
Sub-Word Similarity based Search for Embeddings: Inducing Rare-Word
Embeddings for Word Similarity Tasks and Language Modelling
Mittul Singh1,2,3 Clayton Greenberg1,2,3 Youssef Oualil1,3 Dietrich Klakow1,2,3 ∗

1Spoken Language Systems (LSV)
2Saarbrücken Graduate School of Computer Science, Saarland Informatics Campus

3Collaborative Research Center on Information Density and Linguistic Encoding
Saarland University, Saarbrücken, Germany

{firstname.lastname}@lsv.uni-saarland.de

Abstract

Training good word embeddings requires large amounts of data. Out-of-vocabulary words will
still be encountered at test-time, leaving these words without embeddings. To overcome this
lack of embeddings for rare words, existing methods leverage morphological features to gener-
ate embeddings. While the existing methods use computationally-intensive rule-based (Soricut
and Och, 2015) or tool-based (Botha and Blunsom, 2014) morphological analysis to generate
embeddings, our system applies a computationally-simpler sub-word search on words that have
existing embeddings. Embeddings of the sub-word search results are then combined using string
similarity functions to generate rare word embeddings. We augmented pre-trained word embed-
dings with these novel embeddings and evaluated on a rare word similarity task, obtaining up to
3 times improvement in correlation over the original set of embeddings. Applying our technique
to embeddings trained on larger datasets led to on-par performance with the existing state-of-the-
art for this task. Additionally, while analysing augmented embeddings in a log-bilinear language
model, we observed up to 50% reduction in rare word perplexity in comparison to other more
complex language models.

1 Introduction

Word embeddings have been successfully applied to many NLP tasks (Collobert and Weston, 2008;
Collobert, 2011; Socher et al., 2011; Socher et al., 2012; Hermann and Blunsom, 2014; Bengio and
Heigold, 2014; Yang et al., 2015), and these systems often achieved state-of-the-art performance. This
success has been ascribed to embeddings’ ability to capture regularities traditionally represented in core
NLP features. Most of these embeddings were trained on large amounts of data, allowing them to
have good coverage of the relevant vocabularies. However, embeddings often still cannot satisfactorily
represent rare words, i.e. words with few occurrences in training data.

To generate useful embeddings for words too rare for standard methods to handle, Luong et al. (2013)
and Botha and Blunsom (2014) leveraged the segmentation tool, Morfessor (Creutz and Lagus, 2005),
while Cotterell et al. (2016) used morphological lexica to generate rare-word embeddings. In general,
these methods added resource-based knowledge to their systems in order to form word vector repre-
sentations, showing impressive performance gains over methods which did not address the rare words
problem.

In contrast, Soricut and Och (2015) applied an automatic method to induce morphological rules and
transformations as vectors in the same embedding space. More specifically, they exploited automatically-
learned prefix- and suffix-based rules using the frequency of such transformations in the data and induced
a morphological relationship-based word graph. Then, they searched over this graph for rules that best
infer the morphology of the rare words. The embeddings were then estimated using these rare-word
explaining rules. In this method, creating and tuning this morphological graph could lead to a high initial
cost.

∗This work was supported by the Cluster of Excellence for Multimodal Computing and Interaction, the German Research
Foundation (DFG) as part of SFB 1102, the EU FP7 Metalogue project (grant agreement number: 611073) and the EU Malorca
project (grant agreement number: 698824).



Language V RW #ENF Coverage
German 36602 15715 13103 99.9
Tagalog 22492 10568 8407 98.1
Turkish 24840 13624 9555 99.0
Vietnamese 6423 1332 305 69.1

Table 1: This table reports various statistics for
different language datasets used for language
modelling. The last column shows the cover-
age of our method in percentage.

Task V #ENF Coverage
Rare Word (Luong et al., 2013) 2951 1073 100
Gur65 (Gurevych, 2005) 49 4 100
Rare Word + Google News 2951 173 100

Table 2: This table reports various statistics of
a few language word similarity datasets used
in our experiments. The last column shows the
coverage of our method in percentage.

In order to overcome this cost and still be able to automatically induce rare word representations,
we propose a sub-word similarity-based search. This technique maps a rare word to a set of its
morphologically-similar words and combines the embeddings of these similar words to generate the
rare word’s representation (further discussed in Section 2). These generated embeddings can then be
combined with existing word embeddings to be applied in various tasks.

In Section 3, we evaluate our embeddings on word similarity tasks. For further evaluation, in Section 4,
we instantiate a log-bilinear language model (Mnih and Hinton, 2007) with our word embeddings and
analyse their perplexity performance on rare words over various language modelling corpora. Finally,
we summarise our findings in Section 5.

2 Rare-Word Embeddings

Rare words form a large part of a language’s vocabulary. This is illustrated in Table 1, which reports the
vocabulary size and number of rare words (RW) with zero (out-of-vocabulary words) or one training set
occurrence for our corpora. As shown in this table, rare words constitute 10%-50% of the vocabulary.
Further, it is widely known that in English, roughly half of all tokens in a given corpus occur only once.
Thus, it is essential to handle rare words properly to obtain good performance.

In the context of word embeddings-related tasks, training good word embeddings can incur huge com-
putational costs (Al-Rfou et al., 2013). So, in this work, we focus on augmenting readily available
embeddings rather than creating new ones from scratch. To increase the availability of resources for
many languages, Al-Rfou et al. (2013) released1 pre-trained word embeddings for more than one hun-
dred languages. These pre-trained word embeddings, namely Polyglot, were constructed by applying the
method outlined in Bengio et al. (2009) on Wikipedia text, which vary in size from millions of tokens to
a few billion tokens.

Among other available pre-trained word embeddings, Google released word2vec (Mikolov et al.,
2013)-based embeddings2 trained on their English News dataset (about 100 billion tokens). In our ex-
periments, we applied both of these embeddings sets to jump start generating the rare word embeddings
for different languages.

2.1 Inducing Rare-Word Embeddings

Statistics about the various language modelling corpora and word similarity tasks that we used in our
experiments are shown in Table 1 and Table 2. In these tables, along with the vocabulary size and
number of rare words, we also report the number of words for which the embeddings were not found
(ENF = Embedding Not Found) in the pre-trained embedding sets. For most of the language and pre-
trained embedding pairs, number of ENFs formed a large share of the vocabulary for word similarity
tasks and of rare-word set size for language modelling tasks. Hence, we estimated the missing word
embeddings before using them in our tasks.

We first provide a high level description of the steps of our method to induce the word embeddings for
these missing rare words, followed by detailed description of each step. For a given set of pre-trained
embeddings with a finite vocabulary VE applied to a task with vocabulary VT and a finite set of given
rare words RW = {w|w /∈ VE& w ∈ VT }, we apply the following steps:

1https://sites.google.com/site/rmyeid/projects/polyglot
2https://code.google.com/archive/p/word2vec/

https://sites.google.com/site/rmyeid/projects/polyglot
https://code.google.com/archive/p/word2vec/


1. Map every word w ∈ VE to its sub-word features

2. Index w ∈ VT using its sub-word features

3. Search the index for matches of w′ ∈ RW

4. For every w′ ∈ RW , combine matched words’ embeddings to generate its embedding

Step 1: Map words to sub-words
Although a word may be rare, substrings of that word are, in general, less rare. Hence, we start by
breaking down each word w ∈ V into its constituent N -sized sub-word units: DN (w). For example,
given the sub-word size N = 3:

DN (language) = {lan, ang, ngu, gua, uag, age}

In our experiments, we worked with value of N = 3. However, it remains to be seen how using dif-
ferently sized sub-word units or even morphemes affects the performance of this method. Note that our
procedure does not formally require that sub-word units be of equal length, so linguistically-sensible
morphemes may be used if the resource is available for that language.

Step 2: Index word using its sub-words
Pre-trained sets of embeddings can cover large numbers of words already (for example, Polyglot em-
beddings have 100K words in their vocabulary). So, performing substring searches and comparisons
can become quite computationally expensive. To speed up the search for sub-word units, we create an
inverted index on words. For each w ∈ V , we treat DN (w) as a document and feed it into a search
engine-based indexer. In this work, we used Lucene3 (McCandless et al., 2010) to index the words.

Step 3: Search for matches of a rare word
Next, we break down the rare word w′ /∈ V into its sub-word units (DN (w′)) and search for DN (w′)
using the index. We restrict the search results set to the top K results, denoted by RK(w′). RK(w′)
contains the words having similar sub-word units as w′, hence, containing words which are sub-word
similar to w′. In our experiments, we fixed K = 10.

Step 4: Generating rare-word embeddings
To estimate the word embedding of w′ ∈ RW , we compute the weighted average of embeddings (v) of
the rare-word matches. For this weighted average, we employ a string similarity function S, such that

vw′ =
∑

w:DN (w)∈RK(w′)

S(w′, w)× vw

The above method particularly hinges on the third step, where we utilise sub-word similarity of mor-
phologically similar words to search for rare word alternatives, leading to embedding combination in the
fourth step. Hence, we refer to the above technique as Sub-Word Similarity based Search (SWordSS:
pronounced swordz). The SWordSS embeddings ({vw′ : w′ ∈ RW}) are used along with {vw : w ∈ V }
to perform rare word-related tasks.

In the fourth step, we apply different string similarity functions (S), described in the list below, to
average different embeddings of matches from the third step. These different similarity functions help
provide a more morphologically-sensible scoring of matches and eventually are used to weight the inputs
of the final rare word embeddings.

• Jaccard Index, Jaccard (1912) computes the size of the character intersection over the size of the
character union. Therefore, order of characters is not considered by this metric. Frequent characters
such as vowels lead to uninteresting intersections, and short words could possibly suffer from an
unfair floor.

3https://lucene.apache.org/

https://lucene.apache.org/


• Jaro similarity, Jaro (1989) considers the number of matching characters in corresponding positions
and the number of transpositions detected. So, order of characters does matter for this metric.
Insertions and deletions are treated similarly, and the frequency and length effects from Jaccard
could also affect this metric.

• Most frequent K Characters similarity, Seker et al. (2014) considers the counts of the top K char-
acters in each string. Thus, if the “root morphemes” are long enough to create nontrivial count
statistics, this metric may, too, favor a more linguistic similarity, but as before, shorter strings could
have unwanted effects.

• Subsequence Kernels, Lodhi et al. (2002) create automatically-generated features based on se-
quences of characters within the strings to be compared. Therefore, those sequences that do not
cross morpheme boundaries could be especially helpful for estimating morphological similarity.

• Tversky coefficient, Tversky (1977) breaks down the union in the Jaccard index, allowing different
weights for the denominator intersection, those characters that only appear in the first string, and
those characters that only appear in the second string. These metaparameters allow the metric some
flexibility that the others do not.

In our experiments on rare word-related tasks, we mostly observed that using SWordSS led to high
coverage rates, also presented in Table 1 and Table 2. We note that whenever words w′ resulted in zero
matches in our experiments, they were either removed completely (in case of word similarity tasks) or
substituted with random vectors (in case of language modelling tasks, Section 4).

3 Word Similarity Task

To test the efficacy of SWordSS embeddings, we evaluated them on two standard word similarity tasks.
In such tasks, the correlation between the human annotator ratings of word pairs and the scores generated
using embeddings was calculated. A good set of embeddings would achieve a high correlation.

Specifically, we evaluated the SWordSS embeddings on Luong et al. (2013)’s English Rare Words
dataset with 2034 word pairs (Luong2034) and also evaluated these embeddings on a German word
similarity task (Gurevych, 2005) with 65 word pairs (Gur65).

3.1 Experimental Setup
For the German word similarity task, we used only Polyglot word embeddings, which are 64-dimensional
vectors. For English along with Polyglot word embeddings, we used the Google News word2vec embed-
dings, which are 300-dimensional vectors.

As a baseline, we used the existing pre-trained word embeddings, which are compared to their aug-
mented SWordSS versions. While augmenting the pre-trained set with the SWordSS embeddings, we also
explored various string similarity functions to be used in the fourth step (Section 2.1), namely, Jaccard In-
dex (SWordSSji), Jaro similarity (SWordSSjaro), Most Frequent K Characters similarity (SWordSSmfk),
Subsequence Kernels (SWordSSssk) and Tversky Coefficient (SWordSStc).

To evaluate the effect of these string similarity functions, we also implemented a constant similarity
function (S(w,w′) = 1, where w and w′ are words) used in the fourth step, denoting the corresponding
embeddings by SWordSS1. Finally, we also compared the SWordSS embeddings to SO2015 (Soricut
and Och, 2015), which also applies morphological analysis to generate missing word embeddings quite
similar to SWordSS embeddings.

3.2 Results
Using SWordSS embeddings definitely increased the correlation with humans in comparison to the orig-
inal on the Gur65 task (shown in Table 3), though the different string similarity functions except the
constant function (SWordSS1) led to correlations in a very close range, showing that particularly for
German, different similarity functions behave very similarly. Henceforth, we only report the best corre-
lation coefficient after applying these functions.



Word Vectors Gur65
Polyglot 28.5
Polyglot+SWordSSji 37.5
Polyglot+SWordSSjaro 37.1
Polyglot+SWordSSmfk 37.2
Polyglot+SWordSSssk 36.9
Polyglot+SWordSStc 37.6
Polyglot+SWordSS1 35.8

Table 3: Spearman’s rank correlation (%)
based evaluation of various string similarity
functions used to generate augmented word
vectors for the German word similarity task
(Gur65)

Task Luong2034
Word Vectors Polyglot Google News
SO2015 w/o morph - 44.7
SO2015 w/ morph - 52.0
w/o SWordSS 9.7 45.3
w/ SWordSS1 28.9 51.3
w/ SWordSSsim 30.4 51.4

Table 4: Spearman’s rank correlation (%)
based evaluation of techniques with and with-
out morphological features used to generate
representations for the word similarity task.

Next, we compared SWordSS versions of Polyglot embeddings and Google News Embeddings on the
Luong2034 task. When the SWordSS versions were compared to the original (labelled w/o SWordSS)
it led to a higher correlation, as shown in Table 4. However, for each set of embeddings, the differ-
ence between SWordSS1 and SWordSSsim remained small. The correlations for the SWordSS version of
Polyglot were still lower than the correlation rates reported by SO2015. This was due to the difference in
initial quality of embeddings used by each method. As Polyglot embeddings trained on a lesser amount
of data than SO2015, they were easily outperformed.

In Table 4, we addressed this lower performance issue by replicating our experiment using Google
News word2vec embeddings to jump start the SWordSS versions for the Luong2034 task. Using these
embeddings, trained on a larger dataset than used by Polyglot, led to SWordSS versions having on-par
results with the SO2015 results for the Luong2034 task.

Overall the SWordSS technique was able to drastically improve pre-trained embeddings performance
on the above word similarity tasks. Even though SWordSS-augmented Google News embeddings did
not significantly outperform SO2015, this method provides a simpler sub-word search based alternative
to the graph search over morphological relationships performed by SO2015. Furthermore, by applying
sub-word search in the third step as shown in Section 2.1, SWordSS overcomes the need for creating and
tuning the graph of morphological relationships as required by SO2015.

4 Word Embeddings in Language Models

Training language models (LMs) using an expanded vocabulary (having more word types than contained
in the training corpus) requires assigning probabilities to words which are not present in the training
set. Traditionally, these rare words are assigned a default value of probability in conventional N-gram
and long short term memory (LSTM)-based reccurrent neural network LMs (Sundermeyer et al., 2012).
This is usually not beneficial for spoken term detection and automatic speech recognition systems made
for low resourced languages, since presence of rare words in speech queries is high (Logan et al., 1996;
Logan et al., 2005).

To avoid this misrepresentation of rare words, we apply SWordSS embeddings in a language mod-
elling framework. Specifically, a log-bilinear language model (LBL) (Mnih and Hinton, 2007). In our
experiments, when the SWordSS embeddings were used to initialise an LSTM’s input layer, the system
obtained the same perplexity values as the LSTM initialised with random embeddings. This observation
suggests that the LBL framework is better suited than LSTMs for this naı̈ve way of initialising neural
language models with SWordSS embeddings and improving perplexity on rare words.

LBL predicts the next word vector p ∈ Rd, given a context of n − 1 words, as a transformed sum of
context word vectors qj ∈ Rd, as:

p =

n−1∑
j=1

qjCj

where Cj ∈ Rd×d are position-specific transformation matrices. p is compared with the next word w’s
representation rw. This comparison is performed using the vector dot product and then is used in a



softmax function to obtain the probability of the next word as follows:

p(wi|wi−1
i−n+1) =

exp(p · rw + bw)∑
v∈V exp(p · rv + bv)

where b is the bias term encoding the prior probability of word type w.
First, Q the collection of context word vectors (qj) and R the collection next word representations

(rw) are initialised with the pre-trained word embeddings. Thereafter, we train the LBL using stochastic
gradient descent.

Previously, extensions to class based and factor based formulations have provided impressive improve-
ments over regular N-gram LMs for morphological languages (Botha and Blunsom, 2014). But, these
LMs do not provide straightforward ways of incorporating pre-trained word embeddings, so we use the
original LBL because of the ease with which it incorporates pre-trained embeddings in its formulation.

4.1 Data

To evaluate the SWordSS embeddings for language modelling, we used the Europarl-v7 corpus of Ger-
man (de) language as processed by Botha and Blunsom (2014). We also performed language mod-
elling experiments with the SWordSS embeddings on Tagalog (tl), Turkish (tr) and Vietnamese (vi)
corpora, which include transcriptions of phone conversations collected under the IARPA Babel Pro-
gram language collection releases babel106b-v0.2f, babel105-v0.5 and babel107b-v0.7 respectively.

Statistics de tl tr vi
Train 1000K 585K 239K 985K
Dev 74K 30K 5K 65K
Test 73K 31K 6K 60K
Voc Size 37K 22K 25K 6K

Table 5: Statistical summary of corpora used
for the language modelling experiments. In-
formation corresponding to a language is pre-
sented in a column.

The German corpus was processed to have no out-
of-vocabulary words (OOVs), however, it still had a
lot of low frequency words (see Table 2). Contrast-
ingly, the Babel corpora have OOVs as well as other
low frequency words.

The Babel corpora were provided with training and
development sets. We divided the existing develop-
ment set into two halves to use one as the test set and
the other half as the new development set. The statis-
tics on these corpora are summarised in Table 5.

In Tables 1 & 2, we had shown that even though a
lot of rare-word embeddings are missing from the pre-trained set, SWordSS was able to generate and
obtain high coverage rates for such words, giving this method added benefit in the context of rare words.

4.2 Experimental Setup

Before evaluating the SWordSS embeddings for predicting rare words, we used all the OOVs to ex-
pand the corresponding vocabulary. SWordSS embeddings for all the words in the expanded vocabu-
lary were used to initialise LBL framework as described in Section 4. A bigram version of this LBL
(LBL2SWordSS) was further trained on language corpora before being evaluated.

We compare our LBL2SWordSS model with the conventional Modified-Kneser-Ney five-gram LM
(MKN5) (Kneser and Ney, 1995; Chen and Goodman, 1996) and also with the bigram (LBL2) based
log-bilinear LM. As a more powerful baseline, we also trained an LSTM based RNN LM to compare
with LBL2SWordSS . Moreover, we compare the LBL2SWordSS , with a character aware language model
(Kim et al., 2015), denoted as CCNN-LSTM. The CCNN-LSTMs were chosen for comparison because
of their ability to use character-based features to implicitly handle OOVs and rare words. For training
each of these LMs, we used the expanded vocabulary as used by LBL2SWordSS . In training neural
network-based language models, we restricted the number of parameters to have a similar number of
parameters as LBL2SWordSS .

4.3 Perplexity Experiments

We compare the language models described in Section 4.2 using perplexity values calculated on test sets
of different languages, shown in the Table 6.



Language Model German Tagalog Turkish Vietnamese
PPL RW1PPL PPL RW1PPL PPL RW1PPL PPL RW1PPL

MKN5 364.2 559K 162.6 420K 478.9 139K 120.8 174K
LBL2 391.1 404K 171.4 204K 649 94K 137.6 100K
LSTM4 323.1 596K 134.7 343K 489.8 110K 102.1 457K
CCNN-LSTM 315.7 636K 117.4 354K 408.7 168K 182.7 516K
LBL2SWordSS 369.4 260K 167.2 167K 513.2 110K 136.4 143K
#PAR 4.7 M 2.9 M 3.2 M 0.8 M

Table 6: Perplexities on test set (PPL), RW1 perplexities (RW1PPL) in thousands and number of param-
eters (#PAR) for LBL and LSTM LMs in millions, presented on four language corpora

As shown in Table 6, LBL2SWordSS was able to outperform the conventional LBL2 comfortably on
all the corpora except Vietnamese. For Vietnamese, LBL2SWordSS and LBL2 performed comparably.
Due to SWordSS’ low coverage of Vietnamese vocabulary, initialising LBL2 with SWordSS embedding
led to only a marginal performance gain.

Overall in terms of test set perplexity, CCNN-LSTM outperformed LBL2SWordSS comfortably on
most language corpora. However, on Vietnamese (in which characters represent meaning units rather
than sounds) CCNN-LSTM suffered and the LSTM outperformed the other language models. In com-
parison to LSTM and CCNN-LSTM, LBL2SWordSS’s lower performance on test data was expected as
the former are more non-linearly complex language models.

However, for tasks like spoken term detection, having low perplexities on most frequent set of words
is not good enough and hence, we compare LMs on the perplexity of a rare-word based test set. To
perform this comparison, we computed perplexity only on rare words (RW1PPL), i.e. with training-set
frequency of one, present in the test set. As shown in Table 6, we observe that LBL2SWordSS performed
better than the LSTM-based LMs across various languages in terms of RW1PPL.

We note that CCNN-LSTM model cannot include SWordSS embeddings easily. Hence, they are not
directly comparable to LBL2SWordSS , as the latter has more information at its disposal.

4.4 Performance on OOVs and Rare Words
To further compare the performance of the aforementioned language models on rare words, we analyse
perplexities of such words (RWPPL) in the test set as a variation of the frequency classes of these words
in the training set. This variation is displayed in Figure 1.

For OOVs (rare words with zero training-set frequency), LBL2SWordSS outperformed the other lan-
guage models built with similar number of parameters, on the Tagalog and Turkish corpora. In these
cases, LBL2SWordSS reduced rare-word perplexities by a factor of two over the character-feature rich
CCNN-LSTM, whose design allows it to implicitly handle rare words.

Even for rare words with training set frequency up to one, LBL2SWordSS reduced perplexity up
to a factor of 2.5 times with respect to CCNN-LSTM, on the German, Tagalog and Turkish corpora.
Interestingly on these particular language corpora, Figure 1 shows that LBL also performed better than
both the LSTM-based LMs in modelling OOV and rare words of frequency up to ten.

For Vietnamese, LBL alone was able to improve OOV and RW1 words over the other LMs. We at-
tribute this to lower coverage of Vietnamese rare words by SWordSS than for other languages. Instead
adding SWordSS embeddings harmed the prediction of OOV and RW1 words.

These perplexity improvements stared to wane when higher frequency words were included into the
rare word set, across the different languages. Nevertheless, for languages with rich morphology, initial-
ising LBL with SWordSS embeddings reduced perplexities on rare words.

5 Conclusion

In this paper, we introduced SWordSS, a novel sub-word similarity based search for generating rare word
embeddings. It leverages the sub-word similarity in morphologically rich languages to search for close

4when initialised with SWordSS embeddings it obtained the same perplexity values



 100000
1 2 3 4 5 10

R
W

P
P

L

Frequency Threshold

KN5
LBL2

LSTM
CCNN-LSTM
LBL2SWordSS

(a) German

 100000

0 1 2 3 4 5 10

R
W

P
P

L

Frequency Threshold

KN5
LBL2

LSTM
CCNN-LSTM
LBL2SWordSS

(b) Tagalog

 100000

0 1 2 3 4 5 10

R
W

P
P

L

Frequency Threshold

KN5
LBL2

LSTM
CCNN-LSTM
LBL2SWordSS

(c) Turkish

 100000

0 1 2 3 4 5 10

R
W

P
P

L

Frequency Threshold

KN5
LBL2

LSTM
CCNN-LSTM
LBL2SWordSS

(d) Vietnamese

Figure 1: Variation of rare-word perplexity versus threshold on frequency of training-set words on Ger-
man, Tagalog, Turkish and Vietnamese corpora

matches of a rare word, and then combines these close matches to estimate the embedding of a rare word.
Even though SWordSS is an unsupervised approach like Soricut and Och (2015), it differs from latter

in the way it utilises the morphological information. The latter automatically induces morphological
rules and transformations to build a morphological word graph. This graph is then tuned and used to
induce embedding of a rare word. Instead, SWordSS replaces the overhead of induction of rules and
creation of graph by searching a sub-word inverted index to find rare-word matches and combining their
embeddings to estimate rare-word embedding.

To test the SWordSS technique, we augmented pre-trained embeddings and then evaluated them on
word similarity tasks. The augmented embeddings outperformed the initial set of embeddings drastically.
However, it lagged behind the state-of-the-art performance of Soricut and Och (2015). But, by employing
embeddings trained on larger corpora, SWordSS was able to perform comparably on a rare-word task.

We also investigated the effects of using SWordSS augmented embeddings for modelling rare words.
To perform this experiment, we trained LBLSWordSS LM and compared it with language models like
the character aware LM, LSTM-based RNN LM restricted to similar size. On almost all datasets, the
character aware LM outperformed the other LMs with respect to perplexity on complete test sets. But on
rare words, SWordSS showed up to 50 % reduced perplexity values in comparison to other LMs. Hence,
SWordSS embeddings contributed substantially in modelling rare-word tasks.

In future work, we plan to incorporate SWordSS embeddings into more complex LMs than LBL and
further analyse the different string similarity functions used in SWordSS’s formulation.

Acknowledgments

We would like to thank anonymous reviewers for their comments, which helped improve this paper. We
are also immensely grateful to Rose Hoberman for her comments on an earlier version of this manuscript.



References
Rami Al-Rfou, Bryan Perozzi, and Steven Skiena. 2013. Polyglot: Distributed word representations for multilin-

gual nlp. In Proceedings of the Seventeenth Conference on Computational Natural Language Learning, pages
183–192, Sofia, Bulgaria, August. Association for Computational Linguistics.

Samy Bengio and Georg Heigold. 2014. Word embeddings for speech recognition. In INTERSPEECH 2014,
15th Annual Conference of the International Speech Communication Association, pages 1053–1057, Singapore,
September.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009. Curriculum learning. In Proceed-
ings of the 26th Annual International Conference on Machine Learning, ICML ’09, pages 41–48, New York,
NY, USA. ACM.

Jan A. Botha and Phil Blunsom. 2014. Compositional morphology for word representations and language mod-
elling. CoRR, abs/1405.4273.

Stanley F. Chen and Joshua Goodman. 1996. An empirical study of smoothing techniques for language modeling.
In Proceedings of the 34th Annual Meeting of the Association for Computational Linguistics, pages 310–318,
Santa Cruz, California, USA, June. Association for Computational Linguistics.

Ronan Collobert and Jason Weston. 2008. A unified architecture for natural language processing: Deep neural
networks with multitask learning. In Proceedings of the 25th International Conference on Machine Learning,
ICML ’08, pages 160–167, New York, NY, USA. ACM.

Ronan Collobert. 2011. Deep learning for efficient discriminative parsing. In International Conference on Artifi-
cial Intelligence and Statistics.

Ryan Cotterell, Hinrich Schütze, and Jason Eisner. 2016. Morphological smoothing and extrapolation of word em-
beddings. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 1651–1660, Berlin, Germany, August. Association for Computational Linguistics.

M. Creutz and K. Lagus. 2005. Unsupervised Morpheme Segmentation and Morphology Induction from Text
Corpora Using Morfessor 1.0. Technical report, Helsinki University of Technology.

Iryna Gurevych, 2005. Natural Language Processing – IJCNLP 2005: Second International Joint Conference,
Jeju Island, Korea, October 11-13, 2005. Proceedings, chapter Using the Structure of a Conceptual Network in
Computing Semantic Relatedness, pages 767–778. Springer Berlin Heidelberg, Berlin, Heidelberg.

Karl Moritz Hermann and Phil Blunsom. 2014. Multilingual models for compositional distributed semantics.
CoRR, abs/1404.4641.

Paul Jaccard. 1912. The distribution of the flora in the alpine zone. New Phytologist, 11(2):37–50, February.

Matthew A. Jaro. 1989. Advances in record-linkage methodology as applied to matching the 1985 census of
tampa, florida. Journal of the American Statistical Association, 84(406):414–420.

Yoon Kim, Yacine Jernite, David Sontag, and Alexander M. Rush. 2015. Character-aware neural language models.
CoRR, abs/1508.06615.

Reinhard Kneser and Hermann Ney. 1995. Improved backing-off for m-gram language modeling. In Acoustics,
Speech, and Signal Processing, 1995. ICASSP-95., 1995 International Conference on, volume 1, pages 181–
184. IEEE.

Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini, and Chris Watkins. 2002. Text classification
using string kernels. The Journal of Machine Learning Research, 2:419–444.

Beth Logan, Pedro Moreno, Jean-Manuel Van Thong, et al. 1996. An experimental study of an audio index-
ing system for the web. In Proceedings of the 4th International Conference of Spoken Language Processing.
Citeseer.

B. Logan, J. M. Van Thong, and P. J. Moreno. 2005. Approaches to reduce the effects of oov queries on indexed
spoken audio. IEEE Transactions on Multimedia, 7(5):899–906, Oct.

Thang Luong, Richard Socher, and Christopher D Manning. 2013. Better word representations with recursive
neural networks for morphology. In CoNLL, pages 104–113.



Michael McCandless, Erik Hatcher, and Otis Gospodnetic. 2010. Lucene in Action, Second Edition: Covers
Apache Lucene 3.0. Manning Publications Co., Greenwich, CT, USA.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word representations in
vector space. arXiv preprint arXiv:1301.3781.

Andriy Mnih and Geoffrey Hinton. 2007. Three new graphical models for statistical language modelling. In
Proceedings of the 24th International Conference on Machine Learning, ICML ’07, pages 641–648, New York,
NY, USA. ACM.

Sadi Evren Seker, Oguz Altun, Ugur Ayan, and Cihan Mert. 2014. A novel string distance function based on most
frequent K characters. CoRR, abs/1401.6596.

Richard Socher, Eric H. Huang, Jeffrey Pennin, Christopher D. Manning, and Andrew Ng. 2011. Dynamic pooling
and unfolding recursive autoencoders for paraphrase detection. In Advances in Neural Information Processing
Systems, pages 801–809.

Richard Socher, Brody Huval, Christopher D. Manning, and Andrew Y. Ng. 2012. Semantic compositionality
through recursive matrix-vector spaces. In Proceedings of the 2012 Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natural Language Learning, pages 1201–1211, Jeju Island,
Korea, July. Association for Computational Linguistics.

Radu Soricut and Franz Och. 2015. Unsupervised morphology induction using word embeddings. In Proceedings
of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1627–1637, Denver, Colorado, May–June. Association for Computational
Linguistics.

Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. 2012. Lstm neural networks for language modeling. In
INTERSPEECH, pages 194–197.

Amos Tversky. 1977. Features of similarity. Psychological review, 84(4):327.

Yiming Yang, Hanxiao Liu, Jaime Carbonell, and Wanli Ma. 2015. Concept graph learning from educational
data. In Proceedings of the Eighth ACM International Conference on Web Search and Data Mining, WSDM
’15, pages 159–168, New York, NY, USA. ACM.


	Introduction
	Rare-Word Embeddings
	Inducing Rare-Word Embeddings

	 Word Similarity Task
	Experimental Setup
	Results

	Word Embeddings in Language Models
	Data
	Experimental Setup
	Perplexity Experiments
	Performance on OOVs and Rare Words

	Conclusion

