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Abstract. In this paper we introduce two ideas for phoneme classifica-
tion: First, we derive the necessary steps to integrate linear transform
into the computation of reproducing kernels. This concept not restricted
to phoneme classification and can be applied in a wider range of research
subjects. Second, in the context of support vector machine (SVM)
classification, correlation features based on MFCC-vectors are proposed
as a substitute for the common first and second derivatives, and the
theory of the first part is applied to the new features. Additionally, an
SVM structure in the spirit of phoneme states is introduced. Relative
classification improvements of 40.67% compared to stacked MFCC
features of equal dimension encourage further research in this direction.

Key words: Correlation, Hilbert space, Reproducing kernel, Phoneme
classification

1 Introduction

Established concepts like HMMs have long been in use for speech recognition
and phoneme classification. In recent years systems have been influenced for
example by generative models like GMMs [11], maximum a posteriori adaptive
sequence estimation [5], discriminative methods [15] and along with the latter
the theory of reproducing kernel Hilbert spaces (RKHS). In the context of
reproducing kernels, sequence kernels [4] have been developed, capturing the
non-static nature of speech or even modelling HMMs (see [13], pp. 430–436).
Approaches like kernel combinations have been succesfully implemented in
other fields of pattern recognition. [9], [10] and [7] solve the SVM-optimization
considering convex and linear combinations of kernels on (heterogenuous)
compound feature vectors.

In our work, we pursue a new approach for phoneme classification. First,
looking at feature computation, we show how to embed linear mappings
into reproducing kernels. Second, we redesign SVM classification strate-
gies and adopt concepts of subphonemes/ phoneme states/ HMMs without
touching the kernel or the need to solve a modified optimization problem.
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The classification results encourage us to continue with research in this direction.

This paper is organized as follows. Subsequent to a brief review of the con-
cepts of reproducing kernels and support vector machines, section 3 shows how
linear mappings can be embedded into the evaluation of reproducing kernels.
These theoretical derivations in part motivate section 4, in which we introduce
MFCC-autocorrelation- and later cross-correlation features. Finally, we propose
an SVM-based classification approach utilizing a representation in the spirit of
phoneme states. To get comparable information, we refrain from using kernel
combination for the new approach and compare classification results to exper-
iments using stacked traditional MFCC-features (details in the respective sec-
tion). The results of these experiments follow in section 5, and the paper closes
with conclusions and perspectives in section 6.

2 Reproducing Kernels and SVMs

2.1 Reproducing kernels

The concept of reproducing kernels is based on the fact that any Hilbert space
H on a set X of complex-valued, bounded functionals endowed with an inner
product 〈·, ·〉 admits a mapping k : X ×X → C such that for all z ∈ X :

(1) k(·, z) ∈ H
(2) ∀f ∈ H : f(z) = 〈f, k(·, z)〉.

k is called a reproducing kernel and is unique within H. It is easily verified ([2],
[12]) that reproducing kernels defined as such are positive semidefinite (psd).
Conversely, for every psd k : X×X → C there exists exactly one H ⊂ C wherein
k is a reproducing kernel. Property (2) is called the reproducing property, as the
kernel reproduces the evaluation of the functional f ∈ H using the Hilbert space’s
inner product. Given such a k, the factorization lemma ([1]) implies the existence
of a Hilbert space H and a function Φ : X → H such that k(x, z) = 〈Φ(x), Φ(z)〉 .

A reproducing kernel k thus allows us to replace costly computations of a
mapping Φ by an inner product in H. Well known examples are the linear kernel
kl(x, z) = xT z, the polynomial kernel kpd(x, z) = (xT z+r)d and the exponential

kernel ke(x, z) = exp(−γ ||x− z||
2
). However, kernel functions are not generally

restricted to numerical representations. Areas such as bioinformatics, data min-
ing and part-of-speech-tagging in natural language processing, make frequent
use of kernels defined on strings or on more complex data structures like trees.

2.2 Support Vector Machines (SVMs)

Given a linear separable two-class dataset, SVMs compute a hyperplane w
seperating the two classes. The hyperplane is optimal in the sense that it has
minimal margin amongst all hyperplanes separating the data, the margin being
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the distance from w to any (training) sample.

Let H be an N -dimensional Hilbert space, M be the number of samples.
Writing x = (x1 · · ·xN ) for x ∈ X and n = 1, . . . , N , let w ∈ H and x1, . . . ,xM

be vectors in X . With b ∈ R being the bias or offset, {〈w,x〉+b = 0 |x ∈ H} is a
subspace and hyperplane in H with normal vectorw. The dot product equals the
length of the projection of either component onto the direction of the remaining
one. Hence, the orientation of the hyperplane, d(x|w) = sgn (〈x,w〉+ b) , is
a useful decision criterion. For target labels ym ∈ {±1},m = 1, . . . ,M , the
products ym·d(x|w) classify samples x into either class 1 or −1. The optimization
problem of finding he hyperplane is subject to one constraint for each training
sample: ym · d(x|w) ≥ 1,m = 1, . . . ,M. To achieve better generalization, it
has been proposed ([3]) and, following them, [6]) to relax the constraints by
introducing slack variables ζm ≥ 1, m = 1, . . . ,M , leading to soft margins. Using
Langrangian multipliers αm, m = 1, . . . ,M to optimize under the constraints,
the final dual form of the optimization problem,

maximize
α∈Rm

M
∑

m=1

αm −
1

2

M
∑

m,l=1

ymylαmαl 〈xm,xl〉 (1)

s.t.

{

〈y,α〉 = 0
0 ≤ α ≤ C

,

permits the substitution of the objective function’s inner product by a kernel
function k. The inequality α ≥ 0 is to be understood elementwise, and the
new decision function now is d(x|w) =

∑M

m=1 αmymk(w,xm) + b = 0. As the
dimension of the RKHS depends on the kernel used in (2.2), the data can be
linearly separable in the RKHS even if this is not the case in the original space.
For multiclass SVM cases, one-vs-one or one-vs-all strategies are commonly used.
A thorough discussion is presented in [14] or [12].

3 Linear mappings and reproducing kernels

Let us consider a continuous, linear mapping T : X → Y between two Banach
spaces X,Y . A basic result from functional analysis is that the space X ⊕ Y

with a norm given by ||(x, y)|| =

√

||x||2 + ||y||2, x ∈ X, y ∈ Y is again a

Banach space. The graph G(T ) = {(x, Tx) |x ∈ X} of T is a closed subspace

of X ⊕ Y , the norm consequently being ||x||T =

√

||x||
2
+ ||Tx||

2
≥ ||x||. In

Hilbert spaces, G(T ) as a closed subspace is itself a Hilbert space, it’s inner
product defined on the concatenation of the components: Let H,HT be Hilbert
spaces, p, q ∈ H and T : H → HT with respective inner products 〈·, ·〉

H
and

〈·, ·〉
HT

. Then G(T ) ⊂ H⊕HT , and

〈(p, T p), (q, T q)〉G(T ) = 〈p, q〉
H
+ 〈Tp, T q〉

HT
. (2)
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In this conetxt, a well-known theorem from Riesz ensures that for every
bounded, linear continuous operator T : H → HT between a finite dimensional
Hilbert space H and a Hilbert space HT there exists exactly one adjoint
operator T ∗ : HT → H such that for all p ∈ H, q ∈ HT the equation
〈Tp, q〉

HT
= 〈p, T ∗q〉

H
holds.

In our work we build on this theorem and, using the bilinearity of inner
products in R, recast equation (2) as follows:

〈(p, T p), (q, T q)〉G(T ) = 〈p, q〉
H
+ 〈Tp, T q〉

HT

= 〈p, q〉
H
+ 〈p, T ∗Tq〉

H

= 〈p, q + T ∗Tq〉
H

= 〈p, (IH + T ∗T )q〉
H
, (3)

where IH is the neutral element (that is, the identity matrix) of the endomor-
phisms of H and the last inner product is defined on H × H. As z∗(T ∗T )z =
(z∗T ∗)(Tz) = (Tz)∗(Tz) ≥ 0, T ∗T is psd and pd whenever the trace of T ∗T

does not equal zero. In this case, (IH + T ∗T ) will be pd and a new reproducing
kernel integrating T is given by kT∗T (p, q) = p∗(IH + T ∗T )q.
Most important, the transform keeps vectors in the same space, allowing usual
kernel combination techniques. In our experiments, we apply kernel composition
by inserting the new kernel into an exponential one.

The effect of T on the kernel can be controlled further by scaling the inner
products 〈·, ·〉

H
and 〈·, ·〉

HT
by numbers wH and wHT

respectively. Due to the
linearity of inner products, this leads to

wH 〈p, q〉+ wHT
〈Tp, T q〉 = 〈p, (wHIH + wHT

T ∗T )q〉
H
,

Note that wH, wHT
> 0 will ensure positive definiteness. For T unitary, equation

(3) reduces to scaling q as

〈(p, T p), (q, T q)〉G(T ) = 〈p, ((wH + wHT
)IH) q〉

H
. (4)

4 MFCC-Correlation Features

In this section we introduce new features consisting of usual MFCC-vectors
plus its correlation with adjacent vectors, the latter replacing the widely used
∆ and ∆∆. In our setting, both parts of such vectors are convex combined
via reproducing kernels during training and classification. While different
components of MFCC feature vectors (and thus the different frequency sub-
bands they represented) are decorrelated via a discrete cosine transform in
the process of their computation, correlation remains within sequences of the
same component. To keep the number of features reasonable, we only consider
immediately adjacent neighbourhoods and MFCC features of length L.
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Formalizing this, let ml
n−1,m

l
n,m

l
n+1,m

l
n+2, n ∈ N be a sequence of adjacent

MFCC vectors, where l = 1, . . . , L references a component of the vectors and
the subindex n the speech frame the MFCC features were computed from. Using
× to indicate cross correlation and forming two vectors, each of length three, of
the same components of adjacent vectors, we get L cross correlation vectors m̃l

m̃l =
(

ml
n−1,m

l
n,m

l
n+1

)

×
(

ml
n,m

l
n+1,m

l
n+2

)

.

Normalising and stacking the m̃l finalizes the computation of the autocorrelation
feature vector

(

m̃1, . . . , m̃L
)

.

4.1 Linearization and a phoneme state like approach

Given a fixed vector x of finite length, correlation with any finite vector y is
a transform linear in y. However, this is not true for the autocorrelation we
compute in section 3. For this reason, we modify the process as follows. We
simulate a phoneme state representation by splitting (training) samples of length
s into start- and endsection (S and E respectively) of length s÷ 3 and a middle
section (M) of length (s÷ 3) + (s mod 3). For each specific phoenem/class, we
group those subfeatures, compute their averages, and denote these centers by
xS , xM and xE .
In a first approach we allow seven SME-based states: SSS, SSM, SMM, MMM,

MME, MEE, EEE. They represent the position in a phoneme, and training sets
are built based on this segmentation . Using the new vectors, we switch from
auto- to crosscorrelation, applying the theory following immediately. Figure 1
illustrates, which 3-vector sequences of a phoneme sample contribute to which
training set.

Fig. 1. Example of a phoneme sample comprised of 13 MFCC-vectors/ frames and its
split into SME-based parts. Two vectorsequences are used for the classes SSS and EEE,
three for MMM and one each for SSM, SMM, MME and MEE.

In comparison to autocorrelation, the computation now depends on the
phoneme state. Considering a vector coordinate 1 ≤ l ≤ L, the linear mapping is
computed via

(

xl
qs, x

l
qm, xl

qe

)

×
(

ml
n,m

l
n+1,m

l
n+2

)

, where qs, qm, qe ∈ {S,M,E}.
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In matrix form (omitting the index l for clarirty), the linear transform equals

T =













0 0 xqs

0 xqs xqm

xqs xqm xqe

xqm xqe 0
xqe 0 0













and along with this

T ∗T =





x2
qs + x2

qm + x2
qe xqsxqm + xqmxqe xqsxqe

xqsxqm + xqmxqe x2
qs + x2

qm + x2
qe xqsxqm + xqmxqe

xqsxqe xqsxqm + xqmxqe x2
qs + x2

qm + x2
qe



 .

If, for instance, the state in question is SSM, xqs and xqm take values from the
cluster center vector xs, whereas xqe is set to the respective coordinate of xm.
Following the derivation of the previous section, T ∗T will be pd and hence kT∗T

a reproducing kernel whenever x2
qs + x2

qm + x2
qe 6= 0.

5 Experimental Results

We present results from two sets of multiclass classification results. Section 5.1
refers to the autocorrelation features introduced in section 4 and part 5.2 de-
picts the experiments of the cross correlation setup described in section 4.1. The
features were extracted via HTK3.3 extracted with a framesize of 25ms and an
overlap of 10ms. Training and test were performed on the eleven most frequent
phonemes aa, ae, ay, eh, ey, ih, ix, iy, n, s, z of the TIMIT dataset using a mod-
ified version of svmlight ([8]). If not mentioned otherwise, svmlight-parameters
remained unchanged. Also, parameters for SVMs trained on the new vectors
were not optimized but chosen due to results from partially rough grid tests.
Evaluating on finer grids and, in the case of kernel combination, solving the
convex kernel combination SVM optimization problem will very likely improve
results further.

5.1 Autocorrelation Features

For the SVM-classification baseline we use standard MFCC features consisting
of 13 values plus ∆ and ∆∆, and a single exponential kernel. γ is set to 0.001,
a quasi-optimal value determined by a rough grid search. This is compared to
SVM-classification using the autocorrelation features. Two exponential kernels
on the two parts forming the vector – the 13 basic values and the 26 autocorre-
lation values – are convex combined with unchanged γ = 0.001. Using a convex
weighting wkmfcc

e + (1 − w)kcorre and a 1-vs-1 setup, we perform a rough first
evaluation for w = 0.05, 0.10, . . . , 0.95. Table 1 illustrates the results.
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phoneme aa ae ay eh ey ih ix iy n s z avg.

MFCC39 38.7 73.4 63.9 64.2 65.8 94.1 25.2 22.9 44.8 12.4 88.4 54.6

MFCC13+corr 32.6 66.8 70.1 61.2 64.2 89.9 42.3 26.1 26.7 5.8 77.9 51.2

Table 1. Classification error rates results for two experiments: Features of size 39 (13
MFCC-values plus ∆ and∆∆) using one RBF-kernel and features of size 39 (13 MFCC-
values plus autocorrelation values) using a kernel combination. The latter produces a
slight drop of the cumulative average classification error for all w. w = 0.95 gives the
best results so far: A relative classification improvement of about 7.5%. For two classes,
ix and ay, classification abates, while elsewhere it improves.

sMfcc SSS SSM SMM MMM MME MEE EEE SME-avg.

aa 69.26 75.53 87.72 92.01 94.08 95.72 95.91 91.82 90.40

ae 59.79 94.27 83.54 83.71 92.66 79.65 79.96 88.76 86.08

ay 52.22 83.30 86.23 91.77 96.61 91.94 80.72 82.66 87.60

eh 44.22 62.54 88.44 91.44 92.23 90.95 87.68 65.58 82.69

ey 56.39 82.77 81.22 83.04 92.38 83.64 84.10 90.47 85.37

ih 37.82 79.72 77.50 71.74 75.85 73.40 83.07 90.41 78.81

ix 47.63 40.17 84.30 94.16 86.05 95.87 92.02 21.12 73.38

iy 77.44 96.21 96.66 96.72 97.68 96.40 96.03 91.32 95.86

n 88.63 95.71 97.96 98.23 97.79 98.35 97.36 88.57 96.28

s 88.43 98.59 96.35 94.89 96.15 91.88 92.36 99.37 95.66

z 42.50 77.45 87.39 79.38 48.61 66.60 63.04 21.01 63.35

avg . 60.39 84.95

Table 2. Recognition rates of SME-based classification compared to sMfcc features.
Even phonemes like ih and ix that are hard to tell apart and often merged in experi-
mental setups ([15], e.g.) are separated relatively well. The overall relative recognition
gain is approximately 40.67%

5.2 Crosscorrelation Features and Phoneme Sate Simulation

As the new correlation features extend over three frames, comparison to single-
frame MFCC-features is improper due to the difference in the amount of informa-
tion. We thus consider 3-vector sequences of standard 13-dimensional MFCC-
features (sMfcc) without ∆ and ∆∆, resulting in comparable feature vectors of
equal dimension. To get a first impression of the quality of this new approach,
we use a single exponential kernel. The γ-parameter is again selected due to a
rough grid search and set to 0.0001 for the sMfcc-SVMs and to 0.00001 for the
SME-SVMs. Table 2 illustrates the strong raise in the recognition rates.

6 Conclusion, Discussion and Perspectives

In this paper we have introduced correlation features computed from adjacent
frames of MFCC-vectors of utterances and derived a kernel that integrates a
linear mapping. Experiments using the new features-kernel combination show
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great improvements in phoneme classification and encourage further research.

Clearly, not all phonemes are adequately represented by decomposition into
all of the seven states or do not even deliver samples for the SME-trainingsets
due to their size. Entries in table 2 like the EEE results for ix and z reflect this sit-
uation. Hence, individual setups are currently evaluated. Following those, a first
step in classification will then be to perform intra-class evaluations and choose
the one (or even two) classes with best recognition rates for further between-class
classification. We are positive that this will again improve the results.
Finally, the definition of a graph also holds for operators, and equation (2) in
section 3 can be recast in a similar way. In this context, the theory presented
here becomes interesting for functions known to be reproducing kernels of for
instance Sobolev- and Hardyspaces. For both operators and mappings, care must
however be taken that 〈Tf, T g〉 remains an inner products. Differentiation for
instance annihilates its definitness.
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