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Abstract. Significant correlations between words can be observed over
long distances, but contemporary language models like N-grams, Skip
grams, and recurrent neural network language models (RNNLMs) re-
quire a large number of parameters to capture these dependencies, if the
models can do so at all. In this paper, we propose the Custom Decay
Language Model (CDLM), which captures long range correlations while
maintaining sub-linear increase in parameters with vocabulary size. This
model has a robust and stable training procedure (unlike RNNLMs), a
more powerful modeling scheme than the Skip models, and a customiz-
able representation. In perplexity experiments, CDLMs outperform the
Skip models using fewer number of parameters. A CDLM also nominally
outperformed a similar-sized RNNLM, meaning that it learned as much
as the RNNLM but without recurrence.

Key words: Reduction in number of parameters, robust training, long
range context, language model

1 Introduction

The central task of automatic speech recognition (ASR) is predicting the next
word given sequential acoustic data. Language models (LMs), which predict
words given some notion of context, inform ASR systems about which word
choices fit well together, thus acting complementarily to acoustic models which
directly assign probabilities to words given the acoustic input. Within ASR Sys-
tems, smoothed N-gram LMs have been very successful and also are very simple
to build. These standard LMs work well on short context sizes because the model
directly enumerates them. But enumerating dependencies of longer distances is
unfeasible due to the exponential growth of parameters it would require.

To quatify information in dependencies of long distances, we use a variant
of pointwise mutual information. Specifically, for a given pair of words (w1, w2)
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Fig. 1. Variation of word triggering corre-
lations for pronouns over large distances
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Fig. 2. Variation of perplexity against the
number of classes for a RNNLM with 200
hidden nodes

separated over a distance d, we examine the ratio of the actual co-occurrence

rate to the statistically predicted co-occurrence rate: cd(w1, w2) = Pd(w1,w2)
P (w1)P (w2)

.

A value greater than 1 shows it is more likely that the word w2 follows w1 at
a distance d than otherwise expected according to the unigram frequencies of
the two words. In Fig. 1, we show an example variation of this correlation for
pronouns with the distance d on the English Gigawords corpus [1].

In this corpus, seeing another “she” about twenty words after seeing a
first “she” is more than 13 times more likely than seeing a “she” in general.
A similar, but interestingly weaker, observation can be made for the word “he”.
Note also that “she” somewhat suppresses “he” and vice versa, and these cross-
correlations, although negative, are still informative for a prediction system.
In summary, Fig.1 demonstrates that plenty of word triggering information is
spread out over long distance dependencies that is typically beyond the reach of
N-gram LMs.

Several models, such as the cache-based LM [2], Skip models [3, 4], and re-
current neural network language models (RNNLMs) [5] have been proposed to
capture triggering in large contexts, but they usually only handle auto-triggering
and/or have too many parameters to scale with vocabulary size. In this paper, we
develop a novel modelling scheme, the Custom Decay Language Model (CDLM),
which is specifically built to capture long range dependencies while growth in
number of parameters remains sub-linear in vocabulary size. CDLMs outperform
large-context-size Skip models, which are not constrained this way. Additionally,
CDLMs show a more robust variation of performance metric against the variation
of meta-parameters than RNNLMs, and they allow us to study the sparseness
of word representations over different context sizes.

In the rest of the paper, we first briefly describe Skip models and RNNLMs
and their limitations in Section 2, leading up to the detailed description of our
new modelling technique in Section 2.3. We then set up experiments to analyze
performance of these models in Section 3. Section 4 gives a robustness analysis
of our model in addition to perplexity results for comparing the performance of
various LM types and finally, Section 5 gives some concluding remarks.
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2 Language models

In this section, we first briefly describe and outline the numbers of parameters
needed by Skip models and RNNLMs for handling long range dependencies.
We then describe our novel CDLM which has been designed to overcome the
limitations of skip models by reducing the number of parameters.

2.1 Skip models

Skip models enumerate dependencies like N-grams, but allow wildcards (skips) at
specific positions. This technique in combination with distance-specific smooth-
ing methods spans larger context sizes and reduces the sparseness problem. How-
ever, the number of parameters still grow by O(V 2) (where V is the vocabulary
size) each time the context size is increased by one, making them computation-
ally inefficient. In addition, the skip modeling framework lacks representational
power when compared to neural network based LMs.

For our experiments, we build skip models by combining unified-smoothing
trigrams and distance bigrams, which extend the range. Previously, such a com-
bination has been shown to outperform state-of-the-art smoothed N-gram LMs
[6].

2.2 RNNLMs

RNNLMs provide impressive performance gains when compared to other state-
of-the-art language models. Through recurrence, the context size for these models
is essentially infinite, or at least, formally unconstrained. This makes them espe-
cially suitable for long range dependencies. However, training RNNLMs can be
slow, especially because the output must be normalized for each word in the vo-
cabulary. Hierarchical softmax and related procedures that involve decomposing
the output layer into classes can help with this normalization [7]. Unfortunately,
using classes for normalization complicates the training process, since it creates a
particularly volatile metaparameter. This can be observed in Fig. 2, where even
for small variation in classes, RNNLMs show unstable variation in perplexity.

In our experiments, we employ a widely used class-based RNNLM implemen-
tation [5] builds networks that require H2 + 2HV +HC parameters, where H is
the number of hidden units and C is the number of normalization classes. To pro-
duce better RNNLMs, we can increase the hidden layer size by one which in turn
increases the number of parameters linearly in vocabulary size (O(V +H+C)).

2.3 Custom decay language models

Our new modelling scheme was inspired by log-linear language models, which
are characterized by sub-linear growth in the number of parameters with con-
text size [8]. This model consists of two parts: a log-linear model and an N-
gram model. For a history of size M , the N-gram part looks at the first N − 1
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(N < M) predecessor words and the log-linear part captures the triggering in-
formation stored in distances d in the range [N,M). Given the string of words
{wi−M+2, · · · , wi−1, wi, wi+1} where h = {wi−M+2, · · · , wi}, and supposing that
N = 3, CDLM can be defined as :

P (wi+1|hi) = 1
Z(hi)

× P3-gram(wi+1|wi−1, wi)

× e(E
wi+1vwi−2

+
∑i−3

k=i−N+2 Ewi+1Tkvwk
) (1)

where i is the position in the document, P3-gram is a standard trigram LM and
vwk

is the vector representation of the word at a distance k from the word to
be predicted in a C-dimensional, continuous, dense latent space (C < V ). Here,
the dimensions of C can be understood as “classes” capturing latent semantic
information in the data.

Ewi refers to a column of the emission matrix E, which weighs the word
vectors vwk

to predict the next word. Such a matrix can be thought of as an
interpretation function for the current latent state of the model. These latent
states exist in the same space as the word vectors. Presumably, some words are
closer to this state than others. In this way, the latent states represent semantic
concepts that the E matrix can translate into words.

The model also includes a distance specific transition matrix Tk to take word
vectors from one distance-based latent space to another. More directly, the Tk
matrices control the decay of each word within the latent state. Since the Tk
are matrices, as opposed to scalars, which would provide a uniform decay, and
as opposed to vectors which would provide a class-based decay, the shape of the
decay function is custom to each word, which is why this model is named the
Custom Decay Language Model.

This setup allows the model to constrain the number of parameters, as each
time a word is added to the latent state, only the Tk matrix needs to be updated.
Apart from the O(V 3) parameters required to construct the trigram, it needs
O(V C) parameters to train the E matrix and the word vectors vwk

, and it
needs O(C2) parameters for training the Tk matrices. In all, CDLM parameters
increase sub-linearly with V .

As shown in the last line of Equation 1, the model log-linearly combines
Tkvwk

at each context position to form a long-distance predictor of the next
word. This approach, though inspired by skip models, is more customizable as
it allows the exponent parameters to include matrix based formulations and not
be constrained only to single values like skip models. Though the exponential
element captures the latent/topical information well, the effects are too subtle
to capture many simple short-distance dependencies (sparse sequential details).
In order to make the model richer in sparse sequential details, we log-linearly
combine the long-distance component with an N-gram LM.

In order to estimate the parameters E, vwk
and Tk, we use the stochastic

gradient descent algorithm and minimize the training perplexity of CDLM.
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3 Language modeling experiments

3.1 Corpus
We trained and evaluated the LMs on the Penn Treebank as preprocessed in
[9]. We used the traditional divisions of the corpus: sections 0-20 for training
(925K tokens), sections 21-22 for parameter setting (development: 73K tokens),
and sections 23-24 for testing (82K tokens). Despite its final vocabulary of 9,997
words and overall small size, this particular version has become a standard for
evaluating perplexities of novel language models [10, 11]. The small size makes
training and testing faster, but also makes demonstrating differences in perfor-
mance more difficult. We expect our results would scale for larger datasets.

3.2 Experimental Setup
In our experiments, we use perplexity as the performance metric to compare the
language modelling techniques described in this paper.

In order to establish the most competitive baselines, the RNNLMs trained in
our experiment were optimized for number of classes. Recall that these classes
just aid the normalization process, as opposed to CDLM classes, which form a
very integral part of the model. If classes were overhauled from the RNNLM
altogether, training would take much longer, but the perplexity results would be
slightly lower. We found that 15 classes optimized perplexity values for RNNLMs
with 50 and 145 hidden nodes, and 18 classes optimized perplexity values for
RNNLMs with 500 nodes. These models were trained using the freely available
RNNLM toolkit, version 0.4b, with the -rand-seed 1 and -bptt 3 arguments.

The N-gram models used were trained with SRILM. They were a unified
smoothing trigram (UniSt) and an interpolated modified Kneser-Ney 5-gram
(KN ). The KN model was trained with the following arguments: -order 5

-gt2min 1 -gt4min 1 -gt3min 1 -kndiscount -interpolate.
CDLM uses the unified-smoothing trigram as the short-distance dependency

component of its model and the long-distance (exponential) element of the model
considers up to five words after the trigram.

The learning rate (η) adaptation scheme is managed by the adaptive gradient
methods [12]. After optimizing on the development set, η was fixed to 0.1 and
the dimensionality of the latent space C was fixed at 45.

While building CDLMs, we first trained a CDLM M = 4 and reused its con-
stituent parameters E and v to build CDLM M = 5, only updating Tk while
training. This process iterated up to M = 8.

4 Results and Discussion

4.1 CDLM Robustness Analysis
CDLM shows robust variation of perplexity with changes in classes, as shown in
Fig. 3. The perplexity values decrease monotonically with increasing classes, as
expected since each increase in class creates more parameters that can be tuned.
Note that moving from M = 4 to M = 5 doubles the number of Tk matrices,
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Fig. 3. Perplexity versus number of classes
(C) in CDLM
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Fig. 4. Sparseness of CDLM’s transformed
word space (Tlvwl) measured at different
threshold (t) versus its context size

which caused the large perplexity drop.
Along with the robustness shown by CDLM, the log-linear formulation of

CDLM allows us to study and analyze the sparseness of the transformed word
space matrices represented by Tkvwk

for different distances. We measure sparse-
ness by counting the matrix entries below a given threshold. By this measure, a
more sparse matrix will have large number of entries below the threshold than a
less sparse matrix. We plot the variation of the sparseness for Tkvwk

matrices for
different thresholds against the context size of CDLM in Fig.4. In most cases,
we observe that as the context size increases the transition matrices have fewer
number of entries below the threshold making them less sparse. Therefore, we
believe that this matrix formulation alleviates the sparseness problem and also
allows the exponent part to capture latent information.

4.2 Perplexity results
Table 1 presents our comparison of CDLM with different language models on
the basis of their total numbers of parameters and their perplexities. As shown,
skip models (Skip) outperform the unified smoothing trigram (UniSt3 ) as they
have more parameters and hence, they better encode information spread over
larger distances.

CDLM outperforms UniSt3 because of spanning larger context size and
greater number of parameters at its disposal. CDLM45 also outperforms the
Skip models. In fact, increasing the context size of Skip to eight words obtains
a perplexity of 153.2, which is still less than the CDLM perplexity of 141.1 for
a context size of four words. Also, Skip requires 4.1 million parameters which is
more than a third greater than those required to build the seven-word CDLM.
Also, CDLM is able to perform better than KN with fewer number of param-
eters. When combining CDLM with KN, increasing the context size for CDLM
obtains progressively-better performance than KN. This is due to more number
of parameters in CDLM formulation.

We further compare CDLMs with RNNLMs. An RNNLM with 145 hidden
nodes has about the same number of parameters as CDLM and performs 0.1
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Table 1. Test set perplexity (PPL) and total number of parameters (PAR) for each
language model (LM).

LM Range Hidden PPL PAR

UniSt 3 - 162.1 2.0M

4 160.0
5 155.8

Skip 6 - 154.4 4.1M
7 153.6
8 153.2

KN 5 - 141.8 3.2M

50 156.5 1.0M
RNNLM ∞ 145 139.3 2.9M

500 136.6 10.3M

LM Range Hidden PPL PAR

4 141.1
5 139.5

CDLM 6 45 139.2 2.9M
7 139.1
8 139.2

5 + 4 137.2
5 + 5 135.7

KN+CDLM 5 + 6 45 135.2 6.1M
5 + 7 134.9
5 + 8 134.9

KN+RNNLM 5 + ∞ 50 120.3 4.2M

CDLM+RNNLM 7 + ∞ 45 + 50 120.2 3.9M

perplexity points worse than CDLM. Increasing the hidden units for RNNLM
to 500, we obtain the best performing RNNLM. This comes at a cost of using
a lot of parameters. To produce better performing LMs with fewer parameters
we constructed an RNNLM with 50 hidden units, which when linearly combined
with CDLM (CDLM+RNNLM ) outperforms the best RNNLM using less than
half as many parameters. It even nominally outperforms the combination of KN
and RNNLM using fewer parameters, but this difference is likely not significant.
Combinations of the three different LMs do not result in any large improvements,
suggesting that there is redundancy in the information spread over these three
types of LMs.

Finally, we note that the increase in parameters does not always lead to better
performance. We observe this increase while comparing a Skip model with CDLM
and this increase can be attributed to the richer formulation of CDLM. Increase
in parameters for CDLM+KN does not also lead to a better performance against
the fewer-parameters CDLM+RNNLM. This is also observed when we compare,
CDLM+KN and KN+RNNLM. In this case, we suspect that the lower perfor-
mance is due to CDLM’s lack of recursive connections which form an integral
part of RNNLMs. But note that CDLMs, which are not recurrent, can capture
much of the long-distance information that the recurrent language models can.

5 Conclusion

In this paper, we proposed Custom Decay Language Model, inspired by Skip
models’ log-linear technique of dividing context into smaller bigrams and then
recombining them. In contrast with Skip models, CDLM uses a richer formula-
tion by employing a matrix based exponentiation method to capture long range
dependencies. Additionally, CDLM model uses an N-gram model to capture the
short range regularities.

Perplexity improvements are observed for CDLM even when compared to
Skip models with larger range and Kneser Ney five-grams. This improvement is
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observed even though CDLM uses fewer parameters compared to larger range
Skip model and KN5 with more parameters. In conclusion, CDLM provides a
rich formulation for language modeling where the growth of number of parame-
ters is constrained. We look forward to further enhancing CDLM with recurrent
connections and analyzing its performance on other language datasets with a
focus on ASR tasks.
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