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Abstract
This paper addresses the problem of overlapping speech
separation in a noisy room using a microphone array. The
presented approach proposes a multistage processing frame-
work to separate the desired sources and reduce the corrup-
tive effects of noise, reverberation and interference. More
specifically, 1) a beamformer separates the sources based
on their location diversities, 2) a postfilter maximizes the
output SNRs, and 3) a novel filter is derived to suppress
the coherent terms at each output with respect to its con-
trasting one. Finally, 4) the clean signal is estimated using
a modified masking filter. Exploiting the fact that a desired
signal remains coherent within time frames, the mask is
smoothed between frames to preserve this coherency and
reduce the musical noise. Experiments on AMI-Wall Street
Journal corpus show a significant improvement in speech
quality, SNR, Source to Reverberation Ratio, and natural-
ness of the proposed method, compared to some methods
in Blind Source Separation.

1 Introduction
Separation of speech sources which are recorded in closed
areas is an essential requirement for several applications,
such as meeting recognition, automatic classnotes transcrib-
ing, and so on. Speech separation is a hard problem, but
can be facilitated to some degree by the use of an array
of microphones, especially when the geometry of the array
is also known a priori. Multiple recordings of the speech
data enables us to denoise or dereverberate the signals of
interest without distortion, at least theoretically [1]. Utiliz-
ing the fact that speakers are located at different positions
in the room, spatial filtering (beamforming) can be used to
exploit this spatial information of the sources and extract
higher quality source signals out of the corrupted input ar-
ray data.

In the presence of overlapping speakers, the conditions
of the separation problem in a room environment get far
more difficult to handle [2].

In this paper, following the line of thought of our previ-
ous work, [3], we present a multi-step processing system
that is able to cope with the three corrupting effects found
in every noisy echoic environment, namely noise, rever-
beration, and interference. The contribution of this paper
is three-fold: 1) The system structure that can be used in
any echoic environment along with the results that justify
it, 2) Derivation of the model for a filter that suppresses
the coherent terms from the signals, and 3) A modifica-
tion on the binary mask that enables us to account for the
signal correlations over the neighboring frames, especially
when the signal contained in these frames is due to a voiced
phoneme.

The remaining part of the paper is organized as fol-
lows. Next section reviews the background theory of the

Figure 1: Block diagram of the multi-channel speech sep-
aration system of two sources in each frequency bin, used
in this paper

beamforming and postfiltering. Subsection 2.2 presents the
problem formulation and justifies the processes used in the
proposed structure. Subsection 2.3 reviews masking. Sec-
tion 3 presents the experiments and is followed by the re-
sults and comparisons with some methods in Blind Source
Separation (BSS).

2 Structure of the System
The overall system structure to separate two sources in a
room is depicted in Fig. 1. This structure employs beam-
forming to extract the desired sources based on their unique
geometrical position, a postfilter to increase the level of
SNR, and two other stages: 1) A stage to suppress the
portion of each output that is coherent with the contrast-
ing output (that are emanated from the same sources), 2)
A masking stage that accounts for source presence and
temporal correlations in neighboring source frames. This
structure can be utilized in realtime and only the masks
calculated from the last frame need to be saved.

2.1 Background Theory
2.1.1 Beamforming

Beamforming (BF) aims at extracting the signal coming
from the desired direction while suppressing the noise, re-
verberation, and interfering signals that are entering the ar-
ray from other directions. The difference in the positions
of the sources causes different Time Differences of Ar-
rival (TDOA) with respect to the microphones in the array
which is exploited in BF design. Let us consider a plane
wave approaching the array aperture from a direction

a = [cosθ sinφ sinθ sinφ cosφ]T (1)
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with azimuth θ and elevation φ. Then, using the far field
assumption, the delay which is introduced at the i-th mi-
crophone in position mi (i= 1 . . .L) in relation to the cen-
ter of the array is τi=−aTmi/cwhere c denotes the speed
of sound. Translating these delays to phase shifts in the fre-
quency domain leads to the so-called array manifold vector
v, which is dependent on the sample rate and wave direc-
tion (through delays τi), as well as the angular frequency
ω:

v(ω) =
[
e−jωτ1 · · · e−jωτL

]T (2)

Now, denoting the frequency spectrum of the signals xi(t),
i= 1, . . . ,L, at the microphones by

X(ω) = [X1(ω) · · · XL(ω)]
T

the frequency spectrum S(ω) of the sound coming from
the direction a can be extracted as the scalar product of
X(ω) with the weight vector w(ω).

The weight vector w can be obtained through an op-
timization problem according to certain criteria (such as
minimizing the beamformer output noise power) while, at
the same time, maintaining the distortionless constraint,
i.e. wHv = 1. This leads to the following optimization
problem:

min
w

wHΣnnw subject to wHv = 1 (3)

where Σnn is the cross power spectral density (PSD) of
the noise. Obtaining a reliable estimate of the cross PSD
is a problem, that is typically overcome by making the ho-
mogeneous noise field assumption, for which Σnn can be
written as [4]: Σnn = ΦnnΓnn where Φnn denotes the
noise power and Γnn is the noise coherence matrix. With
this factorization, the MVDR solution devolves to:

wsdbf =
P−1
n Γ−1

nnv

P−1
n vHΓ−1

nnv
=

Γ−1
nnv

vHΓ−1
nnv

(4)

By assuming a particular choice of Γnn for spherically
isotropic noise field, which is optimal for reverberant en-
vironments [5], the result is called as Superdirective BF
(SDBF) [4].

2.1.2 Postfiltering

The minimum mean square error solution to spatial filter-
ing consists of an MVDR beamformer combined with a
Wiener postfilter (PF) [6]. Following our work in [3], we
extend the Wiener PF idea with the overestimation factor
β, as follows:

H(ω) =
Φss(ω)

Φss(ω)+βΦnn(ω)
(5)

where Φss(ω) and Φnn(ω) denote the speech and noise
power at the output of the array and can be estimated based
on Zelinski method [7]. Φss(ω) and Φnn(ω) in Zelinski
estimation, are based on the incoherent noise assumption.
But this may not be the case, in practice. Hence, we use
a noise overestimation factor β in order to compensate for
a possible systematic error. Our Automatic speech recog-
nition experiments on MC-WSJ-AV corpus, [8], indicated
that β = 0.5 gives the optimum result.

2.2 Proposed Coherent Removal Filters
The signals of the array microphones in Fourier domain
can be writen as a linear combination of the atoms taken
from a spatial basis dictionary, in which the base associ-
ated with the direct signal propagation is vi, i = {1,2},
and the rest of the bases which are concatenated in a ma-
trix Λri, i = {1,2} (column-wise), are associated with the
reflections of the direct signal and other interferences. For-
malization of this assumption for a two speaker scenario in
a closed room while the microphone signals are corrupted
with an additive ambient noise becomes, as:

X = [v1|Λr1]

[
S1

S1R

]
+[v2|Λr2]

[
S2

S2R

]
+N (6)

Where vi ∈ CM ,(i = 1,2) are the array steering vectors
toward the desired sources S1 and S2 with M as the num-
ber of microphones, Λri,(i = 1,2) are the array steering
matrices for all angles of the space but the desired sources,
and SiR,(i= 1,2) are the reverberated versions of the de-
sired sources that contain the lagged version of the desired
(current-time) sources with random lag times. N is mul-
tichannel ambient noise. All entities are transformed into
short time frequency domain (STFT) and (ω,t) is dropped
for simplicity.

Applying the weight vectors of the beamformers (cor-
responding to the sources) to (6), and assuming wH

i vi =
1,wH

i vj ≈ 0; i, j = {1,2}, i 6= j, based on (3) and MVDR
distortionless constraints, we get the following signals:

Z1 = wH
1 X = S1 +a1S1R+a2S2R+n1

Z2 = wH
2 X = S2 +b1Ś1R+b2Ś2R+n2 (7)

where ai,bi, i ∈ {1,2} are the gain vectors related to the
reverberation terms of the desired sources (S1, S2) and in-
terference parts (S1R,S2R, Ś1R, and Ś2R). Notice that,
S1R, Ś1R are not necessarily the same, since they are orig-
inated from S1 but with different lags (randomly combined),
and so does S2R, Ś2R. Consequently, there are subterms
in Z1 and Z2 that are coherent and subterms that are inco-
herent. The coherent terms included in Z1 and Z2 outputs,
make them dependent. n1 and n2 are the residual noise
terms after the BFs. Since the noise terms are assumed in-
dependent of the signals and reverberation parts, we apply
our modified postfiltering (PF) to the outputs of BFs (Z1
and Z2) to increase the SNR level, however, we assume
that the structure of the equation (7) is preserved with a
lower noise level.

Following the line of thought of our previous work [3],
utilizing the mask directly after BF-PF stage could be er-
roneous. The reason comes from the deficiencies in beam-
forming which does not allow the interfering signals to be
sufficiently suppressed. In addition, reverberation causes
the signal spectral energy to smear in time and affect the
mask estimation. Here we use our previously proposed
logSigmoid mask and modify it to be applied as a coherency
removal filter. The logSigmoid mask as in [3], is:

M̃i,σ,ξ(ω,t) =
1

1+ ξ
(
|Zj(ω,t)|
|Zi(ω,t)|

)σ i 6= j (8)

where ξ and σ are parameters to control the sharpness and
scale matching of the mask, respectively. In our exper-
iments with logSigmoid mask, we noticed that σ = 2 is
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mostly the optimized value. Interestingly, this value cor-
responds to the power of the signals in spectral domain.
Hence, we choose σ = 2, change the name of the mask to
Gz(ω,t) filter, and approximate (8) with the binomial ex-
pansion with first two terms of the series that represent this
function. Therefore, we have:

G̃zi,ξ(ω,t) = 1− ξ
(
|Zj(ω,t)|
|Zi(ω,t)|

)2

= 1− ξ
(
Pzj
Pzi

)
i 6= j (9)

where Pzi ,Pzj ,(i, j) ∈ {1,2} denote the power spectrum
of the contrasting signals. The coherence between two sig-
nals describes the strength of association between them,
and is shown as:

γzizj = (Pzizj )
2/(PziPzj ) i 6= j (10)

where Pzizj denotes the cross power spectral density of the
two signals. logSigmoid mask (8) is a parameteric design
that (roughly saying) improves the separation ability of the
mask by choosing the parameters, so that the resulting sig-
nal in the output statistically resembles a clean speech sig-
nal (i.e., particularly Kurtosis maximization in subbands
to follow the supergaussianity of the clean speech). These
parameters we should learn in each frequency band, before
employing the logSigmoid mask. Here, we only resort to
one parameter, namely ξ, and we let it be proportional to
the coherence of the signals Z1 and Z2 in power domain,
since we intend to remove the coherency between Z1 and
Z2 using these filters. Thus, in (9), we set ξ = λγzizj , and
the filters are shown as:

Gzi(ω) = 1−λγzizj
Pzj
Pzi

i 6= j (11)

The value of the λ can also be viewed as the parameter
that compensates for the approximation (expansion) error
of (9). λ can be optimized for a measure that is related to
the speech intelligibility [9], such as maximum Kurtosis.
Notice that all the parameters introduced in this paper de-
pend on frequency ω. The final filter equation to be applied
to the outputs is:

Gzi(ω) =max

{
(1−λγzizj

Pzj
Pzi

),0
}

i 6= j (12)

2.3 Proposed Masking
After the coherent terms are excluded in previous filter-
ing stage, there are still incoherent residual terms, from
reverberation, interference and noise, that need to be sup-
pressed. To contrast against these residual terms, we use
masking. Using the fact that different speakers tend to ex-
cite different frequency bins at a time (also known as W-
Disjoint Orthogonality, [10]) we use binary maskMi(ω,t),
with i ∈ {1,2} for each output at every bin to extract the
desired signal. Optimally, the value of Mi(ω,t) should
be set to 1 if the TF bin (ω,t) belongs to the i-th speaker
and should be set to 0 otherwise. However, since it is not
known which TF bin belongs to which speaker, as in Mag-
anti et al. [11], we use the absolute ratio of the contrasting
outputs, as follows:

Mi(ω,t) =

{
1, |Zi(ω,t)| ≥ |Zj(ω,t)| ∀j 6= i

0, otherwise
(13)

We modify this mask to account for the correlation be-
tween adjacent speech frames. We know that if the signal
is present in a frame, especially if the frame belongs to a
voiced phoneme, there is a large correlation between the
neighboring frames. However, attention to this correlation
is missed in binary masking. Moreover, the speech sig-
nal related to the desired speaker remains coherent, during
its activation period. We name the modified masking as
smoothed Binary Mask (sBM) and our final stage of mask-
ing becomes, as follows:

M̂i(ω,t) = αM̂i(ω,t−1)+(1−α)Mi(ω,t) (14)

where α is the smoothing or correlation parameter in each
frequency bin and can be optimized based on some mea-
sure being correlated with speech intelligibility, such as
maximum kurtosis, as in Table 1. This table shows the ef-
ficiency of α, on the intelligiblity of the separated speech.

α 0.8 0.83 0.85 0.88 0.9 0.95
WER 51.13 41.62 41 41.52 42.10 48.15

Table 1: Dependency of the WER (Word Error Rate %) to
the mask smoothing factor α, when it is assumed constant.

3 Experiments
Experiments are performed on AMI Wall-Street-Journal
corpus [8]. This data set contains recordings of five pairs
of speakers talking simultaneously to an array of 8 mi-
crophones planted symmetrically in a circle of 10cm ra-
dius. This is a challenging task for source separation given
that the room is reverberant and includes significant back-
ground noise level. Position of the speakers have already
been estimated as in [12]. This dataset has been used in the
PASCAL Speech Separation Challenge II [13, 14]. The to-
tal number of utterances is 356 (or 178, respectively, if we
consider the fact that two sentences are read at a time).

The result of the proposed method in Fig. 1 has been
compared to some known methods in the field of Blind
Source Separation (BSS) such as convolutive ICA (cICA)
[15] of Ikeda et al., convolutive BSS (cBSS) method of
L. Parra [16], as well as our previous method of logSig-
moid masking (lgSigMsk) [3]. In our previous work, [3],
we have already shown that SDBF outperforms other ad-
vanced bemaformers such as LCMV when the multistage
structure, including BF combined with PF are followed
by a masking stage. In addition, Table 2 shows that our
new proposed method significantly outperforms the com-
pared ones in case of Perceptual Speech Quality (PESQ),
noise and reverberation enhancement measures shown by
Segmental SNR, and Signal to Reverberation ratio, respec-
tively. The cepstral and LPC based distances also show that
the features of our method are closer to the natural speech.
Evaluation measures are found online in REVERB Chal-
lenge workshop. Looking at Fig. 2 clearly shows that the
spectrum of the proposed method is more enhanced than
the other compared methods. Comparing the spectrograms
with the clean one, we see that the remained interference
is well removed in our methods, whereas in other BSS
methods the interference components are still remained (a
sample is marked in the figure). Noise is effectively re-
moved however, it seems that there are parts of the clean
signal that are also removed. This can be due to overesti-
mation of the noise that has been removed in consecutive
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Method SegSNR CD LLD SRMR PESQ
BF/PF+cICA -0.72 5.41 1.04 3.72 1.59
∼ + cBSS -0.31 5.31 0.96 5.56 1.53
∼ + lgSigMsk -0.30 5.96 1.11 7.17 1.45

Proposed 2.05 4.89 0.95 8.30 1.96

Table 2: Comparison of our method with some known
methods in BSS, applied to the outputs of BF/PF, based on
the measures: Segmental-SNR (in dB), Cepstral Distance
(CD), LPC based LogLikelihood Ratio Distance (LLD),
Source to Reverberation Modulation Ratio (SRMR in dB)
and Perceptual Evaluation Quality (1≤PESQ≤ 5).
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Figure 2: Spectrogram of a sample output from the com-
pared methods

stages (postfilter and masking). Moreover, we are using
a fixed smoothing value for the binary mask (α) than can
make mistakes in frames that voiced phonemes are located
between low energy frames. In these cases the mask is
mostly dominated by the value of the low energy frames
and the voiced information might be omitted. In general,
noise, reverberation and interference are significantly re-
moved. As a result, we see in Table 2 that in addition to
the improvement in PESQ, the SNR and SRMR which are
highly correlated with the intelligiblity are also highly im-
proved. Moreover, the distances from the natural speech
are also less than the compared BSS methods which again
emphasize the higher intelligibility of the outcome of the
proposed method.

4 Conclusion
We have investigated a speech separation system consist-
ing of a beamforming, a postfiltering and two extra stages
that perform as coherent removal filter and separation mask,

respectively. We have derived the coherent removal filter-
ing from our previously proposed logSigmoid mask by its
expansion approximation. Moreover, we extended the bi-
nary mask based on the idea that, there is a high correla-
tion between frames that contain speech. Totally, the pro-
posed system structure showed its superior performance
over some known techniques in BSS as well as our pre-
viously proposed logSigmoid masking system. Our future
work, goes toward extending the idea of smoothed masking
to be applied more sophisticatedly based on the features of
the speakers.

References
[1] J. Benesty, S. Makino, and J. Chen in Speech Enhancement,

pp. 27–29, Springer, 2005.
[2] D. Moore and I. McCowan, “Microphone array speech

recognition: Experiments on overlapping speech in meet-
ings,” Proc. ICASSP, vol. 5, pp. 497–500, Apr. 2003.

[3] R. M. Toroghi, F. Faubel, and D. Klakow, “Multichan-
nel speech separation with soft time-frequency masking,”
SAPA-SCALE conference, Sept. 2012.

[4] M. Bitzer and K. U. Simmer, “Superdirective microphone
arrays,” in Microphone Arrays (M. Brandstein and D. Ward,
eds.), pp. 19–38, Springer, 2001.

[5] R. K. Cook, R. V. Waterhouse, R. D. Berendt, S. Edelman,
and M. C. Thompson, “Measurement of correlation coeffi-
cients in reverberant sound fields,” Journal of the Acoustic
Society of America, vol. 27, pp. 1072–1077, Nov. 1955.

[6] K. U. Simmer, J. Bitzer, and C. Marro, “Post-filtering
techniques,” in Microphone Arrays (M. Brandstein and
D. Ward, eds.), pp. 39–62, Springer, 2001.

[7] R. Zelinski, “A microphone array with adaptive post-
filtering for noise reduction in reverberant rooms,” Proc.
ICASSP, vol. 5, pp. 2578–2581, Apr. 1988.

[8] M. Lincoln, I. McCowan, I. Vepa, and H. K. Maganti,
“The multi-channel wall street journal audio visual corpus
(mc-wsj-av): Specification and initial experiments,” ASRU,
pp. 357–362, Nov. 2005.

[9] G. Li and M. E. Lutman, “Sparseness and speech perception
in noise,” Proc. SAPA, pp. 7–11, Sept. 2006.

[10] S. Rickard and O. Yilmaz, “On the approximate w-disjoint
orthogonality of speech,” Proc. ICASSP, vol. 1, pp. 529–
532, May 2002.

[11] H. K. Maganti, D. Gatica-Perez, and I. McCowan, “Speech
enhancement and recognition in meetings with an audio-
visual sensor array,” IEEE Transactions on Audio, Speech
and Language Processing, vol. 15, pp. 2257–2269, Nov.
2007.

[12] Y. Oualil, F. Faubel, and D. Klakow, “A fast cumulative
steered response power for multiple speaker detection and
localization,” Proc. EUSIPCO, Sept. 2013.

[13] J. McDonough, K. Kumatani, T. Gehrig, E. Stoimenov,
U. Mayer, S. Schacht, M. Wölfel, and D. Klakow, “To
separate speech - a system for recognizing simultaneous
speech,” Proc. MLMI, pp. 283–294, June 2007.

[14] I. Himawan, I. McCowan, and M. Lincoln, “Microphone
array beamforming approach to blind speech separation,”
Proc. MLMI, pp. 295–305, June 2007.

[15] S. Ikeda, “A method of ica in time-frequency domain,” in in
Proc. ICA, pp. 365–371, 1999.

[16] L. Parra and C. Spence, “Convolutive blind source separa-
tion of non-stationary sources,” IEEE Trans. on Speech and
Audio Processing, pp. 320–327, May 2000.

ITG-Fachbericht 252: Speech Communication, 24. – 26. September 2014 in Erlangen

ISBN 978-3-8007-3640-9 4 © VDE VERLAG GMBH ∙ Berlin ∙ Offenbach


	Introduction
	Structure of the System
	Background Theory
	Beamforming
	Postfiltering

	Proposed Coherent Removal Filters
	Proposed Masking

	Experiments
	Conclusion



