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ABSTRACT

In this work, we show how the speech recognition perfor-
mance in a noisy car environment can be improved by com-
bining audio-visual voice activity detection (VAD) with mi-
crophone array processing techniques. That is accomplished
by enhancing the multi-channel audio signal in the speaker
localization step, through per channel power spectral subtrac-
tion whose noise estimates are obtained from the non-speech
segments identified by VAD. This noise reduction step im-
proves the accuracy of the estimated speaker positions and
thereby the quality of the beamformed signal of the consec-
utive array processing step. Audio-visual voice activity de-
tection has the advantage of being more robust in acousti-
cally demanding environments. This claim is substantiated
through speech recognition experiments on the AVICAR cor-
pus, where the proposed localization framework gave a WER
of 7.1% in combination with delay-and-sum beamforming.
This compares to a WER of 8.9% for speaker localizing with
audio-only VAD and 11.6% without VAD and 15.6 for a sin-
gle distant channel.

Index Terms— microphone arrays, audio-visual systems,
acoustic signal detection, time of arrival estimation, automatic
speech recognition

1. INTRODUCTION

Distant speech recognition (DSR) systems are of great inter-
est in automotive environments as hands-free operation is the
best way to avoid distraction of the driver [1, §1.1.3]. A DSR
system typically consist of three components: a speaker local-
ization module, a spatial filter (beamformer) and a postfilter.
But all these components are directly or indirectly dependent
on voice activity detection (VAD). This starts with the fact
that the location of the speaker should only be determined
when he or she is actually speaking. Unfortunately, the per-
formance of audio-only VAD systems tends to drop in acous-
tically challenging environments. Hence, in this work, we
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Fig. 1. Overview of the proposed distant speech recognition
system with audio-visual voice activity detection.

consider using visual information in order to design a noise-
robust VAD system that, in contrast to traditional audio-visual
speech recognition (AV-ASR) approaches, does not require
accurately clipped high resolution images of the mouth taken
under artificial lighting conditions. It might be noteworthy
that similar AV-VAD approaches have been proposed by Al-
majai and Milner [2] as well as Yoshida et al. [3]. Our work
differs from these in that (1) we propose a novel Gaussian
mixture filter based face tracking system that accurately iden-
tifies the mouth region; (2) we use a slightly different visual
feature extraction chain that includes several normalization
steps; and (3) we show how the performance of a DSR sys-
tem can be improved by incorporating VAD into the speaker
localization framework. The block diagram shown in Figure
1 gives an overview of the proposed system. It can essentially
be described as a two stage system, in the first of which audio-
visual voice activity detection is performed; and in the second
of which speaker localization is improved through spectral
subtraction, as described in more detail in the following.

Voice Activity Detection
For voice activity detection, the relative position of the
speaker to the microphone array is estimated based on the
multichannel cross correlation coefficient (MCCC) [4]. At
the same time, the visible mouth region is identified by the
face tracking system. After these localization steps, the sig-
nal of the desired speaker is extracted with a subband domain
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delay-and-sum beamformer [1, §13] steered towards the posi-
tion of the speaker. This is followed by a postfilter to further
reduce the noise. Subsequently, audio and video features are
extracted and the speech and non-speech segments are de-
termined by integrating the resulting features streams in the
framework of a multi-stream hidden Markov model (HMM)
decoder [5]. This provides a robust audio-visual VAD system.

Improved Speaker Localization
In order to improve the speaker localization, the non-speech
segments identified by audio-visual VAD are used to estimate
average per-channel noise spectra, which are then used to
individually enhance the signal of each channel with power
spectral subtraction. After that, the speaker positions are rees-
timated from the noise-subtracted array signal. This gives
more accurate position estimates as the application of spec-
tral subtraction reduces the influence of noise on the cross
correlation. After reestimation of the speaker location, beam-
forming and postfiltering are reperformed and the resulting,
enhanced audio signal is fed to the speech recognizer.

Evaluation
The effectiveness of the proposed DSR system is demon-
strated through speech recognition experiments on the audio-
visual car (AVICAR) [6] corpus. It should be mentioned that
this is a very challenging corpus, which stands out in that it
was recorded under real conditions – that is, in different cars
driving with up to 55 miles per hour. Apart from adverse
acoustic conditions with SNRs as low as -10dB, there are
serious challenges on the visual side. Light conditions can
change abruptly. The cameras are shaking. There are com-
pression artifacts and the upper part of the face is occasionally
occluded due to hair flying in the wind.

Balance
The remainder of this paper is organized as follows. In Sec-
tion 2 we describe audio-visual feature extraction along with
the face tracking system used for identifying the mouth po-
sition. This is followed by descriptions of the audio-visual
VAD and robust speaker localization systems, in Sections 3
and 4. Experimental results are finally presented in Section 5.

2. AUDIO-VISUAL FEATURE EXTRACTION

As mentioned before, audio-visual voice activity detection on
the AVICAR [6] corpus poses a serious challenge. Next to
adverse acoustic conditions, there is a variety of problems on
the visual side, which caused many of the standard face and
mouth detection algorithms to fail. But accurate detection of
the mouth region is imperative for the visual front end. Hence,
we developed our own robust face tracking system, a rough
sketch of which is given in Section 2.1. After detection of
the mouth region, visual features are extracted as described
in Section 2.2. Audio features are extracted as explained in
Section 2.3.

(a) recording setup (b) image from one camera

Fig. 2. The AVICAR corpus. The image to the left shows
the recording setup with four cameras on the dashboard and
eight microphones on the sun visor. The image to the right
shows one of the speakers from the perspective of the leftmost
camera, including compression artifacts and lighting effects.

(a) Viola Jones detections (b) constrained search

(c) determined search region (d) output of the filter

Fig. 3. Mouth Localization with the Face Tracking System.
The red, green and blue circles indicate eye, nose and mouth
detections, respectively. The rectangles are search regions.

2.1. Mouth Localization

The mouth localization system used in this work simultane-
ously tracks the eyes, nose and mouth of the speaker. As
shown in Figure 3-(a), Viola-Jones based detectors [7] pro-
vide potential positions for each of the facial features, which
are then integrated in a Bayesian filtering framework. That
is achieved by tracking each facial feature with a bank of
Kalman filters as sketched in Figure 4. Multiple observations
(object detections) are treated by splitting filters [8], which,
in contrast to the data association approaches taken in [9] and
[10], truly allows the filter to simultaneously consider multi-
ple concurrent hypotheses. As the splitting approach creates
the problem of an exponentially growing number of filters,
we use a merging step in order to reduce the number of filters,
similar as originally proposed in [11] for multi-target tracking
with a radar.
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Fig. 4. Tracking with multiple observations using the split and merge Gaussian mixture filter [8]. In the split phase, multiple
observations (object detections) are handled by splitting the Kalman filters [8] and then assigning each of the resulting filters to
one of the observations. In the merge phase, the computational complexity is reduced by merging the Kalman filters successively
in pairs, until a predetermined number of filters is reached.

In this work, merging is repeated until 10 filters remain.
The Viola-Jones detectors are tuned to provide a large num-
ber of hypotheses with the aim of reducing detection failures.
As the resulting increase in the number of detections, how-
ever, comes at the expense of a higher number of false alarms,
gating [12] is used in order to efficiently suppress wrong hy-
potheses by discarding detections that lie outside the confi-
dence ellipses predicted by the Kalman filters. In contrast to
the original gating technique, we determine a rectangular re-
gion that includes all the confidence ellipses stemming from
different filters of the same facial feature and then restrict the
search area of the corresponding Viola-Jones detector to this
rectangle, as portrayed in Figure 3-(b), (c).

The filters for different facial features interact by using
a probabilistic scale and rotationally invariant face geometry
model for calculating confidence scores of the detected fea-
ture positions. The same face geometry model is employed
for inferring the positions of missing facial features as well as
for further restricting the search space of the detectors, where
the latter is achieved through intersection with the area in
which the feature was predicted by the face geometry model.
This helps in situations where features cannot be detected due
to occlusion or adverse lighting conditions. As a last resort
fail-safe mechanism, the tracking algorithm is reinitialized if
the face confidence score is too low or if two facial features
are missing in five successive frames.

2.2. Visual Feature Extraction

In order to explain the visual feature chain, let I ROI(k, i, j)
denote the intensity value of the (i, j)-th pixel of the 100×80
region of interest (ROI) around the detected mouth of the k-th
video frame. Then, feature extraction starts by reducing illu-
mination effects of the ROI through use of logarithmic inten-
sity values and subsequent mean and variance normalization:

Ilog-norm(k, i, j) =
log IROI(k, i, j)− µ

σ
. (1)

In this equation, µ and σ are the mean and variance of the
log pixel intensities calculated over the entire utterance. The

Fig. 5. Mean and variance normalization on logarithmic
pixel intensities reduces illumination and skin color effects.

(a) static feature extraction reduces dimensionality to 50

(b) dynamic feature extraction captures motion dynamics

Fig. 6. Visual Feature Extraction. Static features reduce the
dimensionality of gray-value images while normalizing for
inter-utterance variations. Dynamic features account for the
dynamics of speech by stacking adjacent features and per-
forming a second LDA on top of that.

motivation for taking the logarithm is based on the fact that
it converts multiplicative illumination effects into an additive
bias term which can easily be removed with mean normaliza-
tion. The result is shown in Figure 5.

After constructing a vector from these normalized log
pixel intensities, principle component analysis (PCA) is ap-
plied in order to reduce the dimension from 100 × 80 to
200. This is followed by a second mean normalization stage
in which now every PCA coefficient is normalized indepen-
dently. After PCA with mean normalization, linear discrim-
inant analysis (LDA) is performed in order to further reduce
the dimension to 50 and to improve the discriminability of
speech and non-speech classes. The reason for using PCA
as a pre-processing step to LDA is that it gives more stable
results in large dimensions.
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As the above features are incapable of capturing mouth
movements, we concatenate the feature vectors of 7 adjacent
frames and perform a second LDA on top of that, as proposed
in [13]. This processing chain was found to give good results
in a comparative study of different visual features [14]. The
frame rate of the visual feature stream was finally adjusted to
that of the audio feature stream by simply repeating the same
feature vector.

2.3. Audio Feature Extraction

After localization of the speaker according to section 4.2, a
delay-and-sum beamformer [1, §13] is constructed so as to
steer a beam towards the estimated speaker position. This
is followed by Zelinski post-filtering [15] in order to further
reduce the noise. These speech enhancement steps are per-
formed in the subband domain, after analysis with a DFT
modulated filter bank, which is designed to minimize the
in-band and residual aliasing terms individually rather than
keeping the perfect reconstruction property [1, §11.7]. After
enhancement, 13-dimensional MFCC features are extracted
for each frame of speech; Cepstral mean and variance nor-
malization are applied; and the final 39-dimensional feature
vector is obtained by concatenating the normalized MFCC
features with their first and second order derivatives (∆ and
∆∆ features).

3. AUDIO-VISUAL VOICE ACTIVITY DETECTION

For VAD, the audio and visual feature streams from the front-
end were combined within the framework of a multi-stream
HMM [5]. In order to explain this in more detail, let a and v
denote the audio and video features, respectively. Then, the
likelihood of observing an audio-visual feature vector av =
[aT ,vT ]T at a hidden state j can be expressed as

bj(av) = ba,j(a)λa × bv,j(v)λv , (2)

where λa and λv are stream exponential weights, and where
the ba,j(.) and bv,j(.) are the observation likelihoods of the
audio and visual models, respectively. Based on the results
of preliminary experiments, we set λa = 0.9 and λv = 0.1.
For the audio stream, we used a monophone acoustic model
with subphonemes. That means, each monophone consisted
of a left-to-right HMM with three hidden states. For the vi-
sual stream, we built Gaussian mixture models (GMM) for
the speech and non-speech classes only, due to poor discim-
inability between different visemes (visual phonemes).

The audio and visual models were trained independently.
But, in order to ensure synchronicity, the visual GMM train-
ing was bootstrapped from audio labels. During VAD, we
used an audio-visual HMM with the same topology as the
audio HMM. The observation likelihoods of the visual model
were evaluated by mapping each phoneme to the speech
GMM and by mapping silence to the non-speech GMM, as

Fig. 7. Part of the Multistream Hidden Markov Model used
for audio-visual VAD. The graphical model shows the state
sequence for the word “one”. Acoustic states are mapped to
speech (SP) and non-speech (SIL) visual states. Subphonemes
are not shown for reasons of simplicicity.

shown in Figure 7. Then, the observation probability of the
audio-visual feature vectors were evaluated according to (2)
and the alignment of the audio-visual features to speech and
non-speech states was found with the Viterbi algorithm.

4. ROBUST SPEAKER LOCALIZATION

For acoustic localization of the speaker, we used the multi-
channel cross correlation coefficient (MCCC) [4, 16]. The
MCCC can be viewed as a generalization of the cross-
correlation coefficient to the multichannel case. We con-
sidered using it as its robustness for time delay estimation in
adverse environments has been demonstrated in [16]. Section
4.2 gives a more detailed description of the MCCC-based
localization algorithm. It is used in both stages of the DSR
system from Figure 6, that is audio-visual VAD and speech
recognition. In the second stage, however, localization is
performed after noise reduction of the individual channels, as
described in Section 4.1.

Fig. 8. The arrival of sound waves at the microphone array
introduces microphone-dependent time delays.

4.1. Power Spectral Subtraction

Due to its simplicity, spectral subtraction (SS) [17] is one of
the most widely used techniques for noise suppression. In this
work, we use it in its power spectral form, as a preprocessing
step to speaker localization. Denoting the desired speech and
noise signals captured with the m-th microphone at frame k
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and subband frequency bin f by Xm(k, f) and Vm(k, f), re-
spectively, the observed spectrum in the power spectral do-
main can be approximated as

|Ym(k, f)|2 ≈ |Xm(k, f)|2 + |Vm(k, f)|2. (3)

Hence, given a noise power spectrum V̂m(k, f) estimated
from the non-speech segments identified by the audio-visual
VAD system, the power spectrum of the desired signal can be
obtained by subtraction:

|X̂m(k, f)|2 = max
{
|Ym(k, f)|2 − α|V̂m(k, f)|2, β

}
(4)

In this equation, α is the overestimation factor [17] and β is
the spectral floor [17]. Based on results of preliminary exper-
iments, we set α = 4.0 and β = 0.01. After subtraction, the
clean speech spectrum was reconstructed by using the magni-
tude of (4) and the phase of the original signal. The estimated
clean speech signal was obtained by transforming the spec-
trum back into the time domain. The relatively large overesti-
mation factor led to aggressive noise removal, up to the com-
plete elimination of heavily noise corrupted speech regions.
This was found to improve the performance of speaker lo-
calization, although the phase of the noisy speech signal was
used for reconstruction.

4.2. Localization based on the MCCC

For localizing the speaker with a linear equi-spaced array – as
it is used in the AVICAR corpus [6] – the multichannel signal
in direction of θ can be defined as

xM [n, θ] =


x1[n]

x2[n+ d sin(θ)/c]
...

xM [n+ (M − 1)d sin(θ)/c]


if the far-field assumption is made. In this equation, d is the
distance between the microphones and c is the speed of sound.
In order to calculate the MCCC, we need to compute a spatial
correlation (covariance) matrix of observations over the entire
utterance. The spatial correlation matrix can be expressed as

RM [θ] = E
{
xM [n, θ]xTM [n, θ]

}
, (5)

where E{·} denotes the expectation operator. With this, the
MCCC can be computed as

ρ2M [θ] = 1− det (RM [θ])

ΠM
i=1σ

2
i

, (6)

where det(·) stands for the determinant and where σ2
i is the

i-th diagonal component of the spatial correlation matrix
RM [θ] [4]. For the case M = 2, it can be readily confirmed
that the MCCC is equivalent to the cross-correlation coeffi-
cient. Further calculating ρ2M [θ] for all possible directions of
arrival θ, the angle of the speaker is obtained as the maximum
of ρ2M [θ]:

θ̂M = arg max
θ

ρ2M [θ]. (7)

5. EXPERIMENTS

In order to evaluate the proposed system under realistic condi-
tions, we performed a set of experiments on the phone number
task of the AVICAR corpus [6]. This corpus stands out in that
it was recorded in real cars, under five different conditions. In
the IDL condition, the car is standing still with the engine run-
ning (idle). In the 35D, 35U, 55D and 55U conditions, the car
is driving at 35 and 55 miles per hour, respectively, with the
windows up (U) or down (D). The signal to noise ratio (SNR)
varies between 15 and -10 dB, due to engine noise, wind, road
noise from the tires as well as from other cars passing by. All
of the speech data was recorded in English. Multichannel au-
dio data is available for 87 speakers out of which about 60
are native speakers of American English [6]. Video data is
available for 86 subjects.

5.1. ASR System and Setup

In the speech recognition experiments, the feature extraction
of the ASR system was based on 13-dimensional mean and
variance normalized MFCC features plus delta and delta-delta
features. Cepstral mean and variance normalization were per-
formed on the speech frames identified by standard energy-
based voice activity detection. Speech recognition was per-
formed with a word trace decoder, as described in [1, §7.1].
The state network used for decoding consisted of a precom-
piled weighted finite-state transducer, which was optimized
as described in [1, §7.2]. For phone number recognition, we
trained a monophone acoustic model with up to 64 Gaussians
per state on the IDL digits and phone number tasks of the
AVICAR corpus. The selected training material comprised
1282 single digits as well as 1298 10-digit phone numbers.
In addition to single channel data, a certain amount of delay-
and-sum beamformed data was added to improve the perfor-
mance of the DSR system. As a test set, we used the the phone
number task recorded in the 35D condition in which the car
is driving at 35 miles per hour with the windows down. This
set consisted of 1273 phone numbers with a total recording
length of 108 minutes.

5.2. Results

Table 1 shows the word error rates (WERs) we obtained on the
AVICAR corpus. The first row gives results for a single dis-
tant channel, that is, without array processing. The rows be-
low show the results that were obtained after delay-and-sum
beamforming with Zelinsky postfiltering. These rows differ
only in how source localization was performed. Evidently,
the best performance was achieved when audio-visual VAD
controlled spectral subtraction was used as a preprocessing
step to localization. In this case the WER was 7.1%, which
compares to a WER of 8.9% with spectral subtraction based
on audio-only VAD and to a WER of 11.6% for source lo-
calization without a prior speech enhancement step. The dif-
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array processing localization WER
none – 15.6

DSB + Postfilter MCCC 11.2
DSB + Postfilter MCCC + VAD-based SS 8.9
DSB + Postfilter MCCC + AV-VAD-based SS 7.1
DSB + Postfilter broadside assumption 8.5

array processing localization WER
none – 15.6

DSB + Postfilter MCCC 11.2
DSB + Postfilter MCCC + VAD-based SS 8.9
DSB + Postfilter MCCC + AV-VAD-based SS 7.1
DSB + Postfilter broadside assumption 8.5

Table 1. Word error rates obtained on the AVICAR cor-
pus. for a single distant microphone and after delay-and-sum
(DSB) beamforming with a Zelinsky postfilter. The speaker
position was either assumed to be perpendicular to the array
(broadside) or it was estimated based on the multi-channel
cross correlation (MCCC), with an optional spectral subtrac-
tion (SS) step. The average noise spectrum (required for SS)
was estimated based on audio only (VAD) or audio-visual
voice activity detection (AV-VAD), respectively.

ference between audio-only and audio-visual VAD can be ex-
plained by the fact that our audio-visual VAD system mainly
provides a lower false positive rate than the audio-only VAD
system [14]. This prevents the cancellation of target speech
signal components due to leakage into noise estimates. Now,
comparing the above results to the fifth row of Table 1 reveals
that the proposed localization method with audio-visual VAD
is actually the only method that could improve over the sim-
ple assumption that the speaker is located perpendicular to the
array (broadside). But even in this case we still get a relative
improvement of 16.5% in WER.

6. CONCLUSIONS

We have described a new strategy for distant speech recog-
nition, which uses audio-visual VAD in order to improve the
performance of the speaker localization system. The effec-
tiveness of the proposed approach was demonstrated through
speech recognition experiments on a challenging audio-visual
corpus, under realistic conditions.

7. REFERENCES

[1] Matthias Wölfel and John McDonough, Distant Speech
Recognition, Wiley, New York, 2009.

[2] I. Almajai and B. Millner, “Using audio-visual features
for robust voice activity detection in clean and noisy
speech,” Proceedings of the European Signal Process-
ing Conference, pp. 988–993, Aug. 2008.

[3] T. Yoshida, K. Nakadai, and H. G. Okuno, “Two-layered
audio-visual speech recognition for robots in noisy envi-
ronments,” Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 988–
993, Oct. 2010.

[4] Jacob Benesty, Jingdong Chen, and Yiteng Huang, Mi-
crophone Array Signal Processing, Springer, 2008.

[5] S. Dupont and J. Luettin, “Using the multi-stream ap-
proach for continuous audio-visual speech recognition:
Experiments on the M2VTS database,” Proceedings of
the International Conference on Speech and Language
Processing, 1998.

[6] B. Lee et al., “AVICAR: Audio-visual speech corpus
in a car environment,” Proceedings of Interspeech, pp.
2489–2492, Oct. 2004.

[7] P. Viola and M. Jones, “Robust real-time object detec-
tion,” International Journal of Computer Vision, vol. 57,
pp. 137154, Oct. 2001.

[8] F. Faubel, M. Georges, B. Fu, and D. Klakow, “Ro-
bust gaussian mixture filter based mouth tracking in a
real environment,” Proceedings of the Visual Comput-
ing Research Conference (by the Intel Visual Computing
Institute), Dec. 2009.

[9] C. Rasmussen and G. D. Hager, “Probabilistic data as-
sociation methods for tracking complex visual objects,”
IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 6, no. 10, pp. 560–576, June 2001.

[10] X. Ren, “Finding people in archive films through track-
ing,” Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, June 2008.

[11] D. J. Salmond, “Mixture reduction algorithms for
uncertain tracking,” Technical Report 88004, Royal
Aerospace Establishment, Jan. 1988.

[12] Y. Bar-Shalom and T. E. Fortmann, Tracking and Data
Association, Academic Press, 1988.

[13] J. Luettin G. Potamianos, C. Neti and I. Matthews,
“Audio-visual automatic speech recognition: An
overview,” in Audio-Visual Speech Processing, MIT
Press, ISBN: 0-26-222078-4, 2006.

[14] M. Georges, “A comparative study of features for audio-
visual speech recognition,” M.S. thesis, Saarland Uni-
versity, Saarbrücken, Germany, 2010.

[15] C. Marro, Y. Mahieux, and K. U. Simmer, “Analysis of
noise reduction and dereverberation techniques based on
microphone arrays with postfiltering,” IEEE Transac-
tions on Speech and Audio Processing, vol. 6, pp. 240–
259, 1998.

[16] J. Chen, J. Benesty, and Y. Huang, “Time delay esti-
mation in room acoustic environments: an overview,”
EURASIP Journal on Applied Signal Processing, pp. 1–
19, 2006.

[17] P. C. Loizou, Speech Enhancement: Theory and Prac-
tice, CRC Press, June 2007.

75


