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Abstract
This study presents a performance comparison of different miss-
ing feature imputation techniques under ideal as well as realistic
conditions. The particular focus is on recent techniques such as
Raj’s soft-decision bounded mean imputation approach and Gem-
meke’s sparse imputation. In addition to experiments with oracle
masks, we evaluate the usefulness of a number of different mask
estimation algorithm. This includes the neg-energy criterion and
a soft version of the Max-VQ algorithm. As we gradually proceed
from ideal to realistic conditions, we can investigate the sensitiv-
ity of the methods towards mismatches in the acoustic conditions
as well as to errors in the mask estimates.

1 Introduction
Early approaches to the treatment of speech recognition in noise
go back to the mid-1970th. Around this time, Klatt [1] observed
that noise actually tends to mask clean speech (log-spectral) bins
when the power of noise is stronger than that of speech (in these
bins). Conversely, he found that the speech spectrum is barely
affected when speech is stronger. Based on these observations,
Klatt proposed to simply “ignore masked bins when calculating
log spectral distance scores”, which would later be formulated
more concisely [2] as “marginalizing over those portions which
are masked by noise”. Holmes and Segewick [2] even went one
step further and used the observed noisy speech spectrum as an
upper bound to the masked bins. This essentially laid the ground-
work for bounded marginalization, which would later be inves-
tigated in more detail by Josivoski et al. [3]. As an alternative
to the classifier compensation methods in [1, 2, 3], the masked
parts of the speech spectrum can also be reconstructed before the
classification is performed. This is what missing feature impu-
tation (MFI) techniques [4] do in principle. Based on the type
of prior model used for imputing the missing (i.e. masked) parts
of a feature vector, MFI techniques may be subdivided into two
categories: statistical techniques, which model the prior distribu-
tion of speech features as a Gaussian mixture [4, 5, 6, 7, 8, 9];
and linear combination techniques, which utilize a collection of
exemplars [10, 11].

In this work, we present a comparative study of these tech-
niques, especially regarding their performance under ideal and re-
alistic conditions. For the ideal scenario, it is assumed that we are
in possession of “an oracle mask generator” that tells us exactly
which bins are masked by noise. This is a standard procedure
for comparing MFI techniques under theoretical optimum condi-
tions. In the realistic scenario, we investigate how well the meth-
ods perform when the masks are estimated with a real mask esti-
mation algorithm. This tells us how well they do in practice. The
particular MFI techniques which are compared in this study com-
prise conditional mean imputation [3], bounded conditional mean
imputation [9], soft-decision bounded mean imputation [7, 8], the
sparse imputation approach by Gemmeke and Cranen [10, 11] as
well as a very simple approximation thereof. In addition to these
MFI techniques, we compare a number of recent mask estima-
tion algorithms, including the neg-energy criterion [4] as well as
Raj’s hard and soft max-VQ approaches [6, 7]. The results are
presented both with and without CMLLR feature space adapta-
tion [12].
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The remaining part of the paper is organized as follows. In
Section 2, we give an overview of the considered MFI techniques.
Section 3 briefly explains the mask estimation algorithms that
have been used. Section 4 presents the experimental results in-
cluding a discussion.

2 Missing Feature Imputation
As mentioned before, we here consider two categories of missing
feature imputation techniques: ones that model clean speech as a
Gaussian mixture distribution and ones that model clean speech
as a collection of exemplars (i.e. a set of samples). The former
are described in Section 2.1. The latter are described in Section
2.2. Both approaches typically partition the feature vector x into
a present part xp as well as a missing (i.e. masked) part xm,
which is to be imputed. Such a partitioning is easily obtained
by first reordering the feature vector as portrayed below and then
declaring xT = [xT

m xT
p ].

m mmpp pp pp m m pp pm

pppp ppm m pp pmm mm

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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As the noise and therewith the masking changes in time, the re-
ordering needs to be done individually for each frame and in de-
pendency of the current mask θ = [θ1 . . . θn]

T whose compo-
nents θi ∈ {0,1} identify which bins are subject to masking.

2.1 Statistical Imputation Techniques
Statistical techniques are based on modeling the distribution of
clean speech as a Gaussian mixture. This means, we need to par-
tition the means and covariance matrices in analogy to the above:

p(x) =
K

∑
k=1

ckN

([
xm
xp

]
;
[

µm|k
µ p|k

]
,

[
Σmm|k Σmp|k
Σpm|k Σpp|k

])
. (1)

In this equation, N denotes the Gaussian distribution, ck denotes
the weight (i.e. prior likelihood) of the k-th Gaussian; µm|k and
µ p|k are the missing and present part of the mean; Σmm|k and
Σpp|k are the missing and present parts of the covariance matrix.
The remaining symbols, i.e. Σmp|k and Σpm|k, denote the cross-
covariances, respectively.

2.1.1 Conditional Mean Imputation

The first MFI technique considered here is conditional mean im-
putation (CMI) [5]. It was developed in the 1990th and it essen-
tially forms a minimum mean square error (MMSE) estimate by
calculating the conditional mean of xm given xp. This gives:

x̂m =
K

∑
k=1

c+k µm +ΣmpΣ
−1
pp (xp−µ p)︸ ︷︷ ︸

,µm|p,k

, (2)

where µm|p,k is the conditional mean of the k-th Gaussian and
where c+k is the probability that the observed spectrum actually



originated from that Gaussian:

c+k =
ckN (xp; µ p|k,Σpp|k)

∑
K
k′=1 ck′N (xp; µ p|k′ ,Σpp|k′)

. (3)

2.1.2 Bounded Conditional Mean Imputation

In more recent work, Faubel et. al [9] proposed to bound the CMI
estimate through the use of a box-truncated Gaussian distribution.
This approach draws on the fact that the observed noisy speech
spectrum y= [ym yp] constitutes an upper bound for the masked
part, i.e. xm,i≤ ym,i for all i. Similarly, we can posit a lower bound
at 0≤ xm,i. In order to use these bounds in the estimate from (2),
each of the conditional means µm|p,k needs to be replaced by the
corresponding bounded conditional mean [9]:

µ
[0m,ym]
m|p,k ≈ µm|p,k−R−1

m|p,k


N (uk,1)−N (lk,1)
C (ul,1)−C (lk,1)

. . .
N (uk,n)−N (lk,n)
C (uk,n)−C (lk,n)

 . (4)

In this equation, Rm|p,k is the upper (right) Cholesky factor of the
conditional covariance matrix Σm|p,k = Σmm|k−Σmp|kΣ

−1
pp|kΣpm|k;

lk = Rm|p,k(ym−µm|p,k) and uk = Rm|p,k(0m−µm|p,k) are the
transformed lower and upper bounds; and C (·) denotes the cumu-
lative Gaussian distribution. In addition to replacing the means,
it is further necessary to replace the probabilities c+k by:

c+[0m,ym]
k =

ckN (xp; µ p|k,Σpp|k)C
[0m,ym]
k

∑
K
k′=1 ck′N (xp; µ p|k′ ,Σpp|k′)C

[0m,ym]
k

, (5)

where C[0m,ym]
k ≈ ∏

n
i=1
(
C (uk,i)−C (lk,i)

)
with lk and uk being

defined as above. Putting everything together, we finally obtain
the bounded conditional mean imputation (BCMI) estimate [9]:

x̂m =
K

∑
k=1

c+[0m,ym]
k µ

[0m,ym]
m|p,k . (6)

2.1.3 Soft-Decision Bounded Mean Imputation

The third MFI technique considered here is soft-decision
bounded mean imputation (SD-BMI) [8]. It was originally pro-
posed by Raj and Singh [7]. It uses diagonal covariance matri-
ces (in contrast to full covariance matrices such as in CMI and
BCMI); and it uses a soft mask θi ∈ [0,1] in order to convey the
certainty that the i-th bin is masked by noise. For hard masks,
i.e. θi ∈ {0,1}, SD-BMI can be considered to be a special case of
BCMI (see [9]). Due to the use of diagonal covariance matrices,
the estimate can be written as interpolation of the observed noisy
speech spectrum with a bounded mean imputation estimate [8]:

x̂i = θiyi +(1−θi)
K

∑
k=1

p(k|y,θ)µ [0,yi]
k,i (7)

where θ is the soft mask vector, y is the observation vector and
µ
[0,yi]
k,i is the mean of a doubly truncated Gaussian distribution

[8] with bounds 0 and yi, i.e. the one-dimensional case of (4).
In order to evaluate (7), we still need to calculate the posterior
probability

p(k|y,θ) = ck p(y|θ ,k)
∑

K
k′=1 ck′ p(y|θ ,k′)

. (8)

Making use of the diagonality of the covariance matrix, i.e. the
fact that Σk = diag([σk,1 . . . σk,n]), the p(y|θ ,k) in (8) can be
calculated according to [7]:

p(y|θ ,k) =
n

∏
i=1

p(yi|θ ,k) (9)

with the p(yi|θ ,k) being approximated [7, 8] as p(yi|θ ,k) ≈

θiN (yi; µk,i,σk,i)+
(1−θi)

yi

(
C (yi; µk,i,σk,i)−C (0; µk,i,σk,i)

)
.

2.2 Linear Combination Techniques
A different approach to impute the missing parts of a feature vec-
tor is to use linear combination techniques. These techniques
assume that clean speech can be modeled as a collection of ex-
emplars ai, i= 1, . . . ,L, which are randomly selected from a clean
speech training corpus and then stored in an exemplar matrix A.
This matrix needs to be reordered for imputation, similar as the
means of the Gaussians needed to be reordered in Section 2.1:
AT = [AT

m AT
p ]. In particular, it is assumed that the feature vec-

tor xT = [xT
m xT

p ] can be represented as a linear combination of
the ai: [

xm
xp

]
=

[
Am
Ap

]
w =

L

∑
i=1

wi

[
ai,m
ai,p

]
(10)

with w specifying the contribution of each reordered exemplar.
The problem of finding a suitable coefficient vector w can be
expected to be underdetermined, as the number of exemplars is
usually much larger than the dimension of the feature space, i.e.
L� n [10]. Hence, there is an abundance of possible solutions.

2.2.1 Sparse Imputation

The idea of sparse imputation (SI) is to select that solution w,
which has as many zero coefficients as possible, i.e. the one
for which ‖w‖0 is minimal. Unfortunately, this constrained op-
timization problem cannot be solved in polynomial time [11].
Hence, Gemmeke et. al [10] proposed to replace the `0-norm
by an `1-norm, in which case the minimization problem can be
cast as a least squares problem with an `1-penalty. In missing
feature reconstruction, the coefficient vector w needs to be esti-
mated from the present part xp = yp of the feature vector. In this
case, the minimization problem can be written [10, 11]:

ŵ = min
w

(
‖Apw−yp‖2 +λ‖w‖1

)
(11)

with a regularization parameter λ . After finding a solution with
the LASSO algorithm (with an additional non-negativity con-
straint on w) [10, 11], the missing part xm of the feature vec-
tor can be approximated as: xm ≈Amŵ. Finally making use of
the upper bound, xm < ym, the estimate x̂m of the missing part
becomes [11]:

x̂m = min(Amŵ,ym) (12)

2.2.2 Proximative Sparse Imputation

In this work, we also use a simple approximation to the LASSO
solution from [10, 11]. It consists in using that row a j of A,
which minimizes the least square distance between the present
part xp = yp of the feature vector and the present part a j,p of the
exemplar:

j , argmin
i
‖
(
yp−ai,p

)
‖2. (13)

Then setting ŵ = [ŵ1 . . . ŵL] with ŵi = δ (i− j) (i.e. wi is set
to 1 if i equals j and to 0 otherwise), the imputation devolves to
using the missing counterpart a j,m of a j,p:

x̂m = min(Amŵ,ym) = min
(
a j,m,ym

)
(14)

We call this solution proximative sparse imputation (PSI).

3 Mask Estimation
In order to apply missing feature imputation in practice, we need
to estimate the masks θ = [θ1 · · · θn] that identify which por-
tions of the spectrum are masked by noise. The mask estimation
techniques used here are all based on a Gaussian approximation
of the noise distribution (in the log-Mel domain):

p(n) = N
(
n; µ

(N),Σ(N)
)

(15)



with Σ
(N) = diag

(
[σ

(N)
1 · · · σ

(N)
n ]

)
being a diagonal covariance

matrix. This distribution is either estimated with voice activity
detection (VAD), once for each utterance, or it is considered to
be known for the particular environment (oracle noise).

3.1 Neg-Energy Criterion
The probably simplest way to obtain a binary mask θi ∈ {0,1},
i = 1, . . . ,n is to use the neg-energy criterion (NEC) from [4].
This criterion considers a bin missing if the observed power yi
is lower than the average noise spectrum or, equivalently, if the
power yi is negative after subtraction of the noise. As a result we
have the following mask estimate:

θ̂i = 1{yi<µ
(N)
i }

(yi),

{
0, if yi < µ

(N)
i

1, otherwise
(16)

where 1 denotes the indicator function. This criterion was orig-
inally proposed for the Mel-domain [4]. But it can easily be
translated to the log-Mel domain, as the inequality in (16) is not
changed by a monotonic function such as the logarithm.

3.2 Cumulative Gauss Criterion
The cumulative Gauss criterion (CGC) is a mask estimation
method, which we propose here as a simple extension of the
neg-energy criterion. It makes use of the entire noise distribu-
tion rather than just the mean. This is achieved by calculating the
expectation of 1{yi<ni}(yi) with respect to ni ∼N

(
µ(N),Σ(N)

)
:

θ̂i = E
{

1{yi<ni}(yi)
}
= C

(
yi; µ

(N)
i ,σ

(N)
i

)
(17)

where C denotes the cumulative Gaussian density function. The
result is by default a soft mask as θ̂i ∈ [0,1]. But it can be con-
verted to a binary mask by setting

θ̄i =

{
0, θ̂i < τ

1, otherwise
(18)

with a threshold τ . Early experiments indicated that τ = 0.7 is a
reasonable value.

3.3 The Max-VQ Algorithm
The hard Max-VQ algorithm used by Raj et al. [7] models
the distribution of noisy speech features y as a Gaussian mix-
ture which is constructed based on the clean speech distribution
p(x) = ∑

K
k=1 ckN (x; µk,Σk) from (1):

p(y) =
K

∑
k=1

ckN
(
y; µ

(Y )
k ,Σ

(Y )
k

)
. (19)

In this equation ck denotes the mixture weight of the k-th clean
speech Gaussian and µ

(Y )
k and Σ

(Y )
k = diag

([
σ
(Y )
k,1 · · · σ

(Y )
k,n

])
are calculated according to:

[
µ
(Y )
k,i ,σ

(Y )
k,i

]
=


[
µk,i,σk,i

]
if µk,i > µ

(N)
i[

µ
(N)
i ,σ

(N)
i

]
otherwise

(20)

This means, µ
(Y )
k,i and σ

(Y )
k,i assume the mean and variance of the

k-th clean speech Gaussian if the average power of speech ex-
ceeds that of noise. They assume the parameters of the noise if
the noise is stronger. From here, the max-VQ algorithm proceeds
by first selecting that Gaussian component k which has the high-
est posterior probability

p(k|y) =
ckN

(
y; µ

(Y )
k ,Σ

(Y )
k

)
∑

K
k′=1 ck′N

(
y; µ

(Y )
k′ ,Σ

(Y )
k′

) ;

and by then setting θ̂i to 0 if µk,i < µ
(N)
i and to 1 otherwise. In

[6], Raj and Reddy also derived a soft version of this algorithm.
It calculates the mask according to:

θ̂i =
K

∑
k=1

p(k|y) f (yi)

f (yi)+g(yi)
, (21)

where f (yi) , N
(
yi; µk,i,σ k,i

)
·C
(

yi; µ
(N)
i ,σ

(N)
i

)
and where

g(yi), C
(
yi; µk,i,σ k,i

)
·N

(
yi; µ

(N)
i ,σ

(N)
i

)
.

4 Experiments
This section presents the speech recognition experiments we con-
ducted in order to compare the missing feature imputation tech-
niques from Section 2. These experiments were performed on
the multi-channel Wall Street Journal audio visual (MC-WSJ-
AV) [13] corpus, more specifically: the headset data of the single
speaker condition. The corresponding 352 utterances, consist-
ing of approximately 40 minutes of speech, were artificially con-
taminated by adding noise from the NOISEX-92 [14] database at
different signal-to-noise ratios (SNR)s. The feature extraction of
the ASR system was based on Mel frequency cepstral coefficients
(MFCC)s. After cepstral mean subtraction (CMS) with variance
normalization, 15 consecutive MFCC features were concatenated
and subsequently reduced by linear discriminant analysis (LDA)
to obtain the final 42-dimensional feature. The decoder used in
the experiments was a weighted finite-state transducer (WFST)
decoder. The triphone acoustic model was trained with 30 hours
WSJ0 and 12 hours WSJCAM0 data. This resulted in 1,743 fully
continuous codebooks with a total of 70,308 Gaussians. For sta-
tistical imputation techniques, we trained an auxiliary 128 com-
ponent clean speech Gaussian mixture model on the same dataset.
For linear combination techniques, we used the sliding window
approach from [11] with a window length of 10. The exemplar
matrix was build up from 2000 randomly selected training sam-
ples. Imputation was always performed in the log-Mel domain
(with 30 bins). The resulting (imputed) spectra were fed back
into the feature chain, i.e. further multiplied by a DCT matrix to
obtain 20-dimensional MFCC features, and so on.

In a first experiment, we compared the missing feature im-
putation techniques under ideal conditions. That was achieved
by using so-called “oracle” masks, which are essentially the hy-
pothetical optimum masks that may be obtained with an ideal
mask estimation algorithm (we could here calculate these masks
as clean speech and noise were added under controlled condi-
tions). Table 1 shows the resulting word error rates (WERs) for
destroyer engine and factory noise, both averaged over a signal
to noise ratio of 5, 10 and 15dB. In addition to first pass results
(without speaker adaptation), the table gives second pass results
with (unsupervised) constrained maximum likelihood linear re-
gression (CMLLR) adaptation [12].

imputation no speaker adaptation CMLLR adaptation
method factory destroyer factory destroyer

none 45.59 74.09 27.70 50.87
CMI 39.58 60.05 26.85 38.45

BCMI 25.63 35.69 17.39 28.30
SD-BMI 27.64 48.11 19.87 35.69

SI 50.95 69.07 35.00 53.22
PSI 37.18 65.66 28.04 48.59

imputation no speaker adaptation CMLLR adaptation
method factory destroyer factory destroyer

none 45.59 74.09 27.70 50.87
CMI 39.58 60.05 26.85 38.45

BCMI 25.63 35.69 17.39 28.30
SD-BMI 27.64 48.11 19.87 35.69

SI 50.95 69.07 35.00 53.22
PSI 37.18 65.66 28.04 48.59

Table 1: WERs for experiments with oracle mask

Table 1 reveals that bounded conditional mean imputation
(BCMI) performs the best, with relative improvements1 of 17.8%
over soft-decision bounded mean imputation (SD-BMI), 30.0%
over conditional mean imputation (CMI), 40.4% over proximate

1These improvements refer to the more relevant second pass and they
have been averaged over destroyer engine and factory noise.



sparse imputation (PSI) and 48.2% over sparse imputation (SI).
These results stand a bit in contrast to the good WERs which PSI
achieved in [10, 11]. But we assumed this might be explained by
a mismatch between training and testing conditions. Hence, we
repeated the above experiments under ideal conditions, i.e. with
an exemplar matrix that had been learned on the clean speech
test data (for statistical imputation techniques we learned a new
Gaussian mixture). The resulting WERs are shown in Table 2.

imputation without speaker adapt. with CMLLR adapt.
method factory destroyer factory destroyer

none 45.59 74.09 27.70 50.87
CMI 42.47 66.96 26.23 44.61

BCMI 25.51 35.45 19.23 29.84
SI 30.35 42.33 25.70 34.83

imputation without speaker adapt. with CMLLR adapt.
method factory destroyer factory destroyer

none 45.59 74.09 27.70 50.87
CMI 42.47 66.96 26.23 44.61

BCMI 25.51 35.45 19.23 29.84
SI 30.35 42.33 25.70 34.83

Table 2: WERs after retraining the exemplar matrix (and the aux-
iliary Gaussian mixture) on the clean speech test set. Note that
these are hypothetical results as the clean speech test data is not
available in practice.

Here SI performs considerably better than CMI, which shows
that linear combination techniques can indeed compete with
other imputation methods. They just might be more sensitive to
changes in the acoustic conditions. As a next step, we evaluated
the performance of the mask estimation techniques from Section
3. This was done using both perfectly known (oracle) noise distri-
butions as well as VAD based estimates thereof. Also note that in
these experiments (as well as in all what follows), we again used
the models that had been trained on the proper training set (i.e.
the ones corresponding to Table 1). Figure 3 shows the resulting
WERs for SD-BMI.

mask estimated noise oracle noise
estimate factory destroyer factory destroyer
oracle - - 27.64 48.11
NEC 31.62 57.26 30.30 54.39
CGC 36.63 63.81 35.17 60.62

Max-VQ 45.64 61.96 42.98 58.32
soft Max-VQ 40.41 62.00 37.10 57.57

mask estimated noise oracle noise
estimate factory destroyer factory destroyer
oracle - - 27.64 48.11
NEC 31.62 57.26 30.30 54.39
CGC 36.63 63.81 35.17 60.62

Max-VQ 45.64 61.96 42.98 58.32
soft Max-VQ 40.41 62.00 37.10 57.57

Table 3: WERs for SD-BMI under use of different mask estima-
tion algorithms. Results are shown for the first pass only. Also
note that we selected SD-BMI as we expected it to be the least
sensitive towards mask estimation errors (as diagonal covariance
matrices avert the spread of errors between dimensions).

Here, the neg-energy criterion (NEC) obviously performs the
best. It is followed by the cumulative Gauss criterion (CGC), the
soft Max-VQ algorithm and the binary Max-VQ algorithm. The
latter two methods seemed to be a bit more sensitive towards er-
rors in the noise estimate (larger discrepancy between estimated
and oracle noise). To conclude the paper, we here finally give a
direct comparison between ideal (oracle mask) and most realistic
conditions (with VAD based noise estimation and NEC mask es-
timation). The results of these experiments are shown in Table 4.
With estimated masks, SD-BMI outperforms BCMI. BCMI still
performs slightly better than CMI. PSI does not really improve
over the baseline. Overall, oracle masks seemed to do signifi-
cantly better than estimated masks.

imputation oracle mask NEC mask
method factory destroyer factory destroyer

CMI 26.45 38.45 26.94 45.67
BCMI 17.39 28.30 25.85 42.12

SD-BMI 19.87 35.69 24.79 37.63
PSI 28.04 48.59 27.71 50.42

imputation oracle mask NEC mask
method factory destroyer factory destroyer

CMI 26.45 38.45 26.94 45.67
BCMI 17.39 28.30 25.85 42.12

SD-BMI 19.87 35.69 24.79 37.63
PSI 28.04 48.59 27.71 50.42

Table 4: Oracle versus NEC masks (with VAD based noise esti-
mation). Results are shown for the second pass only.

5 Conclusions
The comparative study conducted here reveals in particular that
(a) sparse imputation techniques can be sensitive to mismatches
in the acoustic conditions; (b) BCMI gives the best results with
oracle masks but it is more sensitive towards mask estimation
errors; (c) SD-BMI gives the best results with estimated masks
and, hence, should be the method of choice in practice. The large
discrepancy between oracle and estimated masks, however, also
hints that the most could be gained by developing more elabo-
rated mask estimation techniques.
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