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ABSTRACT

Overlapping speaker localization approaches generally require a bi-
nary detector which performs the source/noise classification of the
location estimates. This is mainly due to the unknown time-varying
number of sources, and to the presence of noise and reverberation.
In this paper, we firstly introduce an online implementation of a pre-
viously developed offline multiple speaker detector. This classifier is
then extended to include new detection features. More precisely, the
proposed approach uses the classified location estimates as labelled
data to train new classification models for different potential fea-
tures. The resulting models are then integrated into the online clas-
sifier to improve the classification performance. In particular, this
paper investigates three different classification history-based mod-
els, namely, the location, the kurtosis and the probabilistic steered
response power features. Experiments conducted on the AV16.3 cor-
pus show the effectiveness of the proposed approach.

Index Terms— Multiple speaker detection, unsupervised
Bayesian classifier, steered response power.

1. INTRODUCTION

Microphone arrays have become an essential tool for a large number
of signal processing problems. Their area of application includes
speech separation/enhancement, acoustic source localization and
tracking, but also more advanced approaches such as camera steer-
ing for teleconference systems and audio-visual tracking. Among
these applications, the detection and localization of multiple concur-
rent speakers from a short segment of speech remains a difficult and
open task; and that although an abundance of localization methods
have been proposed in the literature: multi-channel cross correlation
(MCCC) [1], adaptive eigenvalue decomposition (ED) [2, 3, 4], time
difference of arrival (TDOA)-based techniques [5, 6, 7] and steered
response power (SRP)-based techniques [8, 9].

A good overlapping speaker localization performance cannot be
achieved without a source detector, which classifies the obtained es-
timates to speaker/noise. This is mainly due to 1) the presence of
noise and/or reverberation, which introduces secondary peaks, and
to 2) the unknown time-varying number of sources per frame. Few
attempts have been made to overcome this problem, Nilesh et al. [9]
proposed to use the distance separating the estimates as a criterion
to extract the number and location of the sources, whereas Do et
al. [10, 11] proposed to combine the signal power with a double
clustering technique to estimate the number of speakers. In a more
advanced approach, Lathoud et al. [12] proposed an unsupervised
threshold selection technique to control the false alarm rate.

We have recently proposed an offline unsupervised classi-
fier [13], which estimates the optimal Maximum Likelihood (ML)
boundary between the noise and speaker classes directly from the

data. This approach uses the Cumulative Steered Response Power
(CSRP) and the ML Error (MLE) introduced at each location esti-
mate as classification features, and trains two different 3-component
mixture distributions that separate the noise from speakers esti-
mates in each feature space separately. The resulting distributions
are then combined using a Naive Bayesian Classifier (NBC). We
have also introduced a theoretical and brief view of how an online
implementation of the proposed approach can be achieved.

The proposed classifier, however, is a memoryless detector
which performs the detection on a frame level using only two
features. This paper follows the line of thoughts in [13] by 1) in-
vestigating the online counterpart of the proposed offline classifier
in a first step, 2) and then extending the feature space by train-
ing new classification models based on the recent classification
history. More particularly, we will investigate new history-based
classification models for the location, kurtosis and the probabilistic
SRP features. These models are directly integrated into the online
classifier to improve the detection.

We proceed in this paper by briefly reviewing the offline classi-
fier proposed in [13]. Then, we introduce the online implementation
of this detector in Section 3. Section 4 presents the new history-
based classification features, whereas Section 5 shows the perfor-
mance of the proposed approach including the new features in com-
parison with the offline classifier. Finally, we conclude in Section 6.

2. OFFLINE NAIVE BAYESIAN CLASSIFIER

In this section, we review the offline NBC proposed in [13]. More
precisely, we will briefly introduce the multiple speaker localization
approach, which is used to estimate the potential speaker location
and to calculate the classification features. Then, we will review the
classification models, followed by a short introduction to the NBC
which combines the likelihood distributions of all features.

2.1. Multiple Speaker Localization Approach

In a recent work [14, 15], we have proposed a novel approach to
the multiple source localization problem. This framework interprets
each normalized Generalized Cross Correlation function (GCC) as a
Probability Density Function (pdf) of the TDOA. This pdf is then ap-
proximated by a Gaussian mixture (GM) distribution using either the
Weighted Expectation Maximization (WEM) algorithm from [15] or
its practical approximation in [14]. The resulting TDOA Gaussian
mixtures are mapped to the location space using the location-TDOA
mapping given by (1). The approach proposed in [14] combines
the GMs using a probabilistic interpretation of the Steered Response
Power (PSRP), whereas the approach proposed in [15] maximizes
the TDOA joint pdf in the location space. The rest of Section 2.1



presents a brief introduction to the approach proposed in [14], which
is used in this work as a detector.

Formally, let M and Q denote the number of microphones and
corresponding pairs, respectively, and let mh, h = 1, . . . ,M , de-
note the positions of the microphones. The location-TDOA map-
ping between the location s and the TDOA τ q(s), introduced by the
source s at the microphone pair q = {mg,mh}, is given by:

τ q (s) = (‖s−mh‖ − ‖s−mg‖) · c−1 (1)

c denotes the speed of sound in the air.
The GM approximating the normalized GCC function (interpreted
as a pdf of the TDOA) of the q-th microphone pair is given by:

p(τ q) =

Kq∑
k=1

wq
k · N

q
k (τ q, µq

k, (σ
q
k)2) (2)

where µq
k, σ

q
k and wq

k denote the mean, standard deviation and mix-
ture weight of the k-th component, respectively. The probabilistic
SRP (PSRP) of a given location s is calculated according to [14]:

PSRP(s) ∝
Q∑

q=1

Kq∑
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k · N

q
k (τ q(s), µq

k, (σ
q
k)2) (3)

The source location estimate se is obtained by 1) extracting from
each GM distribution the Gaussian component (wq

se , µ
q
se , σ

q
se)

where the source se is dominant. Then, 2) calculating the restriction
of (3) on the space region Se where se is dominant. Finally, 3) the
optimal location estimate is obtained via numerical optimization
(see [14, 15] for more details).

2.2. Cumulative Steered Response Power Feature

The first detection feature considered in [13] is the Cumulative SRP
(CSRP). This feature does not simply consider the power coming
from a single location, it rather considers the cumulative power
emerging from the region of dominance associated to the loca-
tion estimate. Formally, the cumulative SRP Cse introduced at the
location estimate se is calculated according to:

Cse =

∫
Se

PSRP(s) · ds ≈
Q∑

q=1

wq
se (4)

Se represents the space region where the acoustic event that gener-
ated se is dominant. The equation (4) is obtained by mapping Se to
the different TDOA spaces (see [15] for more details).

Let {(si, ci)}NT
i=1 denote the set of NT location estimates si and

their corresponding CSRP values ci, obtained in T frames. The
CSRP classification model is obtained by training a 3-component
mixture distribution on the data in the CSRP space. This mixture
is obtained by maximizing the likelihood of the CSRP estimates
{ci}NT

i=1 using the Expectation-Maximization algorithm [16]. For-
mally, the EM algorithm estimates a mixture distribution of the form

fcsrp(s) = wcsrp
n · Gcsrpn (c) + wcsrp

s fcsrp
s (c) (5)

where Gcsrpn (.) is a Gaussian distribution approximating the like-
lihood distributions of the noise, whereas fcsrp(.) is a “Gaus-
sian+Uniform” distribution approximating the likelihood of the
speakers. wcsrp

n and wcsrp
s denote the noise and source priors, re-

spectively (see example in Fig. 1). The reader is referred to [13] for
more details.
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Fig. 1: Example of the ML mixture distributions approximating the
CSRP and the MLE distributions, respectively.

2.3. Maximum Likelihood Error Feature

The second classification feature is the Maximum Likelihood Error
(MLE) given by:

err(se) =

Q∑
q=1

(
τ q(se)− µq

se

σq
se

)2

(6)

This feature is correlated with the nature of the acoustic sources.
More precisely, the MLE is expected to be large for diffuse noise,
but low for “point” sources (see [13] for more details).

The noise and source likelihood distributions are estimated using
the same approach presented in Section 2.2, with the exception of
using different distributions. Formally, let {(si, erri)}NT

i=1 denote
the set of NT location estimates si and their corresponding MLE
values erri, obtained in T frames. The likelihood is approximated
by a 3-component mixture distribution:

fmle(s) = wmle
s · Γmle

s (err) + wmle
n · fmle

n (err) (7)

where Γmle
s (.) is a Gamma distribution approximating the likeli-

hood distribution of the source MLE, whereas fmle
n (.) is a “Gaus-

sian+Uniform” distribution approximating the likelihood of the
noise (see [13] for more details).

2.4. Naive Bayesian Classifier

The Naive Bayesian Classifier (NBC) is an alternative solution to
classification problems where a good estimation of the likelihood
distribution in the joint feature space is difficult to obtain. In this
case, a 1-dimension distribution can be estimated in each feature
space, followed by their combination, under independence assump-
tion, using the NBC (see [13, 17] for more details). Formally, if α
is the classifier decision, α ∈ {source,noise}. The NBC calculates
the likelihood of the estimate X = (s, c, err) given the decision α
according to:

p(X|α) =

2∏
k=1

p(Xk|α) = p(c|α)× p(err|α) (8)

Replacing the terms in (8) by their expressions in (5) and (7) and
using Bayes’ rule leads to the following posterior distributions:

p(source|X) ∝ fcsrp
s (c) · Γmle

s (err) · wcsrp
s · wmle

s (9)

p(noise|X) ∝ Gcsrpn (c) · fmle
n (err) · wcsrp

n · wmle
n (10)

X is considered to be generated by an actual source if
p(source|X) ≥ p(noise|X).

The extension of this NBC to include more features is straight-
forward. The likelihood distribution of each new feature will be used
to augment the likelihood product (8), whereas the prior distribution
of each class is given by the product of the corresponding priors cal-
culated in different feature spaces.



3. ONLINE NAIVE BAYESIAN CLASSIFIER

Acoustic source localization applications, such as camera steering
and audio-visual tracking, often require an online localization per-
formance. Therefore, the source/noise classification should be also
performed online. Algorithm 1 proposes an approach that accom-
plishes an online estimation of the distribution parameters from Sec-
tion 2.2 and 2.3. The proposed algorithm takes into account any

Algorithm 1 : Online Parameter Estimation

1. Initialize the distributions parameters using K-means
2. Let T be the re-estimation period.
for t multiple of T do

3. Set the initial parameters to the current parameters.
4. Use the last N estimates as training set.
5. Re-estimate the parameters using the EM algorithm.

end for

possible changes in the distance, number of speakers and noise con-
ditions, which might affect the decision boundary. Therefore, only
the last N feature estimates are used to re-estimate the parameters.

4. CLASSIFICATION HISTORY-BASED FEATURES

This section shows how the classification history can be used to aug-
ment the feature space and thereby improve the detection perfor-
mance. More particularly, the classified location estimates and their
corresponding PSRP and kurtosis values are investigated as three po-
tential new features. The idea here is to use the classified estimates
as labeled data to train separately new speaker and noise models for
different features. These models are then incorporated into the NBC.

4.1. Location Feature

The location estimates are widely used as a main feature in speaker
clustering and classification approaches. This is mainly due to the
high density of the estimates originated from the same speaker in the
location space, whereas the noise estimates are assumed to be ran-
domly distributed. The main problem, however, is to identify which
clusters of estimates represent actual speakers. This is mainly solved
using speech cues or cluster variance-based discrimination [18]. We
propose to overcome this identification problem here by training sep-
arately speaker(s) and noise models using the late classification his-
tory. Each model has the form of a GM with a number of compo-
nents given by the minimum Bayesian Information Criterion (BIC).
Algorithm 2 shows the proposed online training approach.

Algorithm 2 : Training of the location-based classification models

1. Let Tloc be the re-estimation period.
for t multiple of Tloc do

2. Use the last Nloc speaker/noise estimates as two separate
training sets.
for k = 1 . . .K do

3. train a speaker GM modelMk
s,loc (k components)

4. train a noise GM modelMk
n,loc (k components)

end for
5. return the speaker and noise modelsMks

s,loc andMkn
n,loc:

ks =argmink BIC(Mk
s,loc), kn =argmink BIC(Mk

n,loc).
end for
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Fig. 2: Illustration of a history-based classification model: top fig-
ure illustrates the time evolution of the GM speaker model for the
location feature. The figure in the bottom shows the location ground
truth of the corresponding 2 speakers.

4.2. Kurtosis Feature

High order statistics of signals have been widely investigated to solve
speech and signal processing problems. More particularly, the kur-
tosis of a signal is typically used in Blind Source Separation (BSS)
to separate speech sources [19, 20]. The kurtosis of a zero mean
random variable x is calculated according to:

kurt(x) =
E{x4}
{E{x2}}2 (11)

where E{.} is the expectation operator.
Speech signals are generally assumed to follow super-Gaussian dis-
tributions, whereas noise signals are mostly modeled as Gaussians
or mixture of Gaussians. Therefore, speech and noise signals are ex-
pected to have different kurtosis. Based on this difference, we pro-
pose to use the kurtosis as a new detection feature. More precisely,
the signal coming for each location estimate is calculated using a
superdirective Beamformer (BF), followed by the calculation of the
kurtosis according to (11) as shown in Fig. 3. The likelihood of each
kurtosis model is approximated by a Gaussian distribution.

Multiple Speaker Location 
Estimation 

Beamformer 1 Beamformer N 

Kurtosis 1 Kurtosis N 

Spatial Filtering 

Kurtosis Estimation 

Fig. 3: Pipeline for calculating the kurtosis at each location estimate.

4.3. Probabilistic SRP Feature

The probabilistic SRP feature PSRP(s) of a location estimate s (cal-
culated according to (3)) is a probabilistic interpretation of the sig-
nal power at that particular location. We have shown in [13] that the
SRP is highly correlated with the variance of the location estimate.
More precisely, sharp SRP peaks representing point speech sources
(mouth) are more likely to have a small variance, and therefore small
MLE, contrary to noise sources, which are expected to span over
wider space regions resulting in a larger variance and flat SRP peaks.



Table 1: Speaker/Noise Classification Results
Sequences seq18-2p-0101 seq24-2p-0111 seq40-3p-0111 seq45-3p-1111 seq37-3p-0001

R P F R P F R P F R P F R P F
Offline MLE+CSRP 0.81 0.72 0.76 0.75 0.71 0.73 0.56 0.85 0.67 0.65 0.48 0.55 0.70 0.65 0.67
Online MLE+CSRP 0.84 0.68 0.75 0.76 0.68 0.72 0.63 0.81 0.70 0.68 0.49 0.57 0.76 0.71 0.73

+PSRP (only) 0.84 0.72 0.78 0.77 0.70 0.73 0.60 0.86 0.71 0.65 0.51 0.58 0.75 0.67 0.70
+LOC (only) 0.88 0.67 0.76 0.80 0.57 0.67 0.65 0.86 0.74 0.73 0.41 0.53 0.80 0.67 0.73

+KURT (only) 0.83 0.65 0.73 0.80 0.60 0.68 0.60 0.81 0.69 0.70 0.44 0.54 0.73 0.59 0.65
+PSRP+LOC 0.87 0.71 0.78 0.78 0.68 0.73 0.64 0.89 0.74 0.68 0.50 0.58 0.79 0.70 0.74

+PSRP+LOC+KURT 0.87 0.71 0.78 0.78 0.66 0.72 0.65 0.87 0.74 0.68 0.50 0.58 0.79 0.70 0.74
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This correlation is extended here to include the CSRP feature. More
particularly, we expect the PSRP feature to help the classifier dis-
criminating between estimates based on the signal power at these
locations, whereas the CSRP classifies the estimates based on the
cumulative signal power coming from the region surrounding the lo-
cation. Therefore, we expect the classifier to be able to correctly
classify distributed noise source, such as projector, which generally
have a high CSRP value but low PSRP. The main goal here is to
use this complimentary and redundant information provided by the
MLE, CSRP and PSRP features to increase the robustness of the
classifier. Similarly to the location and kurtosis features, the speaker
and noise PSRP classification models are trained separately using
the recently classified speech and noise estimates, with the only ex-
ception of using a 3-component mixture similar to the one used to
train the CSRP.

5. EXPERIMENTS AND RESULTS

We evaluate the proposed approach using the AV16.3 corpus [21],
where human speakers have been recorded in a smart meeting room
(approximately 30m2 in size) with a 20cm 8-channel circular micro-
phone array. The sampling rate is 16 kHz and the real mouth posi-
tion is known with an error ≈ 1.2cm [21]. The AV16.3 corpus has a
variety of scenarios, such as stationary or quickly moving speakers
and varying number of simultaneous speakers. The multiple speaker
sequences are highly overlapping recordings with speakers talking
simultaneously during the complete audio sequences. The source
localization experimental setup used in these experiments is similar
to that proposed in [15], whereas the multiple speaker detection set-
ting is the same as the one used in the offline classifier [13]. More
particularly, the re-estimation period T = 3s for CSRP, MLE, PSRP
and kurtosis, whereas Tloc = 1s. This differences aims at model-
ing any possible fast changes in the speakers location. Moreover,
the number of the classification history-based estimates N = 1000,
whereas Nloc = 300. The first 20s of each recording were used
to initialize the models. The signal was divided into frames of 512
samples (32ms), and the GCCs were calculated using PHAT [22]
weighting. The robustness of the proposed approach to noise is eval-
uated by introducing a high noise rate. More precisely, the multiple
speaker localization approach provides 6 estimates per frame (Nmax

in [14, 15]). Given that the number of simultaneous speakers varies
between 1 and 3, this leads to a noise rate of≥ 50% in the best case.

We have shown in [13] that the offline NBC outperforms the
classical Support Vector Machine (SVM) [17, 23] when they are ap-
plied to the CSRP and MLE features. In this paper, however, we
will conduct an experimental comparison between the proposed on-
line and the previously developed offline classifiers when they are
applied to the CSRP and MLE features. The results are reported in
Table 1. This table also reports the results of the multiple speaker

detection experiments when the NBC is augmented with the pro-
posed history-based classification features. The results are reported
in terms of the Recall (R), Precision (P) and F-measure (F). These
measures are given by:

P =
True Positive

True Positive + False Positive
(12)

R =
True Positive

True Positive + False Negative
(13)

F = 2 · R · P
R+ P

(14)

The higher these measures are, the better the classification is. The
recall represents the fraction of actual speaker estimates that is cor-
rectly classified, whereas the precision reports the fraction of esti-
mates which are correctly classified. Finally, the F-measure is the
harmonic mean which is used to evaluate the overall performance.

The results reported in Table 1 show that the proposed online
classifier combined only with the CSRP and MLE features perform
better than its offline counterpart. This improvement is mainly due to
the online adaptation of the classification model parameters, which
is necessary in the case of changes in the speaker environment. This
improvement appears clearly in the sequences 40 and 37, where the
number of simultaneous speakers and distance to the array changes
over time. We can also conclude that the online classifier adapts
quickly to the environment, as it requires only 20s as initial duration
to estimate the models. We can also see that adding more features
increases the robustness of the online classifier. More precisely, we
can see that augmenting the online classifier with the PSRP or the
location (LOC) features alone lead to an “unstable” improvement of
the performance. This is mainly due to the non-convergence of the
classification models in few parameters re-estimation steps or due
to long segments of intended silence. This instability of the perfor-
mance appears also in the unbalanced P and R results. Combining
more features, however, provides more information to the classifier,
which successfully increases the F-measure of all sequences using
the MLE+CSRP+PSRP+LOC features. We can also conclude that
adding the kurtosis feature to this mixture did not improve the per-
formance. This is mainly due to the BF step which introduces dis-
tortions in the speech signal, leading to non-reliable classification
models in many of the re-estimation steps. This confirms a similar
conclusion regarding the MFCC features that was reported in [18].

6. CONCLUSION

We have proposed an online unsupervised Bayesian classifier to the
multiple speaker detection task. The proposed approach uses an
adaptive online learning approach to re-estimate the classification
models. This classifier was further extended to include three differ-
ent classification history-based features. This approach is flexible
and can be easily extended to integrate more speech features.
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