Incremental Dialogue Act Recognition: token- vs chunk-based classification

Eustace Ebhotemhen, Volha Petukhova, Dietrich Klakow

Spoken Language Systems Group, Saarland Informatics Campus, Saarland University, Germany

{eustace .ebhotemhen; v.petukhova;dietrich. klakow}@lsv .uni-saarland.de

Abstract

This paper presents a machine learning based approach
to incremental dialogue act classification with a focus on the
recognition of communicative functions associated with dia-
logue segments in a multidimensional space, as defined in the
ISO 24617-2 dialogue act annotation standard. The main goal
is to establish the nature of an increment whose processing will
result in a reliable overall system performance. We explore sce-
narios where increments are tokens or syntactically, semanti-
cally or prosodically motivated chunks. Combing local clas-
sification with meta-classifiers at a late fusion decision level
we obtained state-of-the-art classification performance. Experi-
ments were carried out on manually corrected transcriptions and
on potentially erroneous ASR output. Chunk-based classifica-
tion yields better results on the manual transcriptions, whereas
token-based classification shows a more robust performance on
the ASR output. It is also demonstrated that layered hierarchi-
cal and cascade training procedures result in better classification
performance than the single-layered approach based on a joint
classification predicting complex class labels.

Index Terms: incremental processing, dialogue act classifica-
tion

1. Introduction

Interpretation of human dialogue behaviour in terms of speaker
intentions is of crucial importance for adequate computational
dialogue modelling. While the general problem of theoretically
and empirically sound dialogue modelling is far from solved,
several aspects of dialogue modelling have been tackled rather
successfully. For instance, in automatic dialogue act recogni-
tion significant progress has been achieved, see [1] for a brief
overview. A dialogue act is a key concept in the semantic de-
scription of human dialogue behaviour, defined as communica-
tive activity of a participant in dialogue, interpreted as having
a certain communicative function and semantic content, and
possibly also having certain semantic and rhetorical relations.
Interpretation of dialogue behaviour is primarily based on the
recognition of the speaker’s intentions encoded in the commu-
nicative function. Thus, the dialogue act manual annotation
and automatic classification tasks are typically narrowed down
to the recognition of communicative functions that a dialogue
unit may have in certain context [2]. Additionally, ‘dimensions’
have been introduced to classify dialogue acts in multidimen-
sional space, see [3, 4].

Natural language processing including those of dialogue is,
by its very nature, incremental [5, 6]. Recently, systems are
developed where any minimal input triggers the system’s pro-
cessing which continues increment-by-increment till the com-
plete input is recognized [7]. This creates possibilities for the
system to show more interactive and pro-active behaviour (e.g.
backchanneling, interrupting and completing the partner) and
to minimize system response time, see [8, 9, 10]. While many

researchers agree that natural language processing is largely in-
cremental and should be modeled as such, there is no agree-
ment on the nature of its minimal units, i.e increments. There is
also no evidence that for all processing steps/types, increments
should be of the same nature and size. For example, it is known
that semantics is compositional, therefore it is reasonable to as-
sume that semantic processing can be performed word-by-word
where most content words would correspond to a semantic con-
cept (i.e. event, participant in an event or their attributes). Prag-
matic meaning is, by contrast, not compositional (see [11] for
discussion). Therefore, for dialogue act classification, that have
higher level of abstraction, token/word-based approach might
be not the most adequate one. Bigger units may form the ba-
sis for incremental dialogue act processing. Such units, chunks,
can be prosodically, syntactically or semantically motivated. In
this study, we investigate the effects of different increment types
on the dialogue act classification performance. We also consid-
ered two settings when trained classifiers operate on features ex-
tracted and computed (1) using near-perfect manually corrected
speech transcriptions, and (2) from the word lists hypotheses
generated by the ASR module.

The paper is structured as follows. Section 2 discusses re-
lated work on incremental dialogue act classification. In Sec-
tion 3 we outline our classification experimental setup describ-
ing the used data and different training procedures. In Section
4 the obtained results are presented. We wrap up the paper by
summarizing our findings and outlining future research.

2. Related work

Traditional approaches to dialogue act (DA) classification have
mostly been based on attempts to classify complete utterances
(or even speaker turns). Nakano et al. (1999) proposed an incre-
mental approach to understanding user utterances called Incre-
mental Significant Utterance Sequence Search (ISSS). This ap-
proach facilitates a word-by-word processing of utterances by
finding plausible utterance units - significant utterances (SUs)
- that play a role in changing the system’s belief state. An SU
can be an entire utterance or a sub-sentential phrase. ISSS holds
multiple possible belief states which are updated when a word
hypothesis arrives. Rather than trying to determine whether the
whole input forms an SU, it determines where SUs are. The
ISSS approach does however not deal with the possible multi-
functionality of segments, and does not allow segments to over-
lap, to be discontinuous or spread over multiple turns. Lendvai
and Geertzen (2007) proposed a token-based dialogue act seg-
mentation and classification which takes dialogue data that is
yet to be segmented into syntactic and semantic units. They as-
sign a dialogue act label to each token in the transcribed speech
stream of a dialogue participant, additionally classifying if the
token is at the beginning of, inside, or outside the segment of
that specific dialogue act. Classifiers are built for the recogni-
tion of multiple dialogue acts for each input token. They con-



Table 1:

Functional segments distribution across dimensions (relative frequency, in %).

Dimension Task (54.5) Discourse Structuring (16.5)  Task Management (5.8)  Allo-feedback(2.1) ~ Auto-Feedback (21.1)
Functional tag
inform 26.8 - 22 - -
offer 33 - - - -
suggest 6.7 1.6 1.7 - -
interactionStructuring - 10.0 - - -
closing - 1.2 - - -
checkQuestion - - - - 2.7
setQuestion 4.8 - - - -
accept 9.8 1.4 1.9 2.1 -
decline 3.1 - - - -
autoPositive - - - - 16.8
autoNegative - - - - 1.6
topicShift - 2.3 - - -
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Figure 1: Token-based DA annotation and BIO encoding.

ducted experiments on the Monroe' and the MRDA? corpora
using Conditional Random Fields and Memory Based Taggers
with success in F-score between 47.7 to 81.7. Petukhova and
Bunt (2011) presented an incremental approach for dialogue ut-
terance understanding with a focus on the recognition of com-
municative functions in multidimensional space [14]. They
combined local classifiers, which exploit local utterance fea-
tures, and global classifiers which use the local classifier pre-
dictions in an adaptive training procedure. The F-scores ob-
tained range between 71.8 to 98.6 for the different dimensions
and with slight differences for HCRC Maptask® and AMI* data.

Recently, deep neural networks gained a lot of attention.
Hierarchical Recurrent Neural Networks (RNN) for learning se-
quences of dialogue acts are proposed [15]. In this study, two
RNN:Ss are trained one to capture dependencies at the conversa-
tional level (dialogue act sequences) and at the utterance level
(token sequences within an utterance). The authors further in-
corporated attention mechanism to focus on salient tokens in
utterances. Models were trained and tested on Maptask and
Switchboard® data reporting accuracy of 74.5% for Switchboard
and 63.3% for Maptask data. The approach is comparable to
the one proposed in [14], and can be applied to incremental dia-
logue act classification modelling with local classification at the
utterance and global at the conversational levels.

3. Classification experimental setup

We define the incremental dialogue act recognition task as a
sequence learning task, for which we built Conditional Ran-
dom Fields (CRFs) based classifiers [16]. CRFs, as discrimina-
tive undirected probabilistic graphical models, capture depen-

mttp://www.cs.rochester.edu/research/speech/
monroe/
2http://wwwl.icsi.berkeley.edu/~ees/dadb/
3http://groups.inf.ed.ac.uk/maptask/
4http://groups.inf.ed.ac.uk/ami/corpus/
Shttp://groups.inf.ed.ac.uk/switchboard/

dencies between certain output and input variables. Receiving
mostly partial utterances as input either during training or test-
ing and occasionally observing complete utterances, CRFs pre-
dict the most likely label sequence from any number of avail-
able input samples. This makes CRFs particularly suitable to
simulate incremental processing procedures.

3.1. Data: collection, annotation, features

The data used in our experiments originates from the Metalogue
Multi-Issue Bargaining (MIB) corpus [17]. Speech of 16 dia-
logue participants has been automatically transcribed and man-
ually corrected. The MIB corpus has been manually segmented
into functional segments [18] and annotated with ISO 24617-2
dialogue act information where each label consists of a dimen-
sion tag (d) and a communicative function tag (cf). The ISO
24617-2 taxonomy [4] distinguishes 9 dimensions, address-
ing information about a certain Task; the processing of utter-
ances by the speaker (Auto-feedback) or by the addressee (Allo-
feedback); the management of difficulties in the speaker’s con-
tributions (Own-Communication Management) or that of the ad-
dressee (Partner Communication Management); the speaker’s
need for time to continue the dialogue (Time Management); the
allocation of the speaker role (Turn Management); the struc-
turing of the dialogue (Dialogue Structuring); and the manage-
ment of social obligations (Social Obligations Management).
57 defined ISO 24627-2 communicative functions can be of two
types: a general-purpose one addressing any of the nine dimen-
sion, like Answer, Agreement, or Correction, or a dimension-
specific one addressing one particular dimension, such as Re-
turnGreeting, Accept Apology, Self-Correction and Comple-
tion. Two expert and one trained annotators performed anno-
tations independently. The inter-annotator agreement obtained
in terms of Cohen’s kappa [19] of .90 on average on both seg-
mentation and annotation tasks.

For learning plausible token sequences that form a func-
tional segment, boundaries were marked by adding to the DA
class label (<d;cf>) a prefix indicating whether an increment
(either token or chunk) starts a segment (B), is inside a seg-
ment (I) or is outside a segment (O). Features computed from
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Figure 3: Hierarchical local classification procedures (left) and meta-classification (right) based on different increment types.
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Figure 4: Synthesised meta-vector used at late fusion decision making level.

the data include bag-of-words, bag-of-lemmas, trigrams, skip-
grams, part-of-speech (POS) tags, n-grams of POS tags using
Penn Tree Bank parser [20], etc. The SENNA parser [21] was
used for identifying syntactic constituents and performing se-
mantic role labeling.

Our data consists of 5,781 functional segments (45,479 to-
kens). Table 1 presents functional tags distribution across di-
mensions.

3.2. Token- vs chunk-based processing

The transcribed speech files contain strings of words, disfluen-
cies and non-speech events like silences and noise. Dialogue
contributions are not grammatically well formed; interruptions,
interjections, hesitations and repairs are frequent and contribute
to discontinuity and overlap of many semantically meaningful
segments. This motivates a dialogue processing based on token
streams produced by multiple speakers in parallel, and this in
multiple dimensions. The token-based dialogue act classifica-
tion is defined as a sequence learning task where for each input
token boundary prefix (BIO) and DA class label are learned.

Figure 1 illustrates the token-based classification input.
Another scenario explores syntactic chunking. For exam-
ple, parsing I have to have all outdoor smoking allowed utter-

ance syntactically results in:
(1) (i, ‘B-NP’), (‘have’, ‘B-VP’), (‘to’, ‘I-VP’), (‘have’, ‘I-
VP’), (‘all’, ‘B-NP’), (‘outdoor’, ‘I-NP’), ( ‘smoking’, ‘I-
NP’), (‘allowed’, ‘B-VP’)

where B and I prefixes indicate chunk boundaries. Figure 2
demonstrates how the parsed utterance in (1) is annotated with
dialogue act information. Similarly, semantic chunks are con-
structed when parsing with predicate-argument structures us-

ing SENNA parser. For prosodic chunk-based classification,
speech signals were analysed computing Mel-Frequency Cep-
stral Coefficients (MFCCs) [22] for each elementary speech unit
(e.g. allophone) including silence units. When a silence unit
of >200ms is identified, the ASR cuts segments. The resulted
chucks correspond roughly to inter-pausal units [23].

3.3. Experimental procedures

Various classifiers were built to operate on tokens and chunks as
an input. For such complex task as multidimensional incremen-
tal dialogue act classification, splitting up the (in-) and output
structures may make the task more manageable. Knowing that
a particular dimension is addressed makes a decision on certain
communicative functions much easier, and vice versa. For this,
stratified 3-fold cross-validation experiments were performed
using cascade and hierarchical classification procedures. The
first set of local classifiers was trained to segment and classify
based on dimension labels. Dimension class predictions were
added as features to perform communicative functions classifi-
cation (cascading). The second set of classifiers was trained to
segment and classify communicative functions, and the classi-
fication continued on a higher level grouping related functions
together per dimension (hierarchical) as defined in ISO 24617-2
DA hierarchical taxonomy. Additionally, input features and pre-
dictions from various cascade and hierarchical classifiers were
fused to build local multi-class classifiers predicting complex
class <BIO-prefix_d;cf> labels (we called it the early fusion
(EF) decision level). The performance of early fusion prediction
models obtained applying one of the specified layered training
procedure has been compared with joint classification (JC) of
complex label sequences. Local classification design is depicted



Table 2: Classification results in terms of F-scores obtained in ‘real’ (ASR-based) and ‘simulated’ (based on manual transcriptions)
experimental settings on different type of tested input applying hierarchical and cascade local classification procedures, early fusion

(EF) and join classification (JC), and late fusion (LF) methods.

Setting Simulated Real
Classification task cascade .EF hierarchical .EF .JC cascade EF | hierarchical EF JC
d cf | <djef > d cf | <djef > | <djef > d cf | <djcf > d cf | <dief > | <djcf >
Token-based 0.98 | 0.81 0.80 | 0.97 | 0.80 0.80 0.79 || 0.99 | 0.79 0.77 | 0.96 | 0.77 0.71 0.7
chunk-based (syntactic) || 0.98 | 0.85 0.84 | 0.96 | 0.83 0.82 0.8 || 098 | 0.78 0.70 | 0.96 | 0.74 0.64 0.69
chunk-based (semantic) || 0.98 | 0.84 0.84 | 0.96 | 0.82 0.82 0.8 || 098 | 0.75 0.70 | 095 | 0.74 0.65 0.69
chunk-based (prosodic) na 098 | 0.75 0.72 | 0.94 | 0.73 0.66 0.66
LF: Majority Voting na 0.85 na 0.82 0.79 na 0.78 na 0.76 0.72
LF: Meta-classification na ‘ 0.86 ‘ na ‘ 0.82 ‘ 0.80 H na ‘ 0.80 ‘ na ‘ 0.77 ‘ 0.72 ‘

in the left part of Figure 3.

Given various local training conditions, we created possible
output prediction (hypotheses) space. Often local predictions
once made are never revisited. Humans, by contrast, may revise
their previous decisions while interpreting utterances. Techni-
cally, the revision of previously made decisions may be a rather
costly procedure, i.e. backtracking can get easily very complex.
On the other hand, it is even more undesirable and costly to up-
date the dialogue context model with locally computed hypothe-
ses that may contain many errors. This may lead to wrong or
unexpected dialogue system behaviour which is much harder to
correct requiring initiation of a clarification sub-dialogue and/or
error recovery strategy which is incorporated into the dialogue
management procedures. One option is to search the local par-
tial output space for the best predictions using, for example,
majority voting [24] methods. This may not be always the best
strategy, however, since the highest-ranked predictions are not
always correct in a bigger (or global) context. A rather straight-
forward and efficient solution which requires minimum com-
putations is to provide a CRF classifier with more contextual
information, but still keep it local as possible (i.e. avoid to look
too much into the future). To optimize the overall classification
decision taking process, feature vectors were automatically re-
synthesised (fused) combining local features and the predicted
output history from multiple local classifiers of various types,
see Figure 4. Subsequently, meta-classifier is trained to make
the final decision, see the right part of Figure 3. Making use of
the partial output predicted so far, i.e. of the history of previous
predictions, and taking this as features into the next classifica-
tion step helps discovering and learning from mistakes, correct-
ing errors, and making more accurate predictions.

4. Classification results

We conducted two series of experiments. Token-based classifi-
cation was compared with syntactic and semantic chunk-based
classification using manual speech transcriptions. The token-
based classifier yields an F-score of .80 over a baseline of .63°
In syntactic and semantic chunk-based classification F-score of
.84 was achieved. This shows that using syntactic and semantic
chunks as increments for DA recognition may improve recog-
nition results significantly (p < .05, McNemar’s test [25]).

We assessed classifiers performance using multi-and single-
layered training approaches. We experimented using both cas-
cading and hierarchical procedures as discussed above. Results
show that the cascading approach outperforms the hierarchical
approach although the differences are not statistically signifi-
cant in the simulated setting. It suggests that cascading ap-
proach is a better classification strategy; information about what
dimension is addressed is beneficial for communicative function

SIn all experiments, the classifiers performance on a single easy
computable feature, namely bag-of-tokens, has been used as a baseline.

identification. Two-layered approach is more powerful than the
joint classification of complex labels sequences.

For the second set of experiments, we included prosodic
chunk-based classification in our work flow based on ASR out-
put with a word error rate (WER) of 31.59%.” ASR errors
present a challenge especially to the chunk-based classification.
ASR output often differs for one and the same utterance pro-
duced by different speakers or even by the same speaker in
slightly different acoustic conditions making chunking rather
inconsistent.

While token-based classification can be modelled rather
robustly using skip n-gram leaving out one or more poten-
tially misrecognised tokens, syntactic and semantic analyses are
troublesome when almost every third token is misrecognised.
Prosodic chunking is often inconsistent as the same utterance
produced by a different speaker and/or under slightly changed
acoustic conditions may result in different prosodic structures.
Cascading approach in this case showed significant improve-
ments over the hierarchical approach and the single-layered ap-
proach. Table 2 summarises our best experimental results.

It can be also observed that meta-classification strategy is
superior to individual local classifiers and outperforms the ma-
jority voting strategy in a real ASR-based setting. The incre-
mental classifiers performance is comparable to the one of non-
incremental SVM-based classifiers which reached the F-score
of .85 on average [1] for transcribed data.

5. Conclusions and future research

Incremental dialogue act recognition is acknowledged to have
the advantage that parts of an utterance are interpreted by the
system before the last utterance token is processed. We have
presented a machine learning based approach to incremental
dialogue act classification with a focus on recognising dimen-
sions and communicative function. We explored different lo-
cal classification procedures assessing classifier performance,
and proposed a meta-classification approach with meta-features
synthesized from local classifiers. Compared to token-based in-
cremental classification our syntactic and semantic chunk-based
classification produce better results on manual transcriptions. In
reality, where ASR output contains many errors, token-based in-
cremental recognition is proven to be more reliable and robust.
The proposed methodology accounts for empirically motivated
and technically sound classification procedures that may reduce
training costs significantly.

In future, a full-scale implementation and testing will be
performed where the dialogue system will be able to manage
partial update processes.

71t should be noticed that the corpus contains a significant proportion
of non-native English speakers. The used ASR system is the state-of-
the-art open source Kaldi-based ASR system [26] and is set to send the
most likely recognized sequence of words (1-best hypothesis) for the
further processing.
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