
Platon: Dialog Management and
Rapid Prototyping for

Multilingual Multi-User Dialog Systems

Martin Gropp, Anna Schmidt, Thomas Kleinbauer, Dietrich Klakow

Spoken Language Systems Group
Saarland University

Saarbrücken, Germany
⟨firstname⟩.⟨lastname⟩@lsv.uni-saarland.de

Abstract. We introduce Platon, a domain-specific language for author-
ing dialog systems based on Groovy, a dynamic programming language
for the Java Virtual Machine (JVM). It is a fully-featured tool for di-
alog management that is also particularly suitable for, but not limited
to, rapid prototyping making it possible to create a basic multilingual
dialog system with minimal overhead and then gradually extend it to a
complete system. It supports multilinguality, multiple users in a single
session, and has built-in support for interacting with objects in the dialog
environment. It is possible to integrate external components for natural
language understanding and generation, while Platon can itself be inte-
grated even in non-JVM projects or run in a stand-alone debugging tool
for testing. In this paper we describe important elements of the language
and present two scenarios Platon has been used in.

Index Terms: dialog framework, dialog systems, dialog management, multilin-
gual, multi-user, rapid prototyping

1 Introduction

Platon is a domain-specific language for authoring dialog systems. It was de-
signed with rapid prototyping in mind and has integrated facilities to interact
with discourse and world objects. Platon is able to support multi-linguality and
can handle multi-user scenarios. Its modular architecture allows building dialog
systems that can either be used as a component in a more complex application,
or function as a stand-alone system with built-in support for speech recognition
and text synthesis.

Platon is designed for both technical and non-technical users. The language
is designed for readability and maintainability, yet offers advanced users flexible
extension options. Being based on Groovy, a dynamic language for the Java
Virtual Machine (JVM), Platon dialogs can draw on the full set of features of an
established powerful programming language, integrate existing Java classes, and
utilize the vast amount of existing libraries for the JVM. This ability allows, for



2 Martin Gropp, Anna Schmidt, Thomas Kleinbauer, Dietrich Klakow

example, to incorporate existing parsers, or to connect to external databases or
services.
This article introduces the Platon language and exemplifies typical use cases.1
The main contributions of Platon to the landscape of already existing solutions
to dialog management are:

– Accessibility: Easy to use script format for implementing dialog behavior
– Extensibility: Backed by a dynamic programming language (Groovy)
– Integration: Modular interaction with third-party components
– Flexibility: Not tied in with a specific dialog management model
– Speed: Rapid prototyping through compact and expressive syntax
– Availability: OS-independent open source package ready for download

2 Related Work

Platon is agnostic to the underlying dialog management model, hence we concen-
trate in this section on relevant alternative systems. (A general introduction to
different models of dialog management is given by [2].) A number of approaches
for implementing dialog managers have been proposed in the past, which can be
classified according to the complexity of interactions they allow.

Declarative interpreted languages, such as e. g. AIML2 or VoiceXML3, can
be appealing due to their ease of use, allowing non-expert users to model sim-
ple dialog behavior. When based on widely accepted standards, such as XML,
the availability of sophisticated editing tools can facilitate speedy development.
However, this often comes at the price of limited functionality. AIML, for in-
stance, interprets user input with a simple pattern matching language, provides
only rudimentary management of the dialog history through its <that> and
<topic> tags, and is restricted to purely user-initiative dialog behavior. Simi-
larly, VoiceXML has strengths in form-filling applications but has been criticized
for its inflexible handling of dialog initiative and shallow dialog model [3, 4].

NPCEditor [5] is a tool that allows to model question/answer pairs and
uses information retrieval techniques to process user input that matches only
partially. Some more elaborate tools, such as e. g. RavenClaw [6], aim for higher
flexibility and task independence. To this end, RavenClaw employs a two-tiered
architecture that separates domain and dialog management aspects, and has
been successfully used in a number of applications. However, the system expects
dialogs to be modeled as a hierarchical plan which may be too rigid a constraint
for dialogs that are not purely task-driven.

In general, the more opinionated a framework or tool is with respect to
expressing possible interactions, the more it runs the risk of hampering what
was not anticipated by the framework’s developers. This is one criticism that
1 A complete documentation is available as a separate technical report [1] with details

about the language definition and the implementation of Platon.
2 http://www.alicebot.org/aiml.html
3 http://www.w3.org/TR/voicexml21



Platon 3

motivated the development of the DIPPER [7] architecture as an alternative
to TrindiKit [8]. Both systems are inherently based on the Information State
Update approach [9] which, however, restricts their use to situations where this
model is applicable.

In comparison, Platon unites the strengths of the above systems while avoid-
ing some of their shortcomings. Basic keyword-based dialog behavior can be
easily implemented, similar to simple scripting languages, but based on very
flexible pattern matching capabilities. In addition, Platon also contains a so-
phisticated task model based on agents to allow modeling more complex dialogs.
Moreover, being tightly coupled with Groovy/Java, Platon makes it especially
easy to extend the off-the-shelf functionality, e. g. to integrate external resources.
These points will be highlighted in more detail in the following sections.

3 Elementary Features
3.1 Platon for Rapid Prototyping
Platon can be used to realize a basic chatbot-like dialog system as a stand-
alone application, as a first impression of a planned bigger system, or for early
integration with other components.

input(∼/\bhello \b/) {
tell all, "Hello World!";

}

Fig. 1. Monolingual Hello World
script.

A developer can directly define and test
reactions to a limited number of textual in-
puts using simple matching rules, such as the
one in figure 1. These rules can, as in this
example, use regular expressions, but Platon
also supports more complex input analyses. A
number of predefined functions can be used
in the reactions to an input match, for example for language output, for waiting
for user responses, or for interacting with the outside world (see below).

3.2 Multilingual Multi-User Dialog Systems

input(
en: ∼/\bhello \b/,
de: ∼/\bhallo \b/

) {
tell all, [

en: "Hello World!",
de: "Hallo Welt!"

];
}

Fig. 2. Multilingual Hello World
script

Especially for prototypes and dialog systems
without dedicated NLU and NLG compo-
nents, Platon scripts can (optionally) provide
internationalization support. Figure 2 shows
a complete “Hello World” example for En-
glish and German: both input matching and
reactions are realized bilingually.

Platon supports dialog situations with
more than one user. To keep the complex-
ity as low as possible and to make it easy to
use the correct resources for users with differ-
ent languages, a new dialog engine instance
is created for each user at first. Interaction between these instances is achieved
either by using shared variables or by sending and receiving arbitrary messages.
Reacting to such messages works much like receiving text input from users.



4 Martin Gropp, Anna Schmidt, Thomas Kleinbauer, Dietrich Klakow

4 Complex Platon Systems

Although Platon works well for rapid prototyping, it was built with more com-
plex scenarios in mind. In a more complex system, it is intended to take the role
of the dialog manager that interacts with external NLU and NLG components.

4.1 Dialog Management: Task Decomposition and Agents

...main

.

.

autoDestruct

.

.

askTimeDelay .

.

askConfirmation

.

.

. . .

Fig. 3. Part of a task tree

Dialog management in Platon is based on a concept
of hierarchical task decomposition similar to that of
RavenClaw [6], breaking a complex scenario up into
manageable parts. For example, the tree in figure 3
is a small excerpt of the task tree for a computer
game set on a space station. Here, the station has
an auto-destruct system that can be activated by

the player. For this, a time delay needs to be specified and the player has to
confirm that he/she is really sure about giving the command.

In a dialog script these sub-tasks appear as agents, each of which contains
a set of rules for input handling and for other reactions, and may keep a local
state. Figure 4 shows the script part of the example. The autoDestruct agent
has two variables, delay and confirmed, that represent the state of the agent.
The following enter block is executed when the agent is activated and every time
a sub-agent completes (technically: whenever the agent becomes the top element
on the stack; see below). In the example, enter checks which information is still
needed and activates other agents accordingly, or, if all necessary information is
available, exits.

Although Platon can provide basic language understanding tasks as described
above, a more complex dialog system typically integrates a separate NLU mod-
ule that can provide a comprehensive analysis of the user input. Platon’s JVM
foundation makes the integration of many existing parsers, taggers, dialog act
classifiers, etc. straight-forward. Moreover, if necessary, the dialog manager can
provide access to certain context information, e. g. about the active agents, the
dialog history, or entities in the environment, which can, for example, be used
for the context-aware disambiguation of the input.

Platon is able to integrate such a broad range of external NLU modules be-
cause it does not impose any restrictions on the kinds of input from such modules.
In particular, it does not expect a specific kind of semantic representation, dia-
log act scheme, domain ontology, etc. Platon can operate with any user-defined
input type. For instance, an application can use a set of different classes as in
the example of figure 5 where the NLU module uses the class TimeDelay for
utterances specifying time delays, or opt for a different representation, such as
simple strings, if that is considered more suitable.

4.2 Processing Input
Active agents are organized in a stack. When an agent calls another agent, e. g.
askTimeDelay() in figure 4, the new agent is pushed on the stack, and stays



Platon 5

agent autoDestruct {
def delay = null;
def confirmed = false;

enter {
if (delay == null) {

askTimeDelay();
} else if (!confirmed) {

askConfirmation();
} else {

exit();
}

}
...
agent askTimeDelay { ... }
agent askConfirmation { ... }

}

Fig. 4. Outline of the autoDestruct
agent

input(TimeDelay) {
input ->
delay = input;
askConfirmation();

}

agent askTimeDelay {
input(String) {

input ->
delay = new TimeDelay(input);
exit();

}
}

...

Fig. 5. Input statements from the
autoDestruct agent

there until it exits4. In the example of figure 6, the agent autoDestruct has
called askTimeDelay, which has consequently been put at the top of the stack.
Every time the dialog manager has to determine the system’s reaction to an
event (e. g. user input), it starts with the agent at the top of the stack and then
proceeds downwards until an agent accepts the event. Optionally, an agent can
delegate events to another (possibly inactive) agent, either on a case-by-case
basis, or as a regular part of its own event processing procedure. This feature
makes it easy to integrate agents for common tasks without adding complexity
to the general stack-based processing scheme. We are currently working on a
standard library of common agents (e. g. for repetitions or confirmations).

Examining the agent stack in figure 6, we see that autoDestruct (from
figure 4) has already called askTimeDelay, which is now on top of the stack. Its
only input statement accepts String objects, but not objects of type TimeDelay.
These are matched in the second agent, autoDestruct. This means that objects
of type TimeDelay will be handled even if the askTimeDelay agent is not active:
as long as autoDestruct is somewhere on the stack, TimeDelay objects can be
interpreted as the delay for the self-destruct sequence.

Assuming a user input of “set the time delay to five minutes” this string would
first be passed to the NLU which recognizes it as a time delay specification and
returns a TimeDelay object storing the duration. The input statement in the
4 Since all agents on the stack are active and can manipulate the stack, the call

semantics are actually more complex than for example with regular functions. By
default, agent changes are handled as if the agent executing the operations were on
top of the stack, removing other agents covering the caller. This leads to the behavior
expected for a regular function call. If required, this “stack cutting” mechanism can
be disabled for each call. See [1] for details.



6 Martin Gropp, Anna Schmidt, Thomas Kleinbauer, Dietrich Klakow

askTimeDelay agent only matches objects of type String, hence we proceed
down the stack and find the next agent, autoDestruct. Its first input rule
accepts the TimeDelay object and calls the next agent, which is pushed on top
of the stack replacing askTimeDelay.

4.3 Situated Interaction

Fig. 6. Three active
agents on a stack

Platon was built to interact with objects in the di-
alog environment, to affect this “world” using voice
input, and to react to changes. Platon systems can
connect to an external server to exchange informa-
tion about world objects, either using a direct Java-
compatible interface or via an RPC protocol based
on Apache Thrift5. Such a world object server must
implement one function to allow the manipulation
of object attributes, plus an additional two if atomic
transactions are required. On the other side of the
interface, Platon implements functions to receive
notifications about added, deleted, and modified ob-
jects from the world server, which are transparently
cached, and supports transactions as well. From the
perspective of a dialog designer, this complexity is completely invisible. Platon
provides the statements objectAdded, objectDeleted, and objectModified to
react to changes in the world state, which support complex selectors to decide
whether or not a given change in an object is relevant.

5 Sample Applications

Platon was originally developed in the context of an interactive multi-user game
focusing on collaboration between players speaking different languages. The di-
alog system plays a central role in this game, acting as the on-board computer
controlling a space station in an emergency situation. The players cannot com-
municate with each other directly. Instead, they interact with the game envi-
ronment using their voice, and external changes to the environment may be
communicated via voice output in addition to the graphical user interface and
sound effects. Consequently, in addition to being the interface to the space sta-
tion, the dialog system becomes a mediator between the players when they have
to collaborate in order to achieve common goals. This kind of setup requires a
flexible dialog system framework which supports (a) multiple users (b) speaking
different languages and (c) which is able to interface well with the game world
as well as (d) with the other software components. Platon’s design meets all
of these requirements. Its rapid prototyping capabilities proved to be a crucial
feature for integrating the individual parts of the game as early as possible, in-
cluding external ASR and TTS and world server components. Once the early
5 https://thrift.apache.org



Platon 7

prototype stages had been established, Platon allowed a seamless progression to
a more feature-rich dialog system. Figure 7 shows an example dialog from this
game scenario.

S: Alert! Oxygen levels are decreasing rapidly in Module 0. Activate oxygen pump to
prevent suffocation of crew members.

P: Then activate this pump?
S: Error 201. Can’t turn on oxygen pump. Energy missing. Deactivate systems to have at

least 20% energy.
P: Okay, which systems can we switch off?
S: Systems currently online: . . .

Fig. 7. Excerpt of a dialog between system (S) and player (P) from the beginning of
the adventure game.

To demonstrate Platon’s suitability for other domains, we built a second dialog
system for a home automation scenario. Here, we control a virtual apartment
with a number of devices including lights, heating, door locks, etc. The user can
query and manipulate the status of each of these devices. This system does not
rely on an external NLU. Instead, the necessary functions for basic reference
resolution and keyword spotting were implemented directly in Groovy. Platon’s
built-in object interaction support proved especially useful here, allowing us to
easily react to opening doors or finished washing machines, etc. With custom
classes and methods for the world objects it was possible to perform most envi-
ronment manipulations in a single line of code.

6 Integration and Tools
N

LU
In

te
rf

ac
e

Ex
te

rn
al

 D
at

a
Bi

nd
in

gs

Se
ss

io
n

M
an

ag
em

en
t

N
at

ur
al

La
ng

ua
ge

 I/
O

Host Application

Platon Core

Fig. 8. Platon Interfaces
(gray: optional)

Platon comes with command line and graphical
tools to run and test dialog scripts. Both support
input and output of written text, the GUI also has
built-in support for speech synthesis6 and speech
recognition7 and can automatically test a dialog sys-
tem with prefabricated bulk input.

To run a Platon dialog system outside this tool,
a host application needs to manage sessions and
take care of handling input and output, as illus-
trated in figure 8. The figure also includes the op-
tional interfaces for natural language understand-
ing and for interacting with world objects, as de-
scribed in subsections 4.2 and 4.3. In addition to
the direct Java-compatible interfaces, Platon pro-
vides additional Apache Thrift RPC interfaces to maximize the compatibility
6 MaryTTS: http://mary.dfki.de/
7 Sphinx: http://cmusphinx.sourceforge.net/



8 Martin Gropp, Anna Schmidt, Thomas Kleinbauer, Dietrich Klakow

with non-JVM applications. When it is ready, a Platon application can be de-
ployed as a single jar file including all dialog scripts.

7 Conclusions

We described Platon, a domain-specific language for dialog systems. Its focus
ranges from rapid prototyping to the realization of fully-fledged dialog systems.
Sophisticated input processing is implemented through a hierarchical task de-
composition model based on agents for individual sub-tasks. Platon is agnostic
toward the choice of underlying dialog management model as well as to the (se-
mantic or dialog act) representation of system inputs and outputs. As it is based
on Groovy, dialog scripts have ready access to third-party software written for
the Java Virtual Machine. With two example systems, we further demonstrated
how a Platon-based dialog system can interact with an application environment.

Platon is available under the Apache License on https://github.com/uds-lsv/.

8 Acknowledgments

The research presented in this paper has been funded by the Eureka project
number E!7152. https://www.lsv.uni-saarland.de/index.php?id=71

References

1. Gropp, M.: Platon. Technical Report LSV TR 2015-002 (2015)
2. McTear, M.F.: Spoken dialogue technology: Enabling the conversational user inter-

face. ACM Computing Surveys 34(1) (March 2002) 90–169
3. Fabbrizio, G.D., Lewis, C.: Florence: a dialogue manager framework for spoken

dialogue systems. In: Proceedings of Interspeech 2004, Jeju Island, Korea (2004)
3065–3068

4. Nyberg, E., Mitamura, T., Hataoka, N.: Dialogxml: extending voicexml for dy-
namic dialog management. In: Proceedings of the second international conference
on Human Language Technology Research. (2002) 298–302

5. Leuski, A., Traum, D.: NPCEditor: Creating virtual human dialogue using infor-
mation retrieval techniques. AI Magazine 32(2) (2011) 42–56

6. Bohus, D., Rudnicky, A.I.: The RavenClaw dialog management framework: Archi-
tecture and systems. Computer Speech & Language 23(3) (July 2009) 332–361

7. Bos, J., Klein, E., Lemon, O., Oka, T.: DIPPER: Description and formalisation of
an information-state update dialogue system architecture. In: Proceedings of the
4th SIGdial Workshop on Discourse and Dialogue. (2003) 115–124

8. Larsson, S., Traum, D.: Information state and dialogue management in the trindi
dialogue move engine toolkit. Natural Language Engineering 5(3–4) (2000) 323–340

9. Traum, D.R., Larsson, S.: The information state approach to dialogue management.
In: Current and new directions in discourse and dialogue. Springer, Netherlands
(2003) 325–353


