 1
M V(ω); (9)

and it is optimal for spatially uncorrelated (incoherent)
noise such as white noise at the sensors.

2.4 Superdirective Beamforming
A popular alternative to the incoherent noise field assump-
tion of the DSB is to use a spherically isotropic (or diffuse)
noise field, whose coherence matrix Γnn|diff is calculated
according to [5, 6]:

(Γnn|diff)i, j(ω) = sinc
(

ω
‖mi−m j‖

c

)
. (10)

This is optimal for reverberant environments in which
noise approaches the microphones from all directions [6].
Plugging Γnn|diff back into (8) yields the superdirective
beamformer (SDB) [5]. As the name hints, it optimizes
the directivity index (DI),

DI(ω) = 10log10

(
|W H(ω)V (ω)|2

W H(ω)Γnn|di f f (ω)W (ω)

)
, (11)

which describes the capability of an array to suppress a
diffuse noise field.

2.5 MMI Beamforming
In order to compare our results to other methods that
have been reported in the literature, we here also in-
troduce the Minimum Mutual Information MMI) beam-
former, which Kumatani et al. [3, 9] proposed as a solution
to the speech separation problem. It uses two beamform-
ers whose weights are jointly optimized to minimize the
mutual information at the beamformer outputs. To main-
tain the distortionless constraint, the authors of [9] used the
Generalized Sidelobe Canceller (GSC) configuration

Yi = (Wq,i−BiWa,i)
H X (12)

with Wq,i = Vi being the quiescent weight vector chosen
for the i-th speaker (the dependency on ω has again been
dropped for the sake of readability). The blocking matrix
Bi by definition projects to the subspace which is orthogo-
nal to Wq,i. The active weight vectors Wa,i are optimized
to individually minimize the mutual information

I(Y1,Y2) = E

{
log

p(Y1,Y2)

p(Y1)p(Y2)

}
(13)

in each frequency bin. Due to the lack of an analytical
solution, the Wa,i are refined in an iterative fashion, as
explained in more detail in [9].

2.6 Zelinski Postfiltering
The MVDR beamformer in principle minimizes the noise
power at the output of the array. But this minimization
is restricted to linear solutions as it optimizes the scalar
product with a weight vector. So, we might not find the
best possible solution. In fact, it has been observed that
the noise suppression can be further improved by nonlinear
post-processing with a Zelinski postfilter [10, 11]. This
approach was later shown to be the minimum mean square
error (MMSE) solution to beamforming [12]:

wmmse(ω) =

(
Φss(ω)

Φss(ω)+Φnn(ω)

)
︸ ︷︷ ︸

H(ω)

wmvdr(ω). (14)

where wmvdr(ω) denotes the weight vector of an MVDR
beamformer and where H(ω) is the frequency response of



a Wiener postfilter. The Φss(ω) and Φnn(ω) denote the
speech and noise power at the output of the array; and they
may be estimated as follows [10, 11]:

Φss ≈
2

M(M−1)
ℜ

{
M−1

∑
i=1

M

∑
j=i+1

v∗i Φxix j v j

}
, (15)

Φnn ≈
1
M

M

∑
i=1

Φxixi −Φss. (16)

In these equations, Φxix j and Φxixi are the cross and power
spectral densities of the microphone channels and vi is the
i-th coefficient of the array manifold vector (the depen-
dency on ω was dropped for the sake of readability).

Although Zelinski postfiltering gives good results in
practice, it also tends to overestimate the noise power.
Hence, we here use a noise overestimation factor β which
allows us to control the amount of speech distortion:

H(ω) =
Φss(ω)

Φss(ω)+βΦnn(ω)
. (17)

3 Binary Time/Frequency Masking
Unfortunately, the assumption of spatially uncorrelated
noise (as it is used in the Zelinski postfilter) does not really
hold in the presence of a strong directed interference such
as a second speaker. Hence, Maganti et al. [8] proposed
to replace the Zelinski postfilter by a specialized cross-talk
cancellation postfilter. This filter uses the fact that differ-
ent speakers tend to excite different frequency bands at a
time and, consequently, extracts the clean speech spectrum
Ŝi(ω, t) of the i-th speaker at time t by applying a binary
mask Mi(ω, t) to the beamformer output Yi(ω, t):

Ŝi(ω, t) = Mi(ω, t) ·Yi(ω, t), i ∈ {1,2}. (18)

Optimally, the binary masks Mi(ω, t) would be set to 1 if
the time-frequency unit (ω, t) belongs to the i-th speaker
and it would set to 0 otherwise [13]. As, in practice, it
is not known which time-frequency units are used by a
speaker, Maganti et al. [8] estimated the masks based on
the power ratio of the beamformer outputs:

M̂i(ω, t) =
{

1, |Yi(ω, t)| ≥ |Yj(ω, t)| ∀ j
0, otherwise

. (19)

4 Residual Echo Suppression
As an alternative to binary masks [2, 3, 8], we here propose
the use of residual echo suppression (RES) [4] as a speech
separation postfilter. It is noteworthy that RES was origi-
nally developed for acoustic echo cancellation systems. It
can be described as first estimating the residual based on
the coherence function and then suppressing the estimated
residual with a Wiener filter. For the first step, we need to
estimate the cross-power spectral density (CSD) Φ̄y1y2 and
the power spectral densities (PSD) Φ̄y1y1 and Φ̄y2y2 . This
is achieved here through Welsh averaging:

Φ̄y1y2(ω) = α · Φ̄y1y2(ω)+(1−α) ·Φy1y2(ω)

Φ̄y1y1(ω) = α · Φ̄y1y1(ω)+(1−α) ·Φy1y1(ω)

Φ̄y2y2(ω) = α · Φ̄y2y2(ω)+(1−α) ·Φy2y2(ω)

where Φy1y2 , Φy1y1 and Φy2y2 denote the instantaneous
CSD and PSD values and where α is a smoothing constant.
After these exponentially decaying averages have been ob-
tained, the coherence γy1y2 between Y1 and Y2 can now be
calculated according to:

γy1y2(ω) =
Φ̄y1y2(ω)√

Φ̄y1y1(ω)Φ̄y2y2(ω)
. (20)

With this, we can now approximate the residual part of Yj

that is contained in Yi as R̂i(ω) = γy1y2(ω)Yj(ω), j 6= i. The
corresponding residual power Φ̂riri is obtained by taking
the magnitude square1 [4]:

Φ̂riri(ω) =
|Φ̄y1y2(ω)|2

Φ̄y1y1(ω)Φ̄y2y2(ω)︸ ︷︷ ︸
=|γy1y2 (ω)|2

Φ̄y jy j(ω) (21)

In the second step, i.e. the construction of the Wiener filter,
the clean speech power Φsisi is estimated as (Φyiyi−β Φ̂riri)
where β denotes a residual overestimation factor. This
leads to the following Wiener filter transfer function:

Hi(ω) =
max(Φ̄yiyi(ω)−β ·Φriri(ω),0)

Φ̄yiyi(ω)
, (22)

i ∈ {1,2}, which is to be multiplied to the corresponding
beamformer output Yi.

5 Experiments and Results
The performance of the proposed approach has been
evaluated on the two speaker condition of the Multi-
Channel Wall Street Journal Audio-Visual (MC-WSJ-AV)
corpus[7]. This condition was used in the PASCAL Speech
Separation Challenge II [2, 3] and it consists of two con-
current speakers which are simultaneously reading sen-
tences from the Wall Street Journal. The total number of
utterances is 356 (or 178, respectively, if we consider the
fact that two sentences are read at a time [2]). The speech
recognition system used in the experiments is identical to
the one in [3], except that we use three passes only (instead
of four): a first, unadapted pass; a second pass with unsu-
pervised MLLR feature space adaptation; and a third pass
with full MLLR adaptation. The estimated speaker posi-
tions are the same ones used in [3]. Hence, the results are
absolutely comparable.

Table 5 shows the word error rates (WER) we ob-
tained when separating the speech through beamforming
only. This gives a direct comparison between delay-and-
sum (DSB), superdirective (SDB) and minimum mutual
information (MMI) beamforming [3], without the use of
postfiltering. As expected, the MMI beamformer here per-
formed best, with an absolute improvement of 20.2% com-
pared to the DSB and 10.5% compared to the SDB.

Used Beamformer
DSB SDB MMI

WER 78.87% 68.07% 57.58 %

Used Beamformer
DSB SDB MMI

WER 78.87% 68.07% 57.58 %

Table 1: Word error rates for plain beamformers, without
the use of a postfiltering techniques.

1Note that we have further replaced |Yj|2 by Φ̄y jy j .



As a next step, we evaluated the combination of a su-
perdirective beamformer with a Zelinski postfilter. The re-
sulting word error rates are shown in Table 2, in depen-
dency of the noise overestimation factor β , which controls
the amount of speech distortion (see Section 2.6 for a more
detailed explanation). Here, a value of β = 0.5 gave the
best result, with a WER of 59.8% compared to 68.1% for
a plain SDB. This result already comes quite close to an
MMI beamformer, which achieves a WER of 57.0% when
combined with a Zelinski postfilter.

noise overestimation factor β

1.50 1.00 0.75 0.50 0.25
WER 64.7% 60.9% 62.3% 59.8% 60.9%

noise overestimation factor β

1.50 1.00 0.75 0.50 0.25
WER 64.7% 60.9% 62.3% 59.8% 60.9%

Table 2: Word error rate for an SDB with a Zelinski post-
filter. The noise overestimation factor β is varied from a
value of 1.5 to 0.25.

The results for the proposed residual echo suppression
(RES) postfilter are finally shown in Table 3, again in com-
bination with a superdirective beamformer. The best result
is obtained with a residual overestimation factor β of 0.8,
at a WER of 44.2%. This constitutes an absolute improve-
ment of 24% over a plain SDB and still an improvement
of 15% over an SDB with a Zelinski postfilter. At the
same time, RES is computationally much more efficient
than a Zelinski postfilter, as it does not require summing
over O(M2) channel combinations, see e.g. (15).

residual overestimation factor β

1.0 0.8 0.6 0.4 0.2
WER 48.7% 44.2% 46.4% 47.0% 52.5%

residual overestimation factor β

1.0 0.8 0.6 0.4 0.2
WER 48.7% 44.2% 46.4% 47.0% 52.5%

Table 3: Word error rate for an SDB with an RES postfil-
ter. The residual overestimation factor β is varied from a
value of 1.0 to 0.2.

Table 4 again gives a comparison to other results that
have been reported in the literature, namely the MMI
beamformer from [3] as well as binary time-frequency
masking (BM) [2, 3, 8, 14]. These results shows that the
proposed RES postfilter still performs slightly better than
the combination of a Zelsinki postfilter with binary mask-
ing (at least in the case of an SDB beamformer).

Beamformer
Postfilter DSB SDB MMI

None 78.87% 68.07% 57.58%
Zelinski 69.07% 59.82% 56.98%

Zelinski + BM 51.03% 45.33% 49.99%
RES N/A 44.20% N/A

Beamformer
Postfilter DSB SDB MMI

None 78.87% 68.07% 57.58%
Zelinski 69.07% 59.82% 56.98%

Zelinski + BM 51.03% 45.33% 49.99%
RES N/A 44.20% N/A

Table 4: Word error rates for the DSB, SDB and MMI
beamformers with different postfiltering techniques.

6 Conclusions
We have shown how the residual echo suppression tech-
nique of an acoustic echo cancellation system can prof-
itably be used for the speech separation task. The results
show a significant improvement in word error rate, with an
absolute improvement of 14% over a Zelinski postfilter and
an improvement of 1% for a Zelinski postfilter with binary
masking. The main strength of the proposed approach is
its computational simplicity.
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