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Abstract

In low-resource settings, the performance of
supervised labeling models can be improved
with automatically annotated or distantly su-
pervised data, which is cheap to create but of-
ten noisy. Previous works have shown that
significant improvements can be reached by
injecting information about the confusion be-
tween clean and noisy labels in this additional
training data into the classifier training. How-
ever, for noise estimation, these approaches
either do not take the input features (in our
case word embeddings) into account, or they
need to learn the noise modeling from scratch
which can be difficult in a low-resource set-
ting. We propose to cluster the training data
using the input features and then compute dif-
ferent confusion matrices for each cluster. To
the best of our knowledge, our approach is
the first to leverage feature-dependent noise
modeling with pre-initialized confusion matri-
ces. We evaluate on low-resource named en-
tity recognition settings in several languages,
showing that our methods improve upon other
confusion-matrix based methods by up to 9%.

1 Introduction

Most languages, even with millions of speakers,
have not been the center for natural language
processing and are counted as low-resource for
tasks like named entity recognition (NER). Sim-
ilarly, even for high-resource languages, there ex-
ists only few labeled data for most entity types be-
yond person, location and organization. Distantly-
or weakly-supervised approaches have been pro-
posed to solve this issue, e.g., by using lists of
entities for labeling raw text (Ratinov and Roth,
2009; Dembowski et al., 2017). This allows ob-
taining large amounts of training data quickly and
cheaply. Unfortunately, these labels often contain
errors and learning with this noisily-labeled data is

difficult and can even reduce overall performance
(see, e.g. Fang and Cohn (2016)).

A variety of ideas have been proposed to over-
come the issues of noisy training data. One pop-
ular approach is to estimate the relation between
noisy and clean, gold-standard labels and use this
noise model to improve the training procedure.
However, most of these approaches only assume
a dependency between the labels and do not take
the features into account when modeling the la-
bel noise. This may disregard important informa-
tion. The global confusion matrix (Hedderich and
Klakow, 2018) is a simple model which assumes
that the errors in the noisy labels just depend on
the clean labels.

Our contributions are as follows: We propose to
cluster the input words with the help of additional,
unlabeled data. Based on this partition of the fea-
ture space, we obtain different confusion matri-
ces that describe the relationship between clean
and noisy labels. We evaluate our newly pro-
posed models and related baselines in several low-
resource settings across different languages with
real, distantly supervised data with non-synthetic
noise. The advanced modeling of the noisy la-
bels substantially improves the performance up to
36% over methods without noise-handling and up
to 9% over all other noise-handling baselines.

2 Related Work

A popular approach is modeling the relationship
between noisy and clean labels, i.e., estimating
p(ŷ|y) where y is the clean and ŷ the noisy la-
bel. For example, this can be represented as a
noise or confusion matrix between the clean and
the noisy labels, as explained in Section 3. Hav-
ing its roots in statistics (Dawid and Skene, 1979),
this or similar ideas have been recently studied
in NLP (Fang and Cohn, 2016; Hedderich and



Klakow, 2018; Paul et al., 2019), image classifi-
cation (Mnih and Hinton, 2012; Sukhbaatar et al.,
2015; Dgani et al., 2018) and general machine
learning settings (Bekker and Goldberger, 2016;
Patrini et al., 2017; Hendrycks et al., 2018). All
of these methods, however, do not take the fea-
tures into account that are used to represent the in-
stances during classification. In (Xiao et al., 2015)
only the noise type depends on x but not the actual
noise model. Goldberger and Ben-Reuven (2016)
and Luo et al. (2017) use the learned feature repre-
sentation h to model p(ŷ|y, h(x)) for image clas-
sification and relation extraction respectively. In
the work of Veit et al. (2017), p(y|ŷ, h(x)) is es-
timated to clean the labels for an image classifi-
cation task. The survey by Frenay and Verleysen
(2014) gives a detailed overview about other tech-
niques for learning in the presence of noisy labels.

Specific to learning noisy sequence labels in
NLP, Fang and Cohn (2016) used a combination
of clean and noisy data for low-resource POS tag-
ging. Yang et al. (2018) suggested partial annota-
tion learning to lessen the effects of incomplete an-
notations and reinforcement learning for filtering
incorrect labels for Chinese NER. Hedderich and
Klakow (2018) used a confusion matrix and pro-
posed to leverage pairs of clean and noisy labels
for its initialization, evaluating on English NER.
For English NER and Chunking, Paul et al. (2019)
also used a confusion matrix but learned it with
an EM approach and combined it with multi-task
learning. Recently, Rahimi et al. (2019) studied
input from different, unreliable sources and how
to combine them for NER prediction.

3 Global Noise Model

We assume a low-resource setting with a small
set of gold standard annotated data C consisting
of instances with features x and corresponding,
clean labels y. Additionally, a large set of noisy
instances (x, ŷ) ∈ N is available. This can be
obtained e.g. from weak or distant supervision.
In a multi-class classification setting, we can learn
the probability of a label y having a specific class
given the feature x as

p(y = i|x) =
exp(uTi h(x))∑k
l=1 exp(u

T
l h(x))

(1)

where k is the number of classes, h is a learned,
non-linear function (in our case a neural network)
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Figure 1: Visualization of the noisy labels, confusion
matrix architecture. The dotted line shows the pro-
posed new dependency.

and u is the softmax weights. This is our base
model trained onC. Due to the errors in the labels,
the clean and noisy labels have different distribu-
tions. Therefore, learning on C and N jointly can
be detrimental for the performance of predicting
unseen, clean instances. Nevertheless, the noisy-
labeled data is still related to C and can contain
useful information that we want to successfully
leverage. We transform the predicted (clean) dis-
tribution of the base model to the noisy label dis-
tribution

p(ŷ = j|x) =

k∑
i=1

p(ŷ = j|y = i)p(y = i|x).

(2)

The relationship is modeled using a confusion
matrix (also called noise or transformation matrix
or noise layer) with learned weights bij :

p(ŷ = j|y = i) =
exp(bij)∑k
l=1 exp(bil)

(3)

The overall architecture is visualized in Fig-
ure 1. An important question is how to initialize
this noise layer. As proposed by Hedderich and
Klakow (2018), we apply the same distant super-
vision technique used to obtain N from unlabeled
data on the already labeled instances inC. We thus
obtain pairs of clean y and corresponding noisy la-
bels ŷ for the same instances and the weights of the
noise layer can be initialized as

bij = log(

∑|C|
t=1 1{yt=i}1{ŷt=j}∑|C|

t=1 1{yt=i}
). (4)

Following the naming by (Luo et al., 2017), we
call this the global noise model.

4 Feature Dependent Noise Model

The global confusion matrix is a simple model
which assumes that the errors in the noisy labels



depend on the clean labels. An approach that
also takes the corresponding features x into ac-
count can model more complex relations. Veit
et al. (2017) and Luo et al. (2017) use multiple
layers of a neural network to model these relation-
ships. However, in low resource settings with only
small amounts of clean, supervised data, these
more complex models can be difficult to learn. In
contrast to that, larger amounts of unlabeled text
are usually available even in low-resource settings.
Therefore, we propose to use unsupervised clus-
tering techniques to partition the feature space of
the input words (and the corresponding instances)
before estimating the noise matrices. To create the
clusters, we use either Brown clustering (Brown
et al., 1992) on the input words or k-means clus-
tering (Lloyd, 1982) on the pretrained word em-
beddings after applying PCA (Pearson, 1901).

In sequence labeling tasks, the features x of an
instance usually consist of the input word ι(x) and
its context. Given a clustering Π over the input
words {ι(x) | (x, y) ∈ C ∪N} consisting of clus-
ters Π1, ...,Πp, we can group all clean and noisy
instances into groups

Gq = {(x, y) ∈ C ∪N | ι(x) ∈ Πq} (5)

For each group, we construct an independent
confusion matrix using Formulas 3 and 4. The
prediction of the noisy label ŷ (Formula 2) then
becomes

p(ŷ = j|x) =
k∑

i=1

p(ŷ = j|y = i, G)p(y = i|x)

(6)

Since the clustering is performed on unsuper-
vised data, in low-resource settings, the size of an
actual group of instances Gq can be very small. If
the number of members in a group is insufficient,
the estimation of reliable noise matrices is diffi-
cult. This issue can be avoided by only using the
largest groups and creating a separate group for
all other instances. To make use of all the clus-
ters, we alternatively propose to interpolate be-
tween the global and the group confusion matrix:

pint(ŷ = j|y = i, G) =

(1−λ)·p(ŷ = j|y = i, G)+λ·p(ŷ = j|y = i)
(7)

(a) Global Matrix (b) Month Names

(c) Uppercased Words (d) Location Names

(e) Asian Names (f) First Names

Figure 2: Confusion matrices used for initialization
when training with the English dataset. The global ma-
trix is given as well as five of the feature-dependent
matrices obtained when using k-Means clustering for
75 clusters.

The interpolation hyperparameter λ (with 0 ≤
λ ≤ 1) regulates the influence from the global ma-
trix on the interpolated matrix. The selection of
the largest groups and the interpolation can also
be combined.

5 Experiments

We evaluate all models in five low-resource NER
settings across different languages. Although the
evaluation is performed for NER labeling, the pro-
posed models are not restricted to the task of NER
and can potentially be used for other tasks.

5.1 Models 1

We follow the BiLSTM architecture from Hed-
derich and Klakow (2018). Only the optimizer
was changed for all models to NADAM (Dozat,
2016) as this helped with convergence problems
for increasing cluster numbers. The Base is
trained only on clean data while Base+Noise is
trained on both the clean and the noisy data with-
out noise handling. Global-CM uses a global

1The code for all models is made available at https:
//github.com/uds-lsv/noise-matrix-ner

https://github.com/uds-lsv/noise-matrix-ner
https://github.com/uds-lsv/noise-matrix-ner


De En Es Et Nl

Base 21.4 ± 1.0 35.9 ± 4.6 39.1 ± 1.6 36.7 ± 1.8 15.5 ± 3.0
Base+Noise 26.2 ± 0.6 50.5 ± 1.4 50.2 ± 1.0 51.5 ± 0.7 29.5 ± 2.7

Cleaning (Veit et al. 2017) 16.1 ± 4.3 52.3 ± 2.3 48.7 ± 2.3 53.8 ± 0.4 24.4 ± 5.5
Dynamic-CM (Luo et al. 2017) 32.6 ± 0.9 53.7 ± 1.8 57.6 ± 0.8 52.3 ± 0.8 36.7 ± 2.9
Global-ID-CM (H. and K. 2018) 27.1 ± 0.7 51.0 ± 1.1 50.9 ± 0.7 51.4 ± 0.6 29.9 ± 2.6
Global-CM (H. and K. 2018) 34.1 ± 1.4 52.0 ± 1.6 52.8 ± 0.6 52.3 ± 0.6 33.3 ± 2.0

Brown-CM-Freq 32.7 ± 0.7 51.3 ± 1.3 54.8 ± 1.0 53.4 ± 0.8 38.1 ± 1.7
K-Means-CM-Freq 29.7 ± 2.3 54.1 ± 2.9 52.3 ± 1.2 54.9 ± 0.8 39.8 ± 1.8
Brown-CM-IP 29.6 ± 1.1 55.5 ± 3.7 55.6 ± 1.0 52.6 ± 0.9 37.3 ± 1.5
K-Means-CM-IP 33.4 ± 1.1 53.0 ± 4.0 56.3 ± 2.1 53.3 ± 0.5 36.0 ± 1.9

Brown-CM-Freq-IP 34.3 ± 1.4 51.4 ± 2.3 57.7 ± 2.4 53.1 ± 0.9 40.0 ± 1.3
K-Means-CM-Freq-IP 33.1 ± 2.1 57.6 ± 1.5 57.2 ± 1.3 55.2 ± 0.3 39.7 ± 1.0

Table 1: Results of the evaluation in low-resource settings with 1% of the original labeled training data averaged
over six runs. We report the F1 scores (higher is better) on the complete test set, as well as the standard error.

confusion matrix for all noisy instances to model
the noise as proposed by Hedderich and Klakow
(2018) and presented in Section 3. The same ar-
chitecture is used for Global-ID-CM, but the con-
fusion matrix is initialized with the identity ma-
trix (instead of Formula 4) and only adapted dur-
ing training.

The cluster-based models we propose in Sec-
tion 4 are Brown-CM and K-Means-CM. We ex-
perimented with numbers of clusters of 5, 10, 25
and 50. The models that select only the largest
groups G are marked as *-Freq and select ei-
ther 30% or 50% of the clusters. The interpo-
lation models have the postfix *-IP with λ ∈
{0.3, 0.5, 0.7} . The combination of both is named
*-Freq-IP. As for all other hyperparameters, the
choice was taken on the development set.

We implemented the Cleaning (Veit et al.,
2017) and Dynamic-CM (Luo et al., 2017) mod-
els. Both were not developed for sequence label-
ing tasks and therefore needed to be adapted. For
the Cleaning model, we followed the instructions
by Hedderich and Klakow (2018). The embedding
and prediction components of the Dynamic-CM
model were replaced according to our base model.
The output of the dense layer was used as input to
the dynamic matrix generation. We experimented
with and without their proposed trace loss.

The training for all models was performed with
labels in the IO format. The predicted labels
for the test data were converted and evaluated in
IOB2 with the official CoNLL evaluation script.
The IOB2 format would increase matrix size mak-
ing the confusion matrix estimation more diffi-
cult without adding much information in practice.
In preliminary experiments, this decreased perfor-

mance in particular for low-resource settings.

5.2 Data

The models were tested on the four CoNLL
datasets for English, German, Spanish and
Dutch (Tjong Kim Sang, 2002; Tjong Kim Sang
and De Meulder, 2003) using the standard split,
and the Estonian data from Tkachenko et al.
(2013) using a 10/10/80 split for dev/test/train sets.
For each language, the labels of 1% of the train-
ing data (ca. 2100 instances) were used to obtain
a low-resource setting. We treat this as the clean
data C. The rest of the (now unlabeled) training
data was used for the automatic annotation which
we treat as noisily labeled data N . We applied the
distant supervision method by Dembowski et al.
(2017), which uses lists and gazetteer information
for NER labeling. As seen in Table 2, this method
reaches rather high precision but has a poor re-
call. The development set of the original dataset is
used for model-epoch and hyperparameter selec-
tion, and the results are reported on the complete,
clean test set. The words were embedded with
the pretrained fastText vectors (Grave et al., 2018).
The clusters were calculated on the unlabeled ver-
sion of the full training data. Additionally, the
Brown clusters used the language-specific docu-
ments from the Europarl corpus (Koehn, 2005).

De En Es Et Nl

Precision 23.2 39.9 51.0 59.7 32.4
Recall 9.2 30.1 24.7 49.3 21.1
F1 13.2 34.3 33.3 54.0 25.5

Table 2: Results of the automatic labeling method pro-
posed by Dembowski et al. (2017) on the test data.



6 Experimental Results

The results of all models are shown in Table 1.
The newly proposed cluster-based models achieve
the best performance across all languages and out-
perform all other models in particular for Dutch
and English. The combination of interpolation
with the global matrix and the selection of large
clusters is almost always beneficial compared to
the cluster-based models using only one of the
methods. In general, both clustering methods
achieve similar performance in combination with
interpolation and selection, except for English,
where Brown clustering performs worse than k-
Means clustering. While the Brown clustering was
trained on the relatively small Europarl corpus, k-
Means clustering seems to benefit from the word
embeddings trained on documents from the much
larger common crawl.

7 Analysis

In the majority of cases, a cluster size of 10 or
25 was selected on the development set during
the hyperparameter search. Increasing the number
of clusters introduces smaller clusters for which
it is difficult to estimate the noise matrix, due to
the limited training resources. On the other hand,
decreasing the number of clusters can generalize
too much, resulting in loss of information on the
noise distribution. For the λ parameter, a value
of either 0.3 or 0.5 was chosen on the develop-
ment set giving the group clusters more or equal
weight compared to the global confusion matrix.
This shows that the feature dependent noise ma-
trices are important and have a positive impact on
performance.

Five confusion matrices for groups and the
global matrix in the English data are shown as ex-
amples in Figure 2. One can see that the noise ma-
trix can visibly differ depending on the cluster of
the input word. Some of these differences can also
be directly explained by flaws in the distant super-
vision method. The automatic annotation did not
label any locations written in all upper-case letters
as locations. Therefore, the noise distribution for
all upper-cased locations differs from the distribu-
tion of other location names (cf. 2d and 2c). The
words April and June are used both as names for a
month and as first names in English. This results in
a very specific noise distribution with many tem-
poral expressions being annotated as person enti-
ties (cf. 2b). Similar to this, first-person names

and also Asian words are likely to be labeled as
persons by the automatic annotation method (cf.
2f and 2e).

All of these groups show traits that are not dis-
played in the global matrix, allowing the cluster-
based models to outperform the other systems.

8 Conclusions

We have shown that the noise models with feature-
dependent confusion matrices can be used effec-
tively in practice. These models improve low-
resource named entity recognition with noisy la-
bels beyond all other tested baselines. Further,
the feature-dependent confusion matrices are task-
independent and could be used for other NLP
tasks, which is one possible direction of future re-
search.
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