
Offensive Language Detection with Neural Networks
for Germeval Task 2018

Dominik Stammbach
Saarland University

dominiks@coli.uni-saarland.de

Azin Zahraei
Saarland University
azinz@coli.uni-saarland.de

Polina Stadnikova
Saarland University
polinas@coli.uni-saarland.de

Dietrich Klakow
Saarland University

dietrich.klakow@lsv.uni-saarland.de

Abstract

In this paper we describe our submissions
to task I of the GermEval 2018 Shared Task
with the goal of identifying offensive lan-
guage in a set of German tweets. We ex-
periment with two neural architectures and
different features. Our submission consists
of 3 runs using ensembles of different neu-
ral network architectures, each achieving
approximately 78 % macro-F1 measure on
the last 500 tweets from the training set.
The source code for our experiments is pub-
licly available on Github. 1

1 Introduction

In recent years, it has become increasingly impor-
tant to come up with countermeasures to deal with
offensive language in social media. The NetzDG
law which has been in effect since January 1 2018
in Germany requires tech companies like Twitter
to delete obviously illegal content. (Wikipedia con-
tributors, 2018) The huge amount of data posted on
Twitter and the fact that German is in the top 10 lan-
guages of this social media platform (Hong et al.,
2011) makes manually monitoring the data unfeasi-
ble and calls for automatic methods of identifying
offensive language.

The GermEval 2018 Shared Task is focused on
detecting offensive comments in a set of German
tweets in two subtasks. Task I is a binary classifica-
tion of tweets. Task II requires a more fine-grained
classification of the offensive tweets into 3 subcat-
egories, namely profanity, insult and abuse. But
because of the small number of examples for the
profanity class, training a neural network to detect
profanity was infeasible. Because of the nature of
the evaluation metric it was unlikely to get compet-
itive results in task II so we only submit our model
for task I.

1https://github.com/polinastadnikova/-neurohate

For our submission we have used neural net-
works which have become the top-performing tech-
nique for many tasks in the field of natural lan-
guage processing. Convolutional Neural Networks
(CNN), which were initially invented for the com-
puter vision domain, have proven to be effective for
many Natural Language Processing tasks. This ar-
chitecture allows for extraction of local features in
text, e.g. word order. This way, we are able to make
use of combinations of words and use fixed size
regions of text, e.g. bigrams, trigrams and so on as
features. Yoon Kim (2014 ) shows the effectiveness
of using a CNN for text classification by comparing
results on different benchmarks. Recurrent Neural
Networks (RNN), on the other hand, are able to ex-
tract long term dependencies. This is a feature that
is definitely useful in offensive language detection.
RNN-based methods have produced state-of-the-
art scores for offensive language detection in other
languages (Del Vigna et al., 2017). Thus, we have
implemented both a CNN and a RNN model for
this task.

Following many experiments with different ways
of handling the data and different architectures for
our prediction model, we selected our best models
based on their macro-averaged F1 scores. More
specifically, we compared the models based on
their mean F1 score when 10 fold cross-validating
on all the training data. We submit three runs,
where the first, second and third runs are an en-
semble of RNNs, an ensemble of CNNs and an
ensemble of CNNs and RNNs respectively. After
describing the data and how we preprocessed them
in Section 2, we introduce the architectures and hy-
perparameters used in our best models in Section 3.
In Section 4, we talk about our experimental setups
and their results.

2 Data

The training data consists of 5009 tweets in Ger-
man, where some tweets contain different types



of hate speech. The data is annotated according
to the tasks: binary and fine-grained classification.
Therefore each tweet has two labels, OFFENSE or
OTHER as the first label and as the second label
one of the following: INSULT, ABUSE, PROFAN-
ITY, OTHER. In our work, we focus on the binary
classification, that means we have 1688 training
examples containing offensive language and 3321
without hate speech. The reason for our decision
not to participate in the fine-grained classification
task is that there are only 71 examples for the PRO-
FANITY label, 1022 examples for ABUSE out of
1688 tweets. We believe it is not enough for neu-
ral network training and furthermore our system
would be biased towards the ABUSE label.

2.1 Preprocessing

For classification, as well as for many other NLP
tasks, preprocessing of the training data has an im-
pact on the system’s performance (Kannan and Gu-
rusamy, 2014; Qu et al., 2015). Since we use neural
networks for our classifier and such approaches are
data-driven, preprocessing becomes a crucial part
of the system.

First of all, we tokenize the data using the two-
kenize package 2 for Python, which was specially
designed for tokenization of tweets. This forms the
basic preprocessing.

For the advanced preprocessing, we continue
working with the tokenized tweets. We re-
move punctuation and words containing non-alpha-
numerical characters (including emojis) and we
lowercase all the words. We consider hashtags,
words with the # sign, as a special case since they
are widely used on Twitter. We do not want to re-
move them because hashtags can be repetitive and
capture some relevant information. For this reason,
we just remove the hash sign. Mentions, denoted by
the @ sign, are also popular on Twitter but they are
often random and we decided that they are not rele-
vant for our classifier. By removing them, we back
down from using implicit information captured in
the word embeddings about specific users.

Since neural networks cannot handle categori-
cal features as input, we need to convert the input
tweets into a numerical representation. Following
convention, we make use of pre-trained word em-
beddings. We use the German Twitter embeddings
collected by the researchers at Heidelberg Univer-

2https://github.com/nryant/twokenize py

sity3. The embeddings are trained using word2vec,
with 100 dimensions for each word, a context win-
dow size of 7 and a minimum occurence of at least
50 times per word in the data. They are also to-
kenized using the twokenize package, hence our
decision to use the same library to tokenize the
tweets.

We vectorize tweets in the following way: each
tweet is a vector with word IDs as its elements.
Word IDs correspond to the row of a word in the
embeddings matrix. For words which occur only in
the training data but not in the embeddings (OOV)
we introduce the label UNKNOWN.

2.2 Features

Features have a large impact on performance, espe-
cially in domain specific tasks (Schmidt and Wie-
gand, 2017). The information, relevant for the
features, is extracted during preprocessing.

• Word embeddings represent one of the most
common features in neural NLP (Ruder et al.,
2017) . As already introduced above, they
are vector-based word representations which
are usually pre-trained on large datasets. The
embeddings which we use perfectly fit our pur-
pose since they are trained on the Twitter data.
It is known that word embeddings trained on
out-of-domain data lower performance of sys-
tems(Qu et al., 2015). Interestingly, words in
the embeddings are true-cased, most nouns ap-
pear twice in the embeddings, once true-cased
and once lowercased. Therefore the question
arises whether we benefit from lowercasing
the data. We design our experiments with re-
gard to this fact.

We also tried out other features like emphasizing
some categories or considering punctuation, all
of which lowered the performance and thus are
not included in our final models. We will briefly
describe them in Section 4.

3 Model

We experimented with two different neural net-
work architectures, namely convolutional neural
networks (CNNs) and recurrent neural networks
(RNNs).

3http://www.cl.uni-heidelberg.de/english/research/downloads/
resource pages/GermanTwitterEmbeddings/
GermanTwitterEmbeddings data.shtml



3.1 CNN

When using CNNs in NL, a window size is de-
fined and a shared weight matrix is trained which
is slided along sentences to produce a feature map
for every n-gram in the sentence where n is the win-
dow size. Afterwards, we do max pooling over the
different features generated and use this as a hidden
representation for the sequence. The main benefit
is that it is very fast and has few trainable parame-
ters, but can only consider local information. For
our final CNN model, we use word embeddings
which are initialized with the values from the Hei-
delberg embeddings and can be trained. We max
pool over 1 layer of bi- and trigram features with
64 filters per filter feature. We use a stride of 1 to
extract such features and to do max pooling over all
the resulting feature maps. Then this hidden repre-
sentation is fed into a two-layer deep feed-forward
network with the first layer having 128 hidden units
and the second layer with only two units to perform
classification. These parameters were chosen by
grid searching over a number of different settings.

3.2 RNN

While using RNNs, one can encode the sequence
in a very intuitive way, namely as word represen-
tations for every word. In this case, a recurrent
neural network starts at the beginning of the se-
quence and computes a hidden state given the in-
put. This hidden state is propagated through the
sequence and updated at each timestep given the
current input. The hidden state can also be thought
of as the memory of the network and thus is able
to capture global information from the sentence.
The downsides consist of having more trainable
parameters to be optimized using a limited amount
of training data. For our final RNN model, we use
bidirectional gated recurrent units (GRUs) (Cho et
al., 2014) with 50 hidden units for each direction.
We also experimented using LSTMs but they per-
form worse. We think this is explainable by the
lower numbers of trainable parameters in the GRU-
case which performs better on the small number of
training examples we actually have. We performed
a max-pool operation over the hidden timesteps
because important features at a given timestep may
be forgotten towards the end of the sequence and
this is a straight-forward way to keep such features.
The resulting hidden representation of the sequence
(output of the GRUs) is fed into a 4-layer deep feed-
forward neural network with 100 hidden units for

the first three layers and two neurons in the final
layer to perform classification.

Both architectures share some common settings
which we describe here: All the layers in the feed-
forward neural networks use a dropout-rate of 0.2,
a ReLU-activation and L2-regularization with λ

0.0001. We also apply the same dropout to the
input sequence and the output representation of the
CNN/RNN respectively. We used cross-entropy as
a loss function and optimized it using the Adam
optimizer with default parameters. Additionally,
we weighted offensive tweets twice as much as the
non-offensive ones to overcome the imbalance with
respect to the number of training examples in the
data.

The training was completed using a batch size of
64 examples per batch, with the data shuffled after
every epoch and early stopping on a development
set with a patience of 4. We selected all the pa-
rameters described above by peforming grid search
over the training set in a 10-fold cross-validating
fashion. The two configurations described above
turned out to be the ones yielding the highest aver-
age macro F1 measure on different parts of the data.
The ensemble method is a loose version of bagging
which furthermore increases the robustness and ac-
curacy of the classification. We decided to use it
since the high fluctuations in the results were ob-
served when running the same configuration mul-
tiple times. A possible reason for this might be
the random parameter initialization. Moreover, the
problem of finding the right seed in training neural
networks also plays an important role here (Bajgar
et al., 2018). To counter such behaviour while grid
searching, we use 10-fold cross-validation. Finally,
using an ensemble of 9 identical models trained
on different parts of the data 4, we do predictions
based on the majority vote from these models and
observe an increase of approximately 2% F1 mea-
sure compared to when only one model was used.
Our final macro-F1 scores are discussed in the next
section.

4 Experiments and Discussion

In Table 1 we show our results with different ex-
periments. All experiments (except the Character
CNN) are conducted using the GRU-architecture
described above. For each experiment, we use 10-
fold cross-validation and in each fold, we split the

4one part of training data is reserved for performing early
stopping



data in three parts: a training set, a validation set
for early stopping and a testset to evaluate. We
report the average macro-F1 score over all the ten
folds. Our system is optimized for the F1-measure
and not for precision and recall, for this reason we
report only the first one. Throughout the experi-
ments, we fixed the different splits so that we do
not evaluate every experiment on different parts of
the data.

In the first row, we just looked up the true-cased
version of a word in our embeddings vocabulary.
In case we cannot find it there, we try to back off to
the lowercased version of the word and otherwise,
we just use the UNKNOWN token.

In the second row, we report the results for re-
placing tokens which appear in a swear word dictio-
nary5 by a special SWEAR token. The motivation
for this feature was the fact that offensive tweets
tend to contain some swear words. Interestingly,
compared to true-cased data, this significantly im-
proves performance, but by just lowercasing all the
words, we get even better results(row 3). This can
be justified by the fact that for most nouns, two
versions, one true-cased and one lowercased copy,
exist in the embeddings and words are not always
accurately true-cased in tweets. Thus, by lowercas-
ing all words, we avoid confusing the network with
inconsistently true-cased words.

In row 5, we run the model without excluding
non-alphanumerical tokens, punctuation and emo-
jis. This again decreases the system’s performance.
Another issue we tried to overcome here is the out-
of-vocabulary (OOV) words treatment, which is
common in NLP, especially with small datasets
like ours. For this, we use hunspell spellchecker 6.
Many tweets contain spelling errors, therefore the
spellchecker helps to reduce the number of OOVs:
from 2511 OOV tokens to 91. The only problem
here is that the spellchecker generates words which
are correct but do not occur in the embeddings and
therefore are not very useful7. This might be an
explanation for the slightly worse model perfor-
mance.

Row 7 shows the results from running our RNN
model using LSTMs instead of GRUs. We spec-
ulate that since LSTMs have a larger number of
trainable parameters, training them on our small
training data is producing worse results than GRUs.

5https://www.schimpfwoerter.de/
6https://pypi.org/project/hunspell/
7For instance, SPDler is corrected to Spieler, and Antifan-

tenbrut to quantifizieren.

In row 8, we see the results when using our
CNN model with character embeddings. We grid-
searched over a number of settings and our best
result was a setting with 50 hidden units, a dropout
of 0.1 and a batch size of 256. Despite the fact
that using character embeddings solves the OOV
issue, the model still fails to capture lots of the
more broad-scale features in a sentence and there-
fore yielded very low results compared to our other
runs.

Table 2 summarizes the runs which we submit
for task I. For each run, we evaluated our system
on the last 500 tweets from the training set. The
last run consists of an ensemble of 18 models, 9
RNN GRUs and 9 CNNs. We expect that this might
slightly boost the performance. We combined the
predictions from the two sets of models on the test
set and predicted offense tags if at least half the
models predicted a tweet as offensive.

Note that the results from Table 1 and 2 are not
directly comparable since we evaluate the features
using 10-fold cross-validation and the submission
runs using the last 500 examples which we ex-
cluded during the training time. For the final sub-
mission, we retrained the ensembles including the
last 500 tweets as additional training material.

Method F1(%)
True-cased 61.6
True-cased + swear word dictionary 74.2
Lowercased 75.9
Lowercased + swear-word dictionary 74.9
Lowercased + non-alpha numerical tokens 72.6
Spellchecker for OOVs 69.7
Using LSTM instead of GRU 68.3
Character embeddings 49

Table 1: Results for different experiments

Submission File Ensemble F1(%)
SaarOffDe coarse 1.txt RNN 77.7
SaarOffDe coarse 2.txt CNN 78.6
SaarOffDe coarse 3.txt CNN + RNN 77.6

Table 2: Submitted runs

5 Conclusion

In this paper, as part of the Germeval 2018 shared
task, task I, we implemented neural networks for



the Identification of Offensive Language in Ger-
man.

We evaluated the two most common neural net-
work approaches for sequence classification on a
new German dataset and reported different prepro-
cessing techniques and their impact on the final
classification. The most surprising fact seems to be
that the best models rely on lowercased words even
though the word embeddings we use are true-cased.
The overall best performance was achieved with a
CNN model with a bi- and trigram filter.

We submit three runs for task I consisting of an
ensemble of RNNs8, CNNs9 and a combination of
both RNNs and CNNs together10.

References
Lichan Hong, Gregorio Convertino, and Ed Chi. 2011.

Language matters in Twitter: A large scale study In
International AAAI Conference on Weblogs and So-
cial Media.

Wikipedia contributors. The Free Encyclopedia, 30 Jul.
2018. Web. 3 Aug. 2018. Netzwerkdurchsetzungsge-
setz. Wikipedia, The Free Encyclopedia. Wikipedia.
American Psychological Association, Washington,
DC.

Anna Schmidt and Michael Wiegand. 2017. A Sur-
vey on Hate Speech Detection using Natural Lan-
guage Processing In: Proceedings of the Fifth Inter-
national Workshop on Natural Language Processing
for Social Media.

Kyunghyun Cho, Bart van Merrienboer, Çaglar
Gülçehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio 2014. Learning Phrase Represen-
tations using RNN Encoder-Decoder for Statistical
Machine Translation

Ondrej Bajgar, Rudolf Kadlec, Jan Kleindienst 2018.
A Boo(n) for Evaluating Architecture Performance
In: Proceedings of the 35th International Conference
on Machine Learning, PMLR 80:344-352, 2018.

Yoon Kim 2014. Convolutional Neural Networks for
Sentence Classification CoRR abs/1408.5882

Fabio Del Vigna, Andrea Cimino, Felice Dell’Orletta,
Marinella Petrocchi, and Maurizio Tesconi . 2017.
Hate me, hate me not: Hate speech detection on
Facebook. In: Proceedings of ITASEC.

Subbu Kannan and Vairaprakash Gurusamy. 2014.
Preprocessing Techniques for Text Mining. In: Pro-
ceedings of RTRICS.

8corresponds to the run SaarOffDe coarse 1.txt from our
submission.

9corresponds to SaarOffDe coarse 2.txt.
10corresponds to SaarOffDe coarse 3.txt.

Sebastian Ruder, Ivan Vulić and Anders Sogaard. 2017.
A Survey of Cross-lingual Embedding Models.

Lizhen Qu, Gabriela Ferraro, Liyuan Zhou, Wei-
wei Hou, Nathan Schneider, and Timothy Baldwin.
2015. Big Data Small Data, In Domain Out-of Do-
main, Known Word Unknown Word: The Impact of
Word Representation on Sequence Labelling Tasks .
In: Proceedings of the 19th Conference on Compu-
tational Language Learning.


