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Abstract. We examine the combination of pattern-based and distribu-
tional similarity for the induction of semantic categories. Pattern-based
methods are precise and sparse while distributional methods have a
higher recall. Given these particular properties we use the prediction
of distributional methods as a back-off to pattern-based similarity. Since
our pattern-based approach is embedded into a semi-supervised graph
clustering algorithm, we also examine how distributional information is
best added to that classifier. Our experiments are carried out on 5 dif-
ferent food categorization tasks.

1 Introduction

Automatically inducing semantic categories of nouns from large unlabeled cor-
pora is a pressing problem in natural language processing. Semantic categories
are not only needed in order to build lexical ontologies, but they are also vital
for relation extraction tasks in order to provide some means of generalization
over traditional word-level representations.

With regard to type induction, there are two competing paradigms: Pattern-
based methods mostly employ few hand-written surface patterns and ensure a
high precision while distributional methods usually yield a better recall but may
be considerably inferior with regard to precision.

In this paper, we examine ways to combine these methods for categorization.
We apply them to 5 different tasks in the food domain (3 of which have not
been addressed before) providing evidence that a combination works in general.
We examine the food domain, since this domain has already been considered for
natural language processing tasks [4, 5, 2, 12, 3]. Moreover, food categories have
been shown to substantially improve relation extraction in this domain [23].

2 Data Set and Corpus

Since our task is to induce food categories, we need a food vocabulary as input.
We use a proper subset of the food vocabulary employed in [23] where compounds



Task Description Categories
type common food categories

(inspired by the Food
Guide Pyramid)

meat/fish (pork) 23.9, beverages (coffee) 13.9,
spices/sauces (cinnamon) 12.6, sweets/pastries/snacks
(chocolate) 12.4, vegetables/salads (broccoli) 9.8,
starch-based side dishes (rice) 7.9, grains/nuts/seeds
(spelt) 5.9, fruits (banana) 5.2, milk products (cheese)
4.2, fat (margarine) 2.8, eggs (omelette) 1.6

dish compositionality of food
items

atom (apple) 78.3, dish (lasagna) 21.7

taste predominant taste umami/salty (pizza) 56.7, sweet (orange) 25.8, bitter
(beer) 6.0, sour (vinegar) 4.0

temperature temperature at consump-
tion

cold (sandwich) 52.2, warm (steak) 41.7

state of matter state of matter at con-
sumption

solid (bread) 76.5, liquid (remoulade) 22.5

Table 1. The categorization tasks (each category is followed by an example and its

proportion in the food vocabulary).

have been removed.1 It comprises 834 food items. We consider food compounds
(e.g. chocolate-almond cake) less relevant for our investigation, since one can
effectively infer (most) category labels from suffixes/heads as shown in previous
work [23].2 We want to focus on the (sparse) food items that cannot be processed
with the help of this linguistic heuristic. This is a more general setting that is
also relevant to other domains.

We consider the 5 different categorization tasks summarized in Table 1 ad-
dressing different properties of food items. Our food vocabulary has been anno-
tated w.r.t. all of these categories. The first two categorization tasks have already
been addressed in previous work [23], however, the remaining three tasks are ex-
amined for the first time. In each categorization task, the categories are disjoint.

Our experiments are carried out on German data. Examples are given as
English translations. As an unlabeled (domain-specific) corpus from which to
induce food categories, we used a crawl of chefkoch.de [22] consisting of 418, 558
webpages of forum entries.

3 Similarity Types and Categorization

All approaches start with labeled seeds whose category labels are expanded to
the remaining unlabeled items with the help of some similarity type.

3.1 Pattern-based Similarity

For pattern-based similarity, we use the domain-independent similarity-patterns
from [23]. Each pattern is a lexical sequence that connects the mention of two

1 We remove all food items that contain as a suffix another food item that is also
contained in our food vocabulary.

2 That is, in order to establish the label of the sparse compound chocolate-almond

cake, one just considers the label of the suffix/head cake. The latter is a more general
expression for which a label can be more reliably determined.



food items (Table 2). For categorization, the patterns are used to build a sim-
ilarity graph, where the nodes are the food items and the edges indicate the
occurrences of food items with a similarity pattern (the edge weight is the fre-
quency of the occurrences with these patterns). Then, a semi-supervised graph
clustering algorithm (as previously suggested [23]) is applied onto the graph.
This requires a set of manually defined seeds for each category to be recognized.
The method is a low-resource approach that only requires an unlabeled corpus
and a set of seeds.

For all categorization tasks, we always employ the same similarity graph and
the same graph clustering method. The only difference is the choice of seeds
which represent instances of the respective categories that are to be induced.

3.2 Distributional Similarity

In order to compute distributional similarity, each food item is represented as
a feature vector. The components are words that co-occur in a fixed window
of 5 words (weighted by tf-idf) with mentions of the target food item to be
represented. This vector-encoding allows all food items to be compared with each
other, using the cosine-similarity. The resulting pair-wise similarities are stored in
a similarity matrix (Figure 1(b)). For classification, a nearest neighbour classifier
(using labeled seed food items identical to the ones from §3.1) is suitable. Such
classifier has been found more effective for distributional similarity than graph-
based clustering [23].

Unlike in [23], we consider k nearest neighbours rather than just the nearest
neighbour. We also extend the vector representation by adding Brown clusters [1]
of the component words to the vector representation. Brown clusters represent
word clusters that are automatically induced. They have been shown to improve
named-entity recognition [20] and relation extraction [15].

Patterns food item1 (or|or rather|instead of|“(”) food item2

Example {apple: pineapple, pear, fruit, strawberry, kiwi}
{steak: schnitzel, sausage, roast, meat loaf, cutlet}

Table 2. Domain-independent similarity patterns.

pattern-based similarity for distributional similarity for
asparagus kirsch (brandy) asparagus kirsch (brandy)

(frequent term) (rare term) (frequent term) (rare term)
vegetable no matching salsify cognac
mushroom salmon calvados
champignon chicken grappa

salsify pasta amaretto
salad savoy liquor
fish matjes rum

Table 3. The 6 most similar food items for two different target food items (underlined
items are unintuitive).



(a) pattern-based graph
(line width of edge indi-

cates similarity)

(b) distributional similar-
ity matrix (darkness of cell
indicates similarity)

(c) augmented graph (line
width of edge indicates

similarity strength)

Fig. 1. Combination of pattern-based and distributional similarity (fi represents some

food item).

3.3 Comparing the Two Similarity Types

Pattern-based and distributional methods have complementary properties. This
is illustrated by Table 3 which shows the 6 most similar food items to asparagus

and kirsch according to each of the similarity types. Asparagus is a frequent
food item (31, 355 mentions in our corpus) while kirsch is rare (34 mentions).
As a consequence, none of the similarity patterns are observed with the rare
item, hence kirsch is an unconnected node in the graph. For unconnected nodes,
graph-based clustering is unable to make a prediction. This concerns 15.8% of the
food items in our vocabulary. With distributional similarity, however, we obtain
similar food items for all food items. But Table 3 also illustrates that the quality
(precision) of pattern-based similarity is superior to distributional similarity.
This is because the similarity patterns are based on coordination which is known
to ensure semantic coherence [25]. We, therefore, assume that distributional
similarity is only helpful when pattern-based similarity provides no prediction.

3.4 Combination Methods

We examine 3 methods to combine distributional and pattern-based similarity.
They all use distributional similarity as a back-off to pattern-based similarity.
This should primarily mitigate the sparsity in the pattern-based graph caused
by food items that are not connected to any other food item (f5 in Figure 1(a)).
For those food items, some similarity information is obtained by distributional
similarity (edge(f4, f5) in Figure 1(b)) and can, for example, be included in the
similarity graph (Figure 1(c)):

– cascade: We run graph clustering (on the original pattern-based similarity graph) and the
nearest neighbour classifier (using distributional similarity) in parallel; per default the predic-
tion of graph clustering is taken, only if no prediction could be produced by that method, the
prediction of the nearest neighbour classifier is used.

– graph-auglocal: Information from the distributional similarity matrix is directly included in
the (pattern-based) graph; for each unconnected food item, edges to the n most similar food
items according to the distributional similarity matrix are added.



– graph-augglobal: Similar to graph-auglocal but for every food item in the food vocabulary, the
n most distributionally similar food items are connected by additional edges.

The first method is a naive combination that also keeps pattern-based and dis-
tributional similarity separated from each other during training, while the other
two methods are integrated solutions. The purpose of the third method is to
check whether even beyond food items in the graph that are not connected,
additional back-off edges from distributional similarity may help. For both in-
tegrated solutions, we employ the distributional similarity score ds as an edge
weight in the graph. ds is always in the range [0; 1[. It is therefore always smaller
than the pattern-based similarity score of observed patterns ps (which denotes
the absolute frequency of pattern occurrences), i.e. ps > ds since ps >= 1. This
encoding should reflect that we consider distributional similarity as a back-off.

4 Experiments

without Brown with Brown
k 1 3 5 10 1 3 5 10
Acc 64.9 62.1 61.5 57.8 67.5 64.4 64.4 61.3
F 62.3 59.7 58.4 54.2 64.5 60.9 60.3 56.9

Table 4. Varying k in nearest neighbour classification and examining the impact of
Brown cluster features (results averaged over tasks).

cascade graph-auglocal graph-augglobal

Task Acc F Acc F Acc F
type 78.66 76.96 78.78 76.22 80.46 78.42
dish 71.34 66.06 76.74 69.89 76.74 70.96
taste 71.47 60.95 73.15 62.73 74.32 63.64
temperature 77.14 77.07 78.03 78.17 76.88 76.80
state of matter 81.72 78.32 84.02 80.61 84.62 81.19
average 76.07 71.87 78.14 73.52 78.60 74.20

Table 5. Comparison of combining pattern-based and distributional similarity.

edges 1 2 3 5 10 20
Acc 78.09 78.60 78.10 77.74 77.58 75.37
F 74.15 74.20 73.81 73.28 73.52 71.85

Table 6. Varying the number of edges to be added in graph-augglobal (results averaged

over tasks).

As seeds we randomly sampled for every category of every task (Table 1) 20
seeds. For graph-based clustering, we use the configuration of hyper-parameters
from previous work [23]. We induced 1000 Brown clusters from our domain-
specific corpus with SRILM [19].

Table 4 shows different configurations for nearest neighbour classification us-
ing distributional similarity. Increasing the number of nearest neighbours notably
decreases performance. However, using Brown clusters as features is beneficial.
Therefore, for all further experiments using a k nearest neighbour classifier, we
will always set k = 1, however, we include Brown clusters as context features.

Table 5 compares the different methods combining pattern-based and dis-
tributional similarity. On average, the naive combination method (i.e. cascade)



majority classifier nearest neighbour graph graph-augglobal
(distributional similarity) (pattern-based similarity) (combination)

Task Acc Prec Rec F Acc Prec Rec F Acc Prec Rec F Acc Prec Rec F
type 23.9 2.2 9.1 3.5 63.4 64.0 72.2 65.4 74.7 81.7 79.9 79.3 80.5 75.4 84.3 78.4
dish 78.3 39.2 50.0 43.9 64.2 60.5 65.1 59.1 63.2 68.4 63.9 63.8 76.7 69.6 75.8 71.0
taste 61.4 15.3 25.0 19.0 57.1 49.5 66.8 49.7 64.2 62.0 69.9 61.4 74.3 59.7 76.8 63.6
temperature 55.6 27.8 50.0 35.7 75.0 75.0 74.0 74.2 67.0 79.6 67.4 72.7 76.9 76.9 77.2 76.8
stater of mat. 77.2 38.6 50.0 43.6 78.0 72.8 80.7 74.0 72.6 81.0 75.9 76.6 84.6 79.0 87.2 81.2
average 59.3 24.6 36.8 29.1 67.5 64.4 71.7 64.5 68.4 74.6 71.4 70.8 78.6 72.1 80.3 74.2

Table 7. Comparison of different methods.

performs worst. The best overall result is obtained by the integrated solution
with the global edge extension (i.e. graph-augglobal).

For the integrated methods in Table 5, we always used the 2 most similar
items from the distributional similarity matrix. Table 6 shows that for this value
we obtained maximum performance.

Table 7 compares the best combination method against the original graph
clustering, nearest neighbour and majority-class classifier. For most tasks, the
combination outperforms the best individual classifier (nearest neighbour/graph).

The improvement in F-score by combining pattern-based and distributional
similarity is most notably caused by raising recall. The combined approach
largely outperforms the majority-class classifier w.r.t. F-score. (In terms of ac-
curacy, there is only one task, i.e. dish, in which that baseline is not beaten.)
The proposed method also produces reasonable results on the new categorization
tasks not previously examined (i.e. taste, temperature and state of matter).

5 Related Work

The types of categorizations we present in this paper are typical instances of noun
classification. For that task, both distributional methods [16, 11, 18, 21, 24, 7, 10]
and pattern-based methods [6, 14, 9, 8] have been explored. The complementar-
ity of those methods has only been examined for textual entailment [13] and
categorization of raw semantic classes [17]. While our paper is the first work
that combines these methods in the context of graph-based clustering, those
previous publications consider different classification methods, i.e. supervised
learning and query set expansion, that require a different combination.

This work also extends the types of categorizations applied on the food do-
main addressing taste, state of matter and temperature for the first time.

6 Conclusion

We presented a combined approach for the induction of noun categories using
pattern-based and distributional similarity. We considered various food catego-
rization tasks, including three novel tasks. The best combination is a clustering
approach on a pattern-based graph that also includes for each food item edges
to the two most similar food items according to distributional similarity. This
method outperforms both mere pattern-based and distributional methods.
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