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ABSTRACT

In this work, we present a general method for approximating non-
linear transformations of Gaussian mixture random variables. It is
based on transforming the individual Gaussians with the unscented
transform. The level of detail is adapted by iteratively splitting those
components of the initial mixture that exhibited a high degree of
nonlinearity during transformation. After each splitting operation,
the affected components are re-transformed. This procedure gives
more accurate results in cases where a Gaussian fit does not well
represent the true distribution. Hence, it is of interest in a number of
signal processing fields, ranging from nonlinear adaptive filtering to
speech feature enhancement. In simulations, the proposed approach
achieved a 48-fold reduction of the approximation error, compared
to a single unscented transform.

Index Terms— Nonlinear estimation, Adaptive estimation, Ap-
proximation methods, Gaussian distributions

1. INTRODUCTION

Many signal processing tasks require nonlinear transformations of
one or several random variables X1, . . . , Xm. For that, it is of in-
terest to know the distribution of the transformed random variable
Y = f(X1, . . . , Xm), which can seldom be obtained in analytic
fashion. Hence, various approximations have been proposed. The
most prominent one is probably the linear Gaussian approximation,
which assumes firstly, that the joint distributions of the Xi can be
well-approximated by a Gaussian and secondly, that the function f
is reasonably linear about the joint mean of the original distributions.
Then, “locally” linearizing f about the mean results in a Gaussian
approximation of the transformed random variable. Examples for
this approach are the extended Kalman filter as well as the vector
Taylor series approach for environment-independent speech recog-
nition [1]. Van der Merwe and Wan [2] proposed a different solution
to the transformation problem. It consists of drawing samples from
the original distribution; individually transforming the samples; and
then approximating the transformed distribution by a parametric fit.
This is more exact. However, it is also more expensive from a com-
putational point of view.

In this paper, we follow [3] in that we approximate the original
distribution of X1, . . . , Xm by a mixture of Gaussians. The idea is
to choose the variances small enough for the local linearizations to
be approximately valid for each of the Gaussians. Then, performing
locally linearized transformations of the individual Gaussians yields
a more accurate approximation of the distribution of Y . We amend
this approach by introducing a method that adapts the level of detail

This work was supported by the Federal Republic of Germany through
the German Research Foundation (DFG), under the research training network
IRTG 715 ”Language Technology and Cognitive Systems”.

of the Gaussian mixture representation to the nonlinearities present
in the transformation. By that we mean keeping more Gaussians in
regions where the degree of nonlinearity is high and fewer Gaus-
sians in regions where it is low. This is achieved by generalizing the
splitting approach, described in [4] for the specific case of a Gaus-
sian mixture filter, to general transformations of Gaussian mixture
random variables. Deviating from [4], the measure of nonlinearity
is derived in a more well-founded way, based on the coefficient of
determination used in linear regression. In addition to that, we show
how stacked (augmented) variables can be treated and how the split-
ting priority of a Gaussian can be determined as geometric interpo-
lation between degree of nonlinearity and mixture weight.

The remaining part of this paper is organized as follows. In the
upcoming section we describe the unscented transform and every-
thing related to it. In Section 3, we establish the adaptive level of
detail approach, which is finally evaluated in Section 4.

2. THE UNSCENTED TRANSFORM

The unscented transform was introduced by Julier and Uhlmann [5]
in order to approximate a nonlinear transform Y = f(X) of an n-
dimensional Gaussian random variable X , based on a point-mass
representation that, by design, captures the first two moments of the
distribution. Let pX(x) denote the distribution of X ,

pX(x) = N (x; μX , ΣX)

with mean μX and covariance matrix ΣX . Further, let RT R be the
Cholesky decomposition of ΣX . Then, denoting the rows of R by
Ri and defining λ = n + κ for an arbitrary κ ∈ R, the distribution
of X can be represented by the weighted empirical distribution

p̃X(x) =
2n∑
i=0

Wiδ(x −Xi) (1)

where δ is the Dirac delta and where the points and weights, Xi and
Wi, are given by

X0 = μX W0 = κ/λ

X2i+1 = μX +
√

λRi W2i+1 = 1/(2λ)

X2i+2 = μX −√
λRi W2i+2 = 1/(2λ)

(2)

i = 0, . . . , (n−1). Note that κ specifies how much weight is placed
on the mean, X0. Setting it to 1/2 results in a weight of 1/n for each
of the points. Setting it to 3 − n minimizes the error in the fourth
moment [6]. Similar as in Monte Carlo methods, the weighted points
Xi can be instantiated through the function f , Yi = f(Xi), which
then in turn yields a weighted empirical distribution of Y :

p̃Y (y) =
2n∑
i=0

Wiδ(y − Yi). (3)
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Consequently, a Gaussian approximation p̂Y (y) = N (Y ; μ̂Y , Σ̂Y )
of the transformed distribution can be obtained by estimating the
mean and covariance of Y in a maximum likelihood fashion:

μ̂Y =
2n∑
i=0

WiYi, Σ̂Y =
2n∑
i=0

Wi(Yi − μY )(Yi − μY )T . (4)

That is the unscented transform. It is exact for linear transforms. For
nonlinear transforms its mean and covariance estimates are accurate
up to the second order term of the Taylor series expansion [6].

2.1. Degree of Nonlinearity

In the unscented transform, each triple {X2i+1,X0,X2i+2} forms
a set of equidistant points on a line. The same holds for the triples
of transformed points, {Y2i+1,Y0,Y2i+2}, if the transformation
Y = g(X) is linear. That motivates the idea of determining the
degree of nonlinearity by fitting to each {Y2i+1,Y0,Y2i+2} a set
{Z2i+1,Z0,Z2i+2} of equidistant points on a line and then comput-
ing the coefficient of determination, R2, a measure for the goodness
of fit used in linear regression. Without loss of generality, let

Z0 = b, Z2i+1 = b + ai, Z2i+2 = b − ai.

Minimizing the squared error between the Z and Y by taking deriva-
tives with respect to ai and b and then equating them to zero gives
ai = 1

2
(Y2i+1 − Y2i+2) and b = Y0. Hence we have

Z0 = Y0

Z2i+1 = Y0 + 1
2
(Y2i+1 − Y2i+2)

Z2i+2 = Y0 − 1
2
(Y2i+1 − Y2i+2)

(5)

for i = 1, . . . , n. The corresponding coefficients of determination
are calculated as:

R2
i = 1−‖Y0 −Z0‖2 + ‖Y2i+1 −Z2i+1‖2 + ‖Y2i+2 −Z2i+2‖2

‖Y0 − μ̂Yi‖2 + ‖Y2i+1 − μ̂Yi‖2 + ‖Y2i+2 − μ̂Yi‖2
,

where μ̂Yi is the empirical mean, 1
3
(Y0 + Y2i+1 + Y2i+2). It can

be shown that R2
i is always in the range [0, 1]. A value close to

1 indicates a good linear fit, or, correspondingly, a low degree of
nonlinearity. Hence, we determine the degree of nonlinearity of each

triple {Y2i+1,Y0,Y2i+2} as ηi � 1 − R2
i :

ηi =
1
2
‖Y2i+1 + Y2i+2 − 2Y0‖2

‖Y0 − μ̂Yi‖2 + ‖Y2i+1 − μ̂Yi‖2 + ‖Y2i+2 − μ̂Yi‖2
. (6)

The nominator accounts for the variance or modeling error intro-
duced by the linear fit. The denominator normalizes that term by the
variance of the points. Dropping the denominator gives an absolute,
i.e. non-normalized measure

η′
i =

1

2
‖Y2i+1 + Y2i+2 − 2Y0‖2. (7)

Both the normalized and non-normalized measure can easily be ex-
tended to the extensive unscented transform [7] or to Gauss-Hermite
quadrature [8], simply by considering lines in one variable or coeffi-
cient and then averaging over all possible values the other variables
or coefficients can assume. The total degree of nonlinearity is ob-
tained by averaging over all the ηi, i = 0, . . . , (n − 1):

η � 1

n

n−1∑
i=0

ηi (8)

If it is close to zero the transformation is approximately linear and
the Gaussian approximation of pY(y) is justified. For larger values,
the parametric Gaussian fit might not well represent the true distri-
bution.

Fig. 1. Augmented Unscented Transform. The picture portrays the
points (crosses) used by the augmented unscented transforms along
with covariance ellipses (dashed lines). The black crosses indicate
the points chosen for X(1), augmented with the mean of X(2). The
grey crosses indicate the points chosen for X(2), augmented with the
mean of X(1).

2.2. Stacking / Augmentation

Some approaches, such as the unscented Kalman filter [5] or the
VTS approach for environment-independent speech recognition [1],

necessitate nonlinear transformations Y = f(X(1), . . . , X(m)) of
several Gaussian random variables at a time. This problem can be
tackled by stacking, that is by treating the variables as a single, joint
Gaussian random variable

X =
[
X(1)T · · · X(m)T

]T

(9)

with distribution p(x) = N (x, μX , ΣX). In Julier and Uhlman’s
work [5, 6] that is called augmentation as the first variable can be
considered to be augmented with the other variables. Figure 1 por-
trays the effect of augmentation for two 2-dimensional statistically

independent, Gaussian random variables X(1) and X(2): each of the

5 points chosen for X(1) is augmented with the mean of X(2); con-

versely, each of the 5 points chosen for X(2) is augmented with the

mean of X(1), resulting in the points on the two ellipses.
In the following, we will show how, for statistically independent

random variables, the degree of nonlinearity can be calculated indi-

vidually for each of the variables. Let X(j) be an nj-dimensional
Gaussian random variable with distribution

p(x(j)) = N (x(j), μX(j) , ΣX(j)),

for j = 1, . . . , m. Moreover, let the X(j) be statistically indepen-
dent and let X be the stacked variable defined in (9). Then the joint
covariance matrix ΣX has block-diagonal form, with the blocks be-
ing the covariance matrices ΣX(j) of the individual variables. Con-
sequently, the Cholesky factorization R of ΣX has block-diagonal

form, with the blocks being the right Cholesky factors R(j) of the

individual ΣX(j) . That means the points considered for X(j),

{X2aj+1, . . . ,X2bj}, with aj =

j−1∑
i=1

ni, bj =

j∑
i=1

ni,

differ only in the coordinates aj to bj . All the other Xk, k /∈ [aj , bj ],
have these coordinates fixed to μX(j) . Hence, the degree of nonlin-

earity contributed by X(j) can be calculated as

η(j) =
1

n

bj∑
i=aj

ηi. (10)
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3. A SEQUENCE OF UNSCENTED TRANSFORMS

The unscented transform approximates the transformation Y =
f(X) of a Gaussian random variable by – surprise – a Gaussian
random variable. That is perfectly reasonable for linear and ap-
proximately linear transforms1. In the presence of considerable
nonlinearities, however, the Gaussian fit might not well represent
the true distribution. Therefore, Alspach and Sorenson [3] proposed
to approximate the distribution p(x) = N (x, μX , ΣX) of X as a
mixture

p(x) ≈ m(x) �
K∑

k=1

ck N (x, μ
(k)
X , Σ

(k)
X )︸ ︷︷ ︸

=p(x|k)

(11)

of Gaussian distributions with weights ck, means μ
(k)
X and covari-

ances Σ
(k)
X . Then X can be transformed by transforming the indivi-

udal mixture components, i.e. the conditional variables X|k. If the
number of mixture components is sufficiently large the covariances
can be chosen small enough for f to be approximately linear for each
of the transforms and the distribution of Y is well approximated by

p(y) ≈
K∑

k=1

ckUT{p(x|k), f}, (12)

where UT{p(x|k), f} denotes the unscented transform of the Gaus-
sian random variable X|k with respect to the function f . The mix-
ture parameters in (11) are typically chosen as to minimize the mean
squared error to the true distribution. In order to do that, the Gaus-
sians are arranged on an equidistant grid with equal covariance ma-
trices. Then the mixture weights are optimized [3].

3.1. Adapting the Level of Detail to the Nonlinearities

Replacing a Gaussian by an equidistant grid of Gaussians, as in [3],
can be regarded as increasing the level of detail in a uniform fash-
ion. In contrast to that, we propose here to adapt the level of de-
tail according to the nonlinearities. By that we mean keeping fewer
Gaussians in relatively linear regions, where the transformation is
accurate; more Gaussians in nonlinear regions, where the approxi-
mation error is higher. That can be achieved by performing the fol-
lowing procedure: At the beginning, the mixture is initialized with a
single Gaussian component having the distribution of X – the vari-
able to be transformed. Then, after an initial unscented transform,
the mixture, and thereby the transform, is iteratively refined by:

1. splitting that mixture component with the highest degree of
nonlinearity into two Gaussians that have half the weight;

2. repeating the unscented transform for the split components
and re-evaluating their degrees of nonlinearity.

The iteration is stopped when either the degree of nonlinearity has
dropped below a certain threshold or when a certain number of mix-
ture components has been reached. After, the complexity of the
Gaussian mixture approximation of pY (y) can be reduced by Gaus-
sian mixture reduction techniques [9].

In this work, splitting was performed as described in Appendix
B of [4]. For stacked variables (see Section 2.2), only the variable

X(j) with the highest degree of nonlinearity η(j) was split. The other

variables X(l), l �= j remained unchanged.

1A linear transform of a Gaussian random variable always results in a
Gaussian random variable.

(a) original (b) split components (c) mixture

Fig. 2. Splitting a Gaussian. The picture to the left shows the origi-
nal Gaussian distribution; the pictures in the middle and to the right
show the maximum and the mixture of the split components, respec-
tively.

3.2. Splitting Priority

Selecting the mixture component to be split based only on its degree
of nonlinearity can sometimes result in repeated splits of compo-
nents whose weights are getting increasingly smaller. That might be
suboptimal, as components with a very low weight represent only
a small amount of probability mass and thereby do not contribute
much to the transformation. Hence, we replace the splitting criterion
from the previous section – the component’s degree of nonlinearity

η(k) – by the splitting priority ρ(k), which we define as geometric in-
terpolation between the component’s mixture weight and its degree
of nonlinearity:

ρ(k) � pow(ck, β) · pow(η(k), 1 − β), (13)

where β is the interpolation weight and where pow(a, b) denotes the
b-th power of a, used here for disambiguation from superscript (k).

3.3. Transforming Gaussian Mixtures

The adaptive level of detail approach from Section 3.1 can easily be
extended to transforming Gaussian mixture random variables, sim-
ply by initializing the procedure with a Gaussian mixture instead of
a single Gaussian.

4. EXPERIMENTS

The proposed method was evaluated by performing a simulation, in
which the distribution pY (y) of noisy speech Y was to be approxi-
mated from the distribution N (x; μX , ΣX) of clean speech X , given
the distribution N (n; μN , ΣN ) of noise N as well as a nonlinear in-
teraction function in the speech feature (logarithmic Mel spectra)
domain:

y = log(exp(x) + exp(n))︸ ︷︷ ︸
=f(x,n)

. (14)

This transformation is the central point of all speech feature en-
hancement approaches that estimate the distribution of noise with
the expectation maximization (EM) algorithm [1]. Motivated by the
fact that frequency bands can be treated independently if the Gaus-
sians are assumed to have diagonal covariance matrices – as is quite
common in automatic speech recognition – we simulate the trans-
formation for only one dimension. In the simulation, speech had a
Gaussian distribution with mean 5.9 and variance 0.6. Noise had a
Gaussian distribution with mean 3.3 and variance 3.0. The smaller
variance for speech is sensible, as in [1] noise is modelled as a sin-
gle Gaussian while speech is modelled as a Gaussian mixture whose
components are transformed individually. In order to have a ref-
erence to compare to, we generated 10 million samples from the
speech and noise distributions, which were then transformed accord-
ing to (14). The resulting empirical distribution was used to “learn”
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Table 1. Approximation error (KLD ·10) for the adaptive level of
detail transform under different splitting criteria

splitting number of Gaussians
criterion 1 2 4 8 16 32

weight 1.898 0.777 0.404 0.306 0.383 0.568
n-dnl 1.898 0.777 0.791 0.761 0.758 0.329
a-dnl 1.898 0.777 0.398 0.199 0.095 0.052
spp 1.898 0.777 0.255 0.173 0.066 0.039

splitting number of Gaussians
criterion 1 2 4 8 16 32

weight 1.898 0.777 0.404 0.306 0.383 0.568
n-dnl 1.898 0.777 0.791 0.761 0.758 0.329
a-dnl 1.898 0.777 0.398 0.199 0.095 0.052
spp 1.898 0.777 0.255 0.173 0.066 0.039

Table 2. Approximation error and computational times in seconds
for Monte Carlo transformation + Gaussian mixture recovery

number of samples
100 1K 10K 100K 1M

KLD ·10 0.423 0.078 0.059 0.056 0.044
time in seconds 0.062 0.234 1.687 15.58 156.0

number of samples
100 1K 10K 100K 1M

KLD ·10 0.423 0.078 0.059 0.056 0.044
time in seconds 0.062 0.234 1.687 15.58 156.0

a mixture distribution of 10 Gaussian components, whose weights,
means and variances were found by performing 50 iterations of k-
Means clustering and, thereafter, 50 iterations of the expectation
maximization (EM) algorithm [10].

Table 1 shows the Kullback-Leibler divergence (KLD) between
the reference and approximations obtained with the adaptive level of
detail transform from section 3. The KLD is given for different split-
ting criteria and in dependency of the number of Gaussians. It was
multiplied by a factor of 10 in order to improve readability. In the
first row (weight) of the table, components were split based on their
mixture weight only. That resulted in a Gaussian mixture approxi-
mation of the original distribution, with components that had equally
spaced means and equal covariance matrices. For the first couple of
iterations, the approximation error (KLD) dropped with the number
of Gaussians. After about the 10th iteration, however, it started to
raise again. That can be explained by the fact that splitting, though
being helpful for overcoming nonlinearities, also changes the orig-
inal probability density function [4], i.e. it might be detrimental in
linear regions. The second and third rows, labeled n-dnl and a-dnl,
show approximation errors for the case where the normalized and
absolute measures for the degree of nonlinearity were used as split-
ting criteria. In both cases, the error dropped monotonically with the
number of Gaussians. With the absolute measure, however, the er-
ror dropped much more sharply – that is, it roughly halved when the
number of Gaussians was doubled. With the normalized measure,
there seemed to be a tendency towards splitting Gaussians in the
same area, resulting in very low weights of few components. For the
results shown in the last row (spp) of the table, the splitting priority
from Section 3.2 was used as splitting criterion, with interpolation
weight β = 0.5. This consistently reduced the approximation error,
in some cases up to 30% compared to the next best criterion.

Table 2 shows results for the Monte Carlo (MC) approach used
in the penultimate paragraph in order to obtain the reference distri-
bution. For the results shown in Table 2, we used a lower number of
samples and performed only 10 iterations clustering and EM train-
ing. As can be seen, the approximation error decreased with the
number of samples, though this seemed to abate after approximately
1000 samples. In addition to the KLD, we give computational times.
A brief look at the table immediately reveals the major disadvantage
of the MC method: its computational expense. Even with just 100
samples, the approximation took 62 milliseconds to complete on a
1.2 GHz Intel Atom CPU, compared to less than 2 milliseconds for
the adaptive level of detail transform with 32 Gaussians. At the same
time, the approximation error was 10 times lower for the latter.

(a) ALoDT-1 (b) ALoDT-4 (c) ALoDT-16

Fig. 3. Transformed Distribution. The dashed curve shows the true
distribution. The solid curves show approximations obtained with
the adative level of detail transform (ALoDT) with 1, 4 and 16 Gaus-
sians, using the splitting priority (spp) from Section 3.2.

5. CONCLUSIONS

We have presented a novel method for approximating nonlinear
transformations of Gaussian mixture random variables. It is based
on adapting the mixture’s level of detail to the nonlinearities present
in the transformation. For that, we have derived a measure for the
degree of nonlinearity based on the coefficient of determination,
and, subsequently refined it into an efficient splitting criterion. In
the experimental section, we have successfully applied the proposed
method to a particular transformation that is commonly used in
speech feature enhancement.
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