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Abstract

Since Hinton and Salakhutdinov published
their landmark science paper in 2006 end-
ing the previous neural-network winter, re-
search in neural networks has increased
dramatically. Researchers have applied
neural networks seemingly successfully to
various topics in the field of computer sci-
ence. However, there is a risk that we over-
look other methods. Therefore, we take
a recent end-to-end neural-network-based
work (Dhingra et al., 2018) as a starting
point and contrast this work with more
classical techniques. This prior work fo-
cuses on the LAMBADA word prediction
task, where broad context is used to pre-
dict the last word of a sentence. It is often
assumed that neural networks are good at
such tasks where feature extraction is im-
portant. We show that with simpler syntac-
tic and semantic features (e.g. Across Sen-
tence Boundary (ASB) N-grams) a state-of-
the-art neural network can be outperformed.
Our discriminative language-model-based
approach improves the word prediction ac-
curacy from 55.6% to 58.9% on the LAM-
BADA task. As a next step, we plan to
extend this work to other language model-
ing tasks.

1 Introduction

Neural networks (NN) have endured a long winter
and had their spring a decade ago. As they are in
full bloom, the community seems to suffer from
an NN monoculture. Researchers spend tremen-
dous effort in training NNs including intense hyper-
parameter tuning. However, we forget that classical
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methods like feature-based techniques also have
their merits. We therefore want to take a recent NN
architecture and compare it with a feature-based
approach.

(Dhingra et al., 2018) explore neural readers on
the LAMBADA word prediction task (Paperno et
al., 2016) and establish the state-of-the-art. LAM-
BADA dataset is built from manually-chosen in-
stances from the BookCorpus (Zhu et al., 2015),
where the task is to predict the last word (target)
of the last sentence in a paragraph and it has been
shown that without the broad context humans are
unable to predict the target. On this task, neural
readers (Chu et al., 2017; Dhingra et al., 2017;
Dhingra et al., 2018) have substantially outper-
formed recurrent, memory-based and other popular
language models, which have close-to-zero accu-
racy on the same task.

In contrast, we develop simpler syntactic and
semantic features based on both non-neural and
neural methods used in a Discriminative Language
Model (DLM) for this task. Specifically, 1) We
introduce features based on ASB word dependen-
cies, on a model to learn the possible last words in
a sentence and on similarity of word candidates to
important words in the context in Section 2; 2) we
apply a DLM-based approach (Section 3) for word
prediction and compare it with the neural reader
approach; and 3) we analyze the effect of different
feature sets and present state-of-the-art results on
the LAMBADA task (Section 4).

2 Features for the Word Prediction

In this section, we describe the various word fea-
tures used in the DLM. We train all these features
using the BookCorpus training set (the corpus with-
out the LAMBADA instances).
The Across Sentence Boundary Model: The
LAMBADA task relies mainly on capturing the
long-term information from the paragraph (Pa-
perno et al., 2016). To incorporate such informa-



Figure 1: Frequency of correct words at different
ranks in the LAMBADA development set

tion, we use the Across Sentence Boundary LM
(ASB) (Momtazi et al., 2010), which captures the
information of the words in the previous sentences
(s−1,s−2, . . .), triggering the words in the current
sentence (s0) as follows:

p(Ws0 |Ws−1) =
N(Ws−1 ,Ws0)

N(Ws−1)
(1)

where Ws0 and Ws−1 are the words in the current and
the previous sentence respectively, and N counts
such occurrences. Finally, the score generated from
a log-linear interpolation of the unigram probability
for Ws0 and the trigger probability for all words in
the paragraph is used as a feature.

We also created such features by skipping one or
more previous sentences (denoted as ASB-d, where
d is number of skipped sentences). Moreover, we
constructed ASB-d trigrams, but these LMs showed
improvements for d = 1 only.
Similarity to Important words: The last word is
semantically similar to one or more words in the
paragraph. By identifying these words, we can bet-
ter predict the last word. For simplicity, we assume
that these semantically-similar words are contextu-
ally important words.

To rank the words based on their importance, we
apply the method proposed in (Zhou and Slater,
2003), where the important or relevant words are
assumed to appear in bursts i.e. close to each other
in text. On the other hand, less relevant words occur
randomly everywhere in text, therefore they do not
form significant clusters. Unlike the co-occurrence
counts-based methods, such as tf-idf, this method
ranks the words on the variance of distances be-
tween their occurrences in the corpus, represented
by Γ(w) (Ventura and da Silva, 2008).

In our experiments, we observed that the method
worked better by adding the total number of words

(n) to each value and subtracting the unigram fre-
quency (m) of the word candidate (w), in effect
smoothing the scoring mechanism:

Γ
∗(w) = Γ(w)+n−m (2)

Based on these scores, we select the N most
interesting words in the paragraph and pick the
M most similar words for each such word in the
vocabulary. We fixed the values of N and M to
50 and 200 respectively. To define the similarity
between words, we use cosine similarity based on
word embeddings (Mikolov et al., 2013) trained on
the BookCorpus training set. The words collected
in this manner are assigned with a score (denoted
as Sim2Imp) that is the multiplication of its cosine
similarity with respect to the important word (w)
and importance of the word (Γ∗(w)).

Last Word Prediction: Conventional LMs predict
words at every time step of the sentence, however,
in the LAMBADA task we only have to predict
the last word of the sentence. Based on this ob-
servation, we build a model to predict the proba-
bility of a word being the last word (labeled as 1)
or not (labeled as 0). We use Long Short Term
Memory-based (LSTM) neural network (Hochre-
iter and Schmidhuber, 1997) to label the word (wi)
from a sentence (s = {w1,w2, . . . ,wn} ), minimiz-
ing a weighted mean squared error between correct
label and predicted label (Lp

i , also used as a feature)
across all sentences (S) in the corpus:

∑
s∈S

{
α(1−Lp

n )
2 + ∑

wi∈{w∈s|w 6=wn}
(Lp

i )
2

}
(3)

where Lp
n is the predicted label of last word (wn).

We weigh the loss due to the last words more
than the other words for this unbalanced classifica-
tion problem. α is chosen as the average number of
words per sentence in the training set. The LSTM
model has two layers of recurrent cells with 300
neurons in each.

Paragraph embedding-based Feature: Afore-
mentioned features focus on capturing explicit in-
teractions between the last word and the paragraph
words, lacking any topical interactions.

Thus, we compute the similarity between the
vector representation of the paragraph and word
candidates (denoted as Sim2Para). This feature
can help capture the topical similarity of the words
and the paragraph. To compute these paragraph em-
beddings, we utilize the distributed memory model
(Le and Mikolov, 2014), which has been shown to



provide a well performing set of paragraph embed-
dings (Dai et al., 2015).
Recurrent Neural Network based LM: Recur-
rent Neural Network LMs (RNNLM) (Mikolov et
al., 2010) cannot model short-term dependencies
as well as N-grams. Moreover, (Le et al., 2012;
Oualil et al., 2016) have shown that in RNNLMs
the context changes rapidly over time and hence,
they are not suitable for capturing longer correla-
tions. Nevertheless, these models can be used to
capture mid-term dependencies and we use their
output probability as a feature.

We train an RNNLM with a layer of 300 hidden
nodes and use this model to score words from the
vocabulary given the sentence as the context.
N-grams Features: We augment the above-
described mid- and long-term features with local
or short-term information from n-gram counts of
the last word candidates as a feature. Previously,
combinations with n-grams as local context have
considerably improved the language modeling per-
formance (Mikolov et al., 2011; Chelba et al., 2014;
Józefowicz et al., 2016).

These counts for N-gram (N = 2, 3, 4, 5) are
extracted from the BookCorpus training set. Addi-
tionally, we also use Google N-grams (Brants and
Franz, 2006) counts for N = 2 and 3 .
Other Features: We define a few other features
based on the characteristics of the LAMBADA
dataset. As 83% of the last words appear in the
given broader context (Paperno et al., 2016), we
assign words from the context a high weight (de-
noted as InContext).

We also consider a position-based feature
(Position) that is the distance between the word
candidate in a paragraph and the last sentence.
This distance is also scaled by the target word’s
frequency that appears at the same distance in de-
velopment set.

On the LAMBADA set, a preference for certain
POS tags as the last words has been noted ear-
lier (Paperno et al., 2016). Thus, we weigh word
candidates based on their POS tag. The POS tag
distribution is estimated on the development set
and a word is weighed with a score proportional to
their POS tag probability mass.

3 Word Prediction Pipeline

The word prediction is set up in two stages. In the
first stage, we select word candidates and in the
second stage, we learn a classifier to predict the

Figure 2: The two stage pipeline used for word
prediction on the LAMBADA dataset

target word, shown in Figure 2.
To select the word candidates, we first use fea-

tures extracted in Section 2 to train a DLM. The
DLM optimizes the word prediction accuracy by
creating a linear model using the features. The
DLM parameters are optimized on the LAMBADA
development set. For further details about DLMs,
we direct readers to a comprehensive review of
DLM techniques (Saraclar et al., 2015).

By applying the DLM, we obtain a ranked list
of word candidates for the last position of the para-
graph. Out of this ranked list, we select the top-K
words, which are then passed to the next stage. The
ranks of a target word for development set para-
graphs are plotted in Figure 1 and we observe that
83% target words occur within the first 10 words.
Also, setting K = 10 the word prediction pipeline
performed best on the development set.

Choosing from top-K candidates is set up as a
binary classification task over the features, where
the classifier predicts if a word candidate is the
target word or not. This classification task is un-
balanced due to larger non-target samples to target
samples ratio per paragraph and is compensated by
penalizing the misclassification of a correct target
word. The training is performed using a Multi-
Layer Perceptron (MLP) with two hidden layers of
size 24 and 12. In our experiments, we also tried us-
ing Support Vector Machines for this classification
task, but MLP obtained the best results.

4 Experiments and Results

In this section, we evaluate our DLM-based word
prediction pipeline against the present state-of-the-
art techniques on the LAMBADA test set.

4.1 Stage 1: Word Candidate Selection

DLM results for first stage are reported in the sec-
ond column of Table 1. Note, all results reported
in this table use the InContext feature.

Earlier in (Paperno et al., 2016), RNNLM and N-
gram LMs perform with zero accuracy on the LAM-
BADA task, but their accuracy improves when used



Models Accuracy
GA reader w/ features (Chu et al., 2017) 49.0
GA reader w/ MAGE (Dhingara et al., 2017) 51.6
GA reader w/ C-GRU (Dhingara et al., 2018) 55.6
DLM Stage 1 Stage 2
All Features 48.8 58.9
RNNLM 4.5 4.5
N-grams (N = 2, 3, 4, 5) 16.8 18.1
ASB 34.8 36.0
- RNNLM 45.3 55.6
- Sim2Para 45.1 55.4
- Last Word 45.4 55.6
- Sim2Imp 45.6 55.9
- Google N-grams 45.9 56.2
- Position & POS 46.3 57.6
- N-grams (N = 2, 3, 4, 5) 36.8 42.7
- ASB-d 2-gram & 3-gram 22.3 28.2

Table 1: Word prediction accuracy on the LAM-
BADA test set, plus previous benchmarks. GA
stands for Gated Attention Neural Network, MAGE
stands for Memory as Acyclic Graph Encoding and
C-GRU stands for Coref-GRU

alongside with InContext in the DLM as reported
in rows 4 and 5 of Table 1. Using all the ASB fea-
tures (ASB includes ASB-d 2-grams for d = 1 to 5
and ASB-1 3-grams) significantly improves perfor-
mance compared to RNNLM and N-gram features
by leveraging more information. Combining all the
features (labelled as All Features), we get the best
results for the first stage.

The subsequent rows report DLM’s performance
when the feature(s) in the row are not used to infer
the target word. Singleton features when removed
lead to substantial losses in the accuracy. Again,
ASB-based features are noted as the most impor-
tant feature set, as removing this group leads to the
largest loss in accuracy.

4.2 Stage 2: Target Word Prediction
Learning to re-rank in this stage helps improve the
overall accuracy by approximately 10%. Choosing
from only top 10 words reduces data sparsity and
the second stage classifier helps improve the per-
formance in this less-sparse space.

Similar trends as the first stage are observed with
respect to different features in the second stage.
Overall, we are able to outperform the state-of-
the-art system (Dhingra et al., 2018), showing the
benefits using a two-stage DLM.

5 Related work

Language modeling has become the happy hunting
grounds for neural network LMs by performing
substantially better than other methods (Józefowicz

et al., 2016). Skip-gram-based features, similar to
long-term dependency features used in this work,
have been preferred over such neural networks due
to their computational prowess and scalability to
large datasets (Chelba et al., 2017; Pelemans et al.,
2016; Chelba and Shazeer, 2015; Shazeer et al.,
2015). But, such efforts have been concentrated
and have slipped into a very deep winter elsewhere.

On the LAMBADA word prediction task,
neural readers (Chu et al., 2017) have shown
substantial performance gains against recurrent and
memory-based neural network models. (Dhingra et
al., 2018) have augmented this neural reader using
external knowledge-based annotations to capture
long-term information and further improved the
performance on this task.

These neural readers are trained on
automatically-extracted data that requires
the paragraph to have certain length and contain
the last word. This constraint restricts the amount
of data leveraged to learn long-term triggering
information, which is critical to this task. In
contrast, the features used in our work are not
restricted by such constraints and can learn
triggering information over a larger data, which
is larger by an order of magnitude to the neural
reader’s training set.

6 Concluding Remarks

Advancements in deep learning have shown impres-
sive gains across a variety of research problems.
These improvements are so dramatic that we for-
get to look at other methods. It is essential that
we focus an equal amount of effort on non-neural
methods to allow for a fair comparison between
these approaches. The method presented in this
paper is a step in this direction.

Here, we presented a DLM-based approach for
the LAMBADA word prediction task, which is
trained on various syntactic and semantic features.
Unlike the neural readers, this feature-oriented
method is easy to scrutinize and understand. Over-
all, we outperformed the previous best of 55.6% on
the LAMBADA task to establish a new state-of-the-
art of 58.9%. As a next step, we plan to extend our
work to more classical language modeling tasks
on the Penn Treebank and the one-billion-word
corpora.
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