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ABSTRACT
In this work, we show how expectation maximization based simulta-
neous channel and noise estimation can be derived without a vector
Taylor series expansion. The central idea is to approximate the dis-
tribution of all the random variables involved – that is noisy speech,
clean speech, channel and noise – as one large, joint Gaussian dis-
tribution. Consequently, instantaneous estimates of the noise and
channel distribution parameters can be obtained by conditioning the
joint distribution on observed, noisy speech spectra. This approach
allows for the combination of expectation maximization based chan-
nel and noise estimation with the unscented transform.

Index Terms— Speech enhancement, Speech recognition, Max-
imum likelihood estimation, Gaussian distributions

1. INTRODUCTION

As pointed out in 1990 by Acero [1], it is imperative to compensate
both background noise and “channel effects”, comprising transfer
functions of microphones and room-acoustical conditions as well as
differences between speakers. Some 6 years later, Moreno presented
a vector Taylor series approach [2] that not only met these demands
but that was also able to estimate the noise and channel parameters
from noisy speech features. For the latter, the expectation maximiza-
tion (EM) algorithm [3] was used, as the existence of hidden vari-
ables prevented direct maximization of the parameter likelihoods.

More recently, the vector Taylor series expansion has been re-
placed by the unscented transform (UT) [4, 5] – a method for approx-
imating nonlinear transformations of Gaussian random variables that
was originally developed in the context of nonlinear filtering [6]. The
advantage of the unscented transform is that it is accurate at least up
to the second order term of the Taylor series expansion, without the
need to calculate Jacobians or Hessians. In [4], the unscented trans-
form has been used for acoustic model compensation. In [5] it has
been used for speech feature enhancement. Unfortunately, neither
of the two approaches has shown how the UT can be used for noise
and channel parameter estimation. In order to do just that, we derive
the EM algorithm for simultaneous channel and noise estimation in
a general fashion, that is, without making use of the Taylor series ex-
pansion [7, 8]. The derivation is presented in Section 4. It relies on a
particular transformation, which we introduce in Section 3 in order
to approximate the required, conditional distributions. The upcom-
ing section gives an overview of the approach. Experimental results
are presented in Section 5.

This work was supported by the Federal Republic of Germany through
the German Research Foundation (DFG), under the research training network
IRTG 715 ”Language Technology and Cognitive Systems”.

2. OVERVIEW OF THE APPROACH

In order to estimate the noise in a noisy utterance, Moreno [2] mod-
eled clean speech as a Gaussian mixture random variable X with
distribution

pX(x) =
κ∑

k=1

ck N (x; μX|k, ΣX|k)︸ ︷︷ ︸
=pX|k(x)

.

This distribution was used as a reference for how clean speech looks
like. Its parameters – that is the prior probabilities ck, means μX|k
and covariance matrices ΣX|k – were learned from a clean speech
corpus. Background noise was modeled as a single Gaussian random
variable N with distribution

pN (n) = N (n; μN , ΣN ),

whose parameters were to be estimated from the noisy utterance.
Both this model and the use of the EM algorithm had been proposed
previously, in [9]. Moreno [2] extended that approach by consider-
ing convolutive distortions of the speech spectra, caused by differing
transfer functions of the recording equipment, room-acoustical con-
ditions and differences between speakers. These “channel effects”
where taken to have a one-point distribution. In this work, they are
modeled as a Gaussian random variable H with distribution

pH(h) = N (h; μH , ΣH),

simply because doing so allows us to treat the channel as a stacked
variable in the unscented transform. Given these models, the distri-
bution of noisy speech can be obtained by transforming the random
variables according to the interaction function

yt = xt + ht + log
(
1 + ent−xt−ht

)
︸ ︷︷ ︸

�f(xt,ht,nt)

, (1)

which defines how clean speech xt, noise nt and channel ht at time t
interact to form a noisy speech observation yt in the log-Mel domain.

2.1. Expectation Maximization

Hence, the parameters θ = {μN , ΣN , μH , ΣH} of the noise and
channel distributions can be estimated by the effect they have on
the clean speech distribution. Straightforward maximum likelihood
parameter estimation, however, fails, as the speech distribution is de-
pendent on a hidden variable, K, which identifies the Gaussian that
the clean speech spectrum originated from. This prompted Rose [9]
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and Moreno [2] to use the expectation maximization (EM) algorithm
[3]. The EM algorithm handles the hidden variable problem by it-
erating between two steps, which for the case of simultaneous noise
and channel estimation can be described (see derivation in Section
4) as follows:

In the first step, the channel and noise parameters from the pre-
vious iteration, θ(l) = {μN , ΣN , μH , ΣH}, are used to transform
each clean speech Gaussian mode X|k according to (1). The result-
ing, transformed random variables Y |k simulate how noisy speech
would look like under the estimated noise and channel parameters.
Consequently, the probability that the noisy speech spectrum yt at
time t originated from the kt-th clean speech Gaussian can be eval-
uated as:

p(kt|yt) =
pY |kt(yt)∑
k′

t
pY |k′

t
(yt)

. (2)

That is performed for all t. Then, in the second step of the EM algo-
rithm, the parameters of the channel and noise distributions are re-
estimated as θ(l+1) = {μ̂N , Σ̂N , μ̂H , Σ̂H}, by accumulating statis-
tics of the instantaneous maximum likelihood estimates of chan-
nel and noise for each possible kt, weighted with the probability
p(kt|yt) that clean speech originated from that particular Gaussian,
kt. For the noise mean and covariance this gives

μ̂N =

∑τ
t=1

∑κ
kt=1 p(kt|yt)μ̃Nt∑τ

t=1

∑κ
kt=1 p(kt|yt)

, (3)

Σ̂N =

∑τ
t=1

∑κ
kt=1 p(kt|yt)

(
Σ̃Nt + μ̃Nt μ̃

T
Nt

)
∑τ

t=1

∑κ
kt=1 p(kt|yt)

− μ̂N μ̂T
N , (4)

where μ̃Nt and Σ̃Nt denote the mean and covariance of the instan-
taneous noise distribution p(nt|yt, kt, θ

(l)). Similarly, the channel
mean and covariance are estimated as

μ̂H =

∑τ
t=1

∑κ
kt=1 p(kt|yt)μ̃Ht∑τ

t=1

∑κ
kt=1 p(kt|yt)

, (5)

Σ̂H =

∑τ
t=1

∑κ
kt=1 p(kt|yt)

(
Σ̃Ht + μ̃Ht μ̃

T
Ht

)
∑τ

t=1

∑κ
kt=1 p(kt|yt)

− μ̂H μ̂T
H . (6)

where μ̃Ht and Σ̃Ht denote the mean and covariance of the instan-
taneous channel distribution p(ht|yt, kt, θ

(l)). A detailed derivation
is given in Section 4.

2.2. Vector Taylor Series Expansion

A problem with the above approach consists in the fact that the
acoustic distortion function (1) is nonlinear. That means the trans-
formed random variables Y |k are no longer Gaussian. Neither
can their distributions be obtained in an analytic fashion. The
same holds for the instantaneous channel and noise distribution
p(nt, ht|yt, kt, θ

(l)). Hence, Moreno [2] proposed to approximate
the interaction function (1) by a first-order Taylor series expansion
about the means of the Gaussian random variables. This “local
linearization” directly lead to Gaussian approximations of the trans-
formed distributions. Second-order correction terms for the mean
and covariance where also considered in [2]. More recently, [4] and
[5] started replacing the Taylor series expansion by the unscented
transform (UT) [6]. In [4], the UT was used to adapt the acoustic
models of the recognizer to background noise (model compensa-
tion). In [5], it was used for adapting a small, auxiliary model,
which was then used for speech feature enhancement. Both papers,

however, considered the noise to be known in advance or estimated
it on “suspected” noise only frames at the beginnings and ends of
utterances. In this work, we use the UT also for estimating the noise
and channel parameters.

2.3. Speech Feature Enhancement

Given the joint distribution of clean and noisy speech, X and Y , as
well as a realization of the random variable Y in form of a noisy
observation yt, the minimum mean square error estimate of clean
speech can be shown to be the conditional mean [7]:

x̂t =
κ∑

kt=1

p(kt|yt)

∫
xtp(xt|yt, kt)︸ ︷︷ ︸

x̂t,kt

dxt. (7)

Assuming a joint Gaussian distribution of (X, Y )|k, constructed as
described in Section 3, the conditional mean x̂t,k of the k-th Gaus-
sian distribution can be calculated in analogy to (11) and (12), as:

x̂t,kt = μX|kt + ΣXY |ktΣ
−1
Y Y |kt

(yt − μY ) . (8)

This has been presented earlier in [5].

3. CONSTRUCTING THE REQUIRED DISTRIBUTIONS

As explained in Section 2.1, the EM approach requires transforming
each clean speech Gaussian mode X|k to a noisy speech distribution
Y |k, based on the interaction function (1) as well as the noise and
channel parameters. For noise and channel parameter estimation, it
is further necessary to know the relation of the noisy speech variable
Y |k to the other variables, X|k, N and H . Hence, we extend the
transformation to

X̄ �

⎡
⎣X

H
N

⎤
⎦ �−→̄

f

⎡
⎢⎢⎣

Y
X
H
N

⎤
⎥⎥⎦ � Ȳ with f̄

⎛
⎝

⎡
⎣x

h
n

⎤
⎦

⎞
⎠ �

⎡
⎢⎢⎣

f(x, h, n)
x
h
n

⎤
⎥⎥⎦ .

Approximating this transformation with the unscented transform [6]
yields a Gaussian approximation of pȲ |k(ȳ) that is accurate at least
up to the second order term of the Taylor series extension:

pȲ |k (ȳ) ≈ N (
ȳ; μȲ |k, ΣȲ Ȳ |k

)
(9)

with mean and covariance matrix⎡
⎢⎢⎣

μY |k
μX|k
μH

μN

⎤
⎥⎥⎦

︸ ︷︷ ︸
�μȲ |k

,

⎡
⎢⎢⎣

ΣY Y |k ΣY X|k ΣY H|k ΣY N|k
ΣXY |k ΣXX|k 0 0
ΣHY |k 0 ΣHH 0
ΣNY |k 0 0 ΣNN

⎤
⎥⎥⎦

︸ ︷︷ ︸
�ΣȲ Ȳ |k

.

Consequently, the cross-covariance matrices ΣY H|k and ΣY N|k ac-
curately capture the relation between Y and H , N up to the second
order term of the Taylor series expansion. As pȲ |k(ȳ) contains the
distributions of Y , (H, Y )|k, (N, Y )|k as marginal distributions,

pY |kt(yt) ≈ N (yt; μY |k, ΣY Y |k) (10)

is available for evaluating (2). Moreover, the instantaneous noise
and channel distributions, p(nt|kt, yt, θ

(l)) and p(ht|kt, yt, θ
(l))

can be obtained by conditioning the distributions of (N, Y )|kt
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and (H, Y )|kt on the observation yt, respectively. The resulting
conditional Gaussian distributions [10] are:

p(nt|kt, yt, θ
(l)) ≈ N (nt; μ̃Nt , Σ̃Nt), (11)

p(ht|kt, yt, θ
(l)) ≈ N (ht; μ̃Ht , Σ̃Ht), (12)

where the conditional means μ̃Nt and μ̃Ht are calculated as

μ̃Nt = μN + ΣNY |ktΣ
−1
Y Y |kt

(yt − μY |kt),

μ̃Ht = μH + ΣHY |ktΣ
−1
Y Y |kt

(yt − μY |kt),

and where the conditional covariances Σ̃Nt , Σ̃Ht are calculated as

Σ̃Nt = ΣNN − ΣNY |ktΣ
−1
Y Y |kt

ΣY N|kt ,

Σ̃Ht = ΣHH − ΣHY |ktΣ
−1
Y Y |kt

ΣY H|kt .

These approximations are again accurate up to the second order term
of the Taylor series expansion if the unscented transform is used.
If the nonlinearity of the interaction function (1) is too strong for
Ȳ |k to be approximately Gaussian, the X̄|k can be split into several
Gaussians with smaller covariances, using, for example, the adaptive
level of detail approach presented in [11].

4. A GENERAL DERIVATION OF THE EM APPROACH

In this section, we give the expectation and maximization steps that
are iterated by the EM Algorithm [3] in order to find the maximum
likelihood parameter set. The derivation is based on the one given
in [8]. It is more general though, as it does not use the Taylor series
expansion. Adding the channel, H , as a hidden variable allows for a
simpler derivation of the channel parameter estimate.

The expectation step consists in calculating the auxiliary func-
tion Q(θ|θ(l)), that is the expected value of the of the log likelihood
function, logL(θ; y1:τ , k1:τ , n1:τ , h1:τ ), with respect to the dis-

tribution p(k1:τ , n1:τ , h1:τ |y1:τ , θ(l)) of the hidden variables k1:τ ,
n1:τ and h1:τ , given the observed data y1:τ as well as the current
parameter estimate θ(l). Assuming statistical independence of the
(yt, kt, nt, ht) for t = 1, . . . , τ and rewriting p(kt, nt, ht|yt, θ

(l))

as p(nt, ht|kt, yt, θ
(l))p(kt|yt, θ

(l)), this simplifies to:

Q(θ|θ(l)) =
τ∑

t=1

κ∑
k=1

p(kt|yt, θ
(l))Qkt,t(θ|θ(l)) (13)

with Qkt,t(θ|θ(l)) being defined as

∫ ∫
p(nt, ht|kt, yt, θ

(l)) log p(yt, kt, nt, ht|θ)dhtdnt.

The maximization step consists in maximizing the auxiliary
function Q(θ|θ(l)) with respect to θ = {μ̂N , Σ̂N , μ̂H , Σ̂H}, which

gives the parameter θ(l+1) for the next iteration:

θ(l+1) � arg max
θ

Q(θ, θ(l)). (14)

The maximum is found by differentiating Q(θ|θ(l)) with respect to
θ and then equating it to zero. Similar as in [8], we decompose
p(yt, kt, nt, ht|θ) into

p(yt|kt, nt, ht, θ) p(ht|nt, kt, θ)︸ ︷︷ ︸
p(ht|μ̂H ,Σ̂H )

p(nt|kt, θ)︸ ︷︷ ︸
p(nt|μ̂N ,Σ̂N )

p(kt|θ)︸ ︷︷ ︸
p(kt)

and, subsequently, rewrite Qkt,t(θ|θ(l)) as∫ ∫
log p(yt|kt, nt, ht, θ)p(nt, ht|kt, yt, θ

(l))dhtdnt

+

∫
log p(nt|μ̂N , Σ̂N )

∫
p(nt, ht|kt, yt, θ

(l))dht︸ ︷︷ ︸
=p(nt|kt,yt,θ(l))

dnt

+
∫

log p(ht|μ̂H , Σ̂H)

∫
p(nt, ht|kt, yt, θ

(l))dnt︸ ︷︷ ︸
=p(ht|kt,yt,θ(l))

dht

+ log p(kt).

Due to the nonlinear character of the interaction function (1), the
distributions p(nt|kt, yt, θ

(l)) and p(ht|kt, yt, θ
(l)) will be non-

Gaussian, in general. Nonetheless, we make the Gaussian approx-
imation described in Section 3. Then, taking the derivative of
Qkt,t(θ|θ(l)) with respect to μ̂N gives

dQkt,t(θ|θ(l))

dμ̂N
= −Σ̂−1

N (μ̃Nt − μ̂N ) , (15)

where μ̃Nt is the mean of p(nt|kt, yt, θ
(l)). Taking the derivative

with respect to μ̂H gives

dQkt,t(θ|θ(l))

dμ̂H
= −Σ̂−1

H (μ̃Ht − μ̂H) (16)

with μ̃Ht being the mean of p(ht|kt, yt, θ
(l)). Now, substituting (15)

and (16) into (13), we obtain the derivatives of the auxiliary function
Q(θ|θ(l)) with respect to μ̂N and μ̂H , which when equated to zero
yield the equations given in (3) and (5). The corresponding covari-
ance matrices Σ̂N and Σ̂H , given in (4) and (6), can be obtained in
a similar fashion. That derivation is more subtle though.

5. EXPERIMENTS

In order to evaluate the performance of EM-based channel and noise
estimation with the unscented transform, we performed a series
of automatic speech recognition experiments. These experiments
were conducted on the close talking channel of speakers 16-25 of
the multi-channel Wall Street Journal audio visual (MC-WSJ-AV)
corpus [12]. The corresponding 352 utterances, consisting of ap-
proximately 40 minutes of speech, were artificially contaminated by
adding noise from the NOISEX-92 [13] database at different signal-
to-noise ratios (SNR)s. The feature extraction of our ASR system
was based on Mel frequency cepstral coefficients (MFCC)s. After
cepstral mean subtraction (CMS) with variance normalization, 15
consecutive MFCC features were concatenated and subsequently
reduced by linear discriminant analysis (LDA) to obtain the final
42-dimensional feature. The decoder used in the experiments is
based on the fast on-the-fly composition of weighted finite-state
transducers (WFSTs), as described in [14, §8]. The triphone acous-
tic model was trained with 30 hours WSJ0 and 12 hours WSJCAM0
data, resulting in 1,743 fully continuous codebooks with a total
of 70,308 Gaussians. The auxiliary 128 component clean speech
Gaussian mixture model, used for noise and channel estimation as
well as speech enhancement, was trained on the same data set. As
the obtained word error rates were quite high, we further adapted
the acoustic model to the MC-WSJ-AV speakers, using maximum
likelihood linear regression (MLLR) [15] speaker adaptation. That,
along with increasing the beam width by about 30%, reduced the
word error rate for clean speech from 41.4 to 12.7 percent.
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Table 1. Word error rate under different noise conditions, for the
baseline (none) and after speech feature enhancement with the un-
scented transform. The considered distortions, that is noise (N) and
channel (C), where either known (estimation type oracle) or esti-
mated with the EM algorithm (estimation type EM).

esti- cons. environmental noise condition
mation distor- destroyer engine factory2

type tions 05dB 10dB 15dB 05dB 10dB 15dB

none none 85.0 61.9 40.9 58.1 32.6 21.5
oracle N 60.9 36.5 22.7 40.8 23.9 16.3
oracle N,C 53.0 30.5 19.1 34.3 20.5 15.9
EM N,C 68.6 41.2 25.0 44.3 24.9 17.7

PA-PF N 76.3 50.6 30.4 51.6 28.8 18.8

esti- cons. environmental noise condition
mation distor- destroyer engine factory2

type tions 05dB 10dB 15dB 05dB 10dB 15dB

none none 85.0 61.9 40.9 58.1 32.6 21.5
oracle N 60.9 36.5 22.7 40.8 23.9 16.3
oracle N,C 53.0 30.5 19.1 34.3 20.5 15.9
EM N,C 68.6 41.2 25.0 44.3 24.9 17.7

PA-PF N 76.3 50.6 30.4 51.6 28.8 18.8

Table 1 shows the word error rates (WER)s obtained in speech
recognition experiments. As a baseline (none), recognition was per-
formed on the noisy speech features, without enhancement. In the
oracle experiments, the noise distribution was perfectly known – that
is, learned from the true noise spectra, per utterance. For oracle joint
channel and noise compensation (oracle N,C), the channel mean was
estimated from clean speech; the variance was set to a negligibly
small number (10−3). For EM-based parameter estimation (EM),
the noise distribution was initialized with suspected silence and noise
frames obtained in a previous ASR pass; the channel distribution was
initialized with a zero-mean radial Gaussian distribution with a vari-
ance of 0.1. Performing unscented transform based speech feature
enhancement with oracle parameters reduced the WER by up to 44%
relative for noise only compensation, by up to 52% for joint chan-
nel and noise compensation. Using the estimated channel and noise
parameters from the fifth iteration of the EM algorithm reduced the
WER by up to 38.8% relative for destroyer engine noise (at 15dB),
by up to 23.8% for factory noise (at 5dB). In general, the reduction
in WER was greater for relatively stationary destroyer engine noise
than it was for more non-stationary factory noise.

In addition to the results obtained with speech feature enhance-
ment based on (7), we give WERs for particle filter based noise com-
pensation [16] as a comparison. It should be noted that the particle
filter just compensates noise, not the channel. Moreover, though
both approaches were comparable in speed during enhancement, the
iterations of EM-based channel and noise estimation took about 13
hours to compute on 4 Intel Xeon 5100 CPUs clocked at 3.00GHz.
This enormous computational expense is not due to using the un-
scented transform, but to calculating the conditional expectations in
(11) and (12).

6. CONCLUSIONS

We have shown how the EM algorithm for simultaneous noise and
channel estimation can be derived in a general fashion. For that,
we transformed all the random variables involved with one joint un-
scented transform in order to obtain the relations of observed noisy
speech spectra to the channel and noise parameters. As an alternative
to the unscented transform, numerical integration techniques might
be used, such as Gauss-Hermite quadrature or Monte Carlo integra-
tion. The experiments verified that unscented transform based noise
and channel estimation works in principle.
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