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Abstract—Traditionally, multiple speaker tracking consists of two
stages, namely, 1) detection of location measurements, followed by 2)
a multiple object tracking approach. In general, these two steps are
performed separately, and the tracking performance is highly dependent
on the measurement detection rate. The performance of the widely used
Steered Response Power (SRP)-based measurement detectors, however,
drastically decreases in the overlapping speech scenario, where the dom-
inant speaker frequently masks the low-energy speakers. To overcome
this problem, we propose an approach that enhances the probabilistic
SRP-based measurement detector, using the multiple speaker information
obtained in the tracking step. In doing so, this approach tightly couples
the two stages, and increases the detection rate of low-energy speakers
during overlapping speech segments. Experiments conducted on the
AV16.3 corpus showed a significant improvement of the detection and
tracking performance, when the proposed approach is integrated into a
Kalman-based multiple speaker tracking framework.
Index Terms: Speaker overlap, multiple speaker tracking, steered
response power, Kalman filter, conversational speech.

I. INTRODUCTION

Multiple speaker tracking using microphone arrays has become
an essential tool to develop robust solutions to a large number
of signal and speech processing problems, such as speech separa-
tion/enhancement, multi-party distant speech recognition, etc. More
particularly, speaker overlap detection can be crucial for some sys-
tems, such as diarization [1], [2]. Classical acoustic source tracking
approaches consist of two stages: 1) Detecting the measurements,
which can be either Time Differences Of Arrival (TDOA) at the
sensor pairs [3], [4], or noisy location estimates obtained with a
Steered Response Power (SRP)-based technique [5], [6]. 2) These
measurements are then processed by a filtering approach, such as Par-
ticle Filters (PF) [7], [8] or Kalman Filter (KF)-based approaches [9],
[10]. In the multiple speaker scenario, the filtering framework is
extended to include a multimodal estimation approach, which allows
the tracking of multiple instantaneous speakers. Such extensions
include the joint probabilistic data association filter [11], and the
multiple model particle filter [12].

These two steps, namely, the measurement detection followed
by filtering, are generally performed iteratively and independently.
Furthermore, the multiple object tracking performance is highly
dependent on the measurement detection rate, which drastically
decreases in multi-party conversational/spontaneous speech. More
precisely, in overlapping speech segments, the dominant speaker tends
to mask, and therefore suppress, the secondary speakers causing
the measurement detector to fail in detecting multiple instantaneous
locations. This problem becomes more complex in noisy and/or
highly reverberant environments, where the ambient noise sources
become competitive to the desired source(s), leading to an increase in
the clutter detection rate. We have recently proposed an approach [13]
that counteracts the noise/reverberation problem by enhancing the
TDOA measurement detection using tracking information. This ap-
proach, however, deals only with the single speaker problem, and
was designed only for TDOA-based tracking approaches.

Motivated by the idea presented in [13], we propose in this paper a
novel approach that improves the measurement detection of multiple
overlapping speakers using tracking information. More precisely, at
each time frame, the proposed approach 1) estimates the Probabilistic
SRP (PSRP) [4], which is used as measurement detector in this
work. This is followed by 2) the estimation of the predicted tracking
distributions of all confirmed speakers. These pdfs characterize the
most likely regions to contain the next measurements. 3) The resulting
Gaussians are then used to update the mixture weights of the PSRP,
by measuring the “similarity” between each Gaussian component in
the PSRP and the predicted pdfs. Finally, (4) the enhanced PSRP
is used to estimate the location measurements, which are processed
by the multiple speaker tracking framework. Experiments conducted
on the AV16.3 corpus show that enhancing the PSRP using a
Kalman filter-based multiple speaker tracking framework improves
significantly the overlap detection and the tracking rates, without any
noticeable degradation of the angular error or the precision rate.

We proceed in this paper by reviewing the PSRP location measure-
ment detector in Section II. Then, Section III shows how the tracking
information can be used to improve the measurement detection stage.
The performance of the proposed approach is shown in Section IV.
Finally, we conclude in Section V.

II. LOCATION MEASUREMENT DETECTOR

This section reviews the PSRP-based multiple speaker localization,
followed by a brief overview of the unsupervised Bayesian classifier,
which is used to control the noise rate. These two approaches
constitute the PSRP-based measurement detector (step (i) in Fig. 1a).

A. Multiple speaker localization approach

The TDOA that an acoustic source introduces at a microphone
pair is estimated as the time difference alignment which maximizes
the Generalized Cross Correlation (GCC) function of the signals [3].
Hence, the higher the GCC value is, the more likely it is that the
alignment is the “true” TDOA [4], [6]. From this point of view, the
normalized cross-correlation of two signals can be interpreted as a
pdf of the TDOA, as it can be regarded as a set of observations
sampled from a hidden distribution. This distribution is generally
approximated by a Gaussian Mixture (GM) model using either the
Weighted Expectation Maximization (WEM) algorithm from [14]
or its practical approximation in [6]. The GM choice is justified
by the multi-modality of the GCC function in noisy/reverberant
environments as well as in the multiple speaker scenario, whereas
the Gaussianity assumption of the TDOA error has been proven to
be a valid assumption in speaker tracking approaches [10], [15].

The Probabilistic SRP (PSRP) approach [6] combines the resulting
microphone pair GMs using a probabilistic interpretation of the SRP.
The latter is typically expressed as a sum of the different microphone
pair GCC functions [5]. The rest of Section II presents a brief
introduction to the mathematical formulation of the PSRP approach.



Formally, let M and Q denote the number of microphones and
corresponding pairs, respectively, and let mh denote the position
of the microphones, h = 1, . . . ,M . The location-TDOA mapping
between the location s and the TDOA τq(s), introduced by s at the
sensor-pair q = {mg,mh}, is given by

τq (s) = (‖s−mh‖ − ‖s−mg‖) · c−1 (1)

c denotes the speed of sound in air.
In the PSRP approach, the normalized GCC function (interpreted as
a pdf of the TDOA) of the q-th microphone pair, q = 1, . . . , Q, is
approximated by a GM (see example Fig. 1c) given by

pqgcc(τ
q) =

Kq∑
k=1

wq
k · N (τ q, µq

k, (σ
q
k)2) =

Kq∑
k=1

wq
k · N

q
k (τ q) (2)

where µq
k, σ

q
k and wq

k denote the mean, standard deviation and mix-
ture weight of the k-th Gaussian N q

k , k ∈ {1, . . . ,Kq}, respectively.
The PSRP of a given location s is obtained by 1) calculating the
TDOA introduced by that location at all microphone pairs using (1).
Then, 2) replacing each GCC contribution in the SRP function [5]
with its GM approximation given by (2) (Fig. 1b shows a PSRP
example with two speakers). This yields

PSRP (s) ∝
Q∑

q=1

pqgcc(τ
q(s)) =

Q∑
q=1

Kq∑
k=1

wq
k · N

q
k (τq(s)) (3)

The location measurement se is obtained by 1) extracting from each
GM approximation the Gaussian component N q

e where the potential
source is dominant. Then, 2) calculating the restriction of (3) on the
region of dominance associated to {N q

e }Qq=1. Finally, 3) the optimal
location estimate is obtained via numerical optimization. This process
is repeated until the number of desired instantaneous estimates is
reached. For more details, the reader is referred to [4], [6].

B. Noise Rate Control

The multiple speaker localization approach provides a fixed num-
ber of instantaneous estimates (6 estimates per frame in this work).
Given that the number of active speakers changes over time, a
classification step is required to exclude the unlikely measurements.
This is done using an unsupervised Bayesian classifier [16], which
uses two location features to classify the location measurements to
noise or speaker. More precisely, we calculate, for each location
estimate se, the Cumulative SRP (CSRP) feature, which is calculated
on the region of dominance Se associated to se according to

CSRP (se) =

∫
Se
PSRP (s) · ds ≈

Q∑
q=1

wq
se (4)

and the Maximum Likelihood Error (MLE) feature defined as

ε(se) =

Q∑
q=1

(
τq(se)− µq

se

σq
se

)2

(5)

The EM algorithm is used to estimate the likelihood distribution
of each feature separately as a 3-component mixture distribution
modeling noise+speaker. The resulting likelihood distributions are
then combined using a naive Bayesian classifier, which classifies each
location estimate to noise/speaker (see [16] for more details).

III. PSRP ENHANCEMENT USING TRACKING INFORMATION

This section shows how the tracking information can be used
to improve the measurement detection stage. Section III-A and
Section III-B will introduce the mathematical formulation of the
Bayesian tracking framework, whereas Section III-C will present the
proposed PSRP enhancement approach using tracking information.

A. Bayesian filtering framework

The problem of tracking a time-varying system state St based on
a sequence y1:t = {y1, . . . , yt} of corresponding measurements is
usually formulated as a Bayesian problem in which

1) A process model St = f(St−1, Vt) is used to construct a prior
p(St|y1:t−1) for the state estimation problem at time t.

2) Then, the joint predictive distribution p(St, Yt|y1:t−1) of state
and observation is constructed according to a measurement
model Yt = h(St,Wt) (prediction step).

3) Finally, the posterior distribution p(St|y1:t) is obtained by
conditioning the joint predictive density p(St, Yt|y1:t−1) on the
measured observation yt (update step).

Vt and Wt are, respectively, the process and measurement noise
random variables. The dynamics f , h and the initial posterior
distribution form what is known as the Dynamic State Space Model
(DSSM). The recursion of these steps form the Bayesian tracking
framework. This framework has a closed form solution in the case
where f , h are linear and Vt, Wt are Gaussian. In this case, the
posterior distribution p(St|y1:t) can be obtained as a conditional
Gaussian distribution. This solution is known as Kalman Filter.

B. Generalization to the multiple speaker scenario

The generalization of the Bayesian tracking framework to the
multiple object case can be done by jointly tracking all targets, as it is
done in [11], [17], [18], or by tracking each object separately and in
parallel, such as [17], [19]. The generalization approach proposed
in [19] was particularly designed to overcome a few problems
that occur in multi-party spontaneous speech. This approach tracks
multiple concurrent speakers using a bank of parallel KF that evolve
in time according to an HMM. The proposed HMM models the
short and frequent active/inactive transitions of each speaker state.
Therefore, this approach is used in this work to estimate the Kalman-
based predicted distributions, which are used to enhance the PSRP.
This novel approach will be referred to as Kalman SRP (KSRP).

The location posterior distribution pn(St|y1:t) of the n-th active
speaker is updated according to the Bayesian framework above, and
following the DSSM proposed in [19]

Process Model : St = f(St−1, Vt) = St−1 + Vt (6)

Measurement Model : Yt = h(St,Wt) = St +Wt (7)

The enhancement of the PSRP using the Kalman-based speaker
information is explained in the next section.

C. PSRP update using tracking prediction stage

In classical tracking approaches, the observation detection step and
tracking are performed separately. The presence of prior information
of the targets, however, can efficiently improve the measurement
detection. This idea was first investigated in [20], where the predicted
pdf is used to reduce the measurement search space to a few likely
regions. As an alternative to the space reduction, and following a line
of thoughts similar to [13], we propose to enhance the PSRP of the
most likely regions using the tracking information. This is achieved
by 1) calculating the predicted location pdf of all confirmed targets
at time t. Then, 2) mapping these location distributions to the TDOA
space using the Unscented Transform (UT) and the location-TDOA
function (1). This is followed by 3) calculating the similarity scores
between each GCC-based TDOA GM approximation in the PSRP
and the obtained TDOA pdfs of all confirmed speakers.

Formally, let Nt be the number of confirmed speakers at time
t, and let S be the location random variable. We first calculate, for
each speaker n, the predicted Gaussian (location) distribution GnS
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Fig. 1: Fig. 1a is a block diagram of the proposed approach. Fig. 1b shows a classical PSRP with two speakers at azimuth -50◦and 0◦,
respectively (step (i) in Fig. 1a). Fig. 1c shows how the tracking information is used to update the GCC-based Gaussian mixture and thereby
enhances the low-energy speaker for a single microphone pair (steps (ii) and (iii) in Fig. 1a). Finally, Fig. 1d shows the enhanced KSRP
after combining the updated GM of all microphone pairs. The low-energy speaker at azimuth -50◦is clearly enhanced (step (iv) in Fig. 1a).

which is expected by the tracking algorithm. This is done according to
steps 1 and 2 of the tracking framework (Section III-A), followed by
the marginalization over the state space. The predicted distributions
GnS , n = 1, . . . , Nt are then mapped to the TDOA space using UT.

1) Unscented transform for location-TDOA mapping: The en-
hancement of the measurement detection using tracking information
is based on re-weighting the PSRP Gaussian mixture weights in (3).
This is done by evaluating “how close” (and thereby how relevant)
each component in the PSRP mixture to the predicted pdfs. The main
issue here, however, is that the predicted pdfs are estimated in the
location space, whereas the PSRP Gaussian components are in the
TDOA space. To circumvent this problem, we propose to transform
the predicted pdfs using the location-TDOA function given in (1).
Unfortunately, this function is not linear, therefore, we propose to
use the UT to propagate the mean and covariance of each predicted
distribution through the nonlinear transformation (1) to the TDOA
space (step (ii) in Fig. 1a). For ease of notation, the speaker index n
is dropped in the rest of this section.

Let d be the location space dimension. In the UT approach, each
speaker predicted (location) distribution GS(s) = NS(s, µS ,ΣS) is
represented as a weighted empirical distribution of 2d+ 1 weighted
sigma points {Si,Wi}2di=0, calculated according to

S0 = µs

S2i+1 = µs +
√
λRi

S2i+2 = µs −
√
λRi

W0 = κ/λ

W2i+1 = 1/(2λ)

W2i+2 = 1/(2λ)

(8)

i = 1, . . . , (d − 1), where λ = d + κ for an arbitrary κ ∈ R. In
fact, κ specifies how much weight is placed on the mean, µS , and
is set to 1/2, which leads to a weight of 1/d for all sigma points.
Furthermore, Ri are the rows of the matrix R, result of the Cholesky
decomposition RTR of the covariance ΣS .

The resulting sigma points are then mapped to the TDOA space
according to the location-TDOA function (1)

T q
i = τq(Si), i = 0, . . . , 2d, q = 1, . . . , Q (9)

The mean and covariance of the Gaussian distribution GTq (τ) =
N (τ, µTq ,ΣTq ), approximating the transformed (predicted) TDOA
pdf at the q-th microphone pair, are calculated according to

µTq =
2d∑
i=0

WiT q
i , ΣTq =

2d∑
i=0

Wi(T q
i − µTq )2 (10)

2) Similarity measure and PSRP update: The UT step above leads
to Nt predicted TDOA distributions, and that is for each microphone
pair q ∈ {1, . . . , Q}. Each of these pdfs characterizes the most likely
TDOA estimate to be generated by the speaker at the microphone pair
q in the next time frame. Thus, these distributions can be used as a

prior to enhance the most likely Gaussian components in the GM
approximating the GCC function in the PSRP. This is done in this
work through the calculation of similarity scores (step (iii) in Fig. 1a).

Formally, let N q
k be the kth Gaussian component in the GM

approximating the q-th GCC function given in (2). Similarly to [13],
the similarity score between N q

k and GnTq ; the predicted TDOA dis-
tribution of the n-th speaker at microphone pair q, can be calculated
according to two different Similarity Measures (SM)

SM1(GnTq ,N q
k ) =

1

1 +KLD(GnTq ||N q
k )

(11)

SM2(GnTq ,N q
k ) =

∫ √
GnTq (τ)N q

k (τ) dτ (12)

where, KLD(GnTq ||N q
k ) is the Kullbak-Leibler Divergence be-

tween the two Gaussians. The second SM is the Bhattacharyya
Coefficient [21]. These two SM have closed form solutions for
Gaussian distributions (see [13] for more details).

The resulting similarity scores are then used to enhance the
mixture weights of all Gaussians in the PSRP distribution (3) before
proceeding to the measurement detection step. More precisely, the
new mixture weight w̄q

k of the k-th Gaussian component in the GM
approximating the q-th GCC function (2) is calculated according to

w̄q
k =

wq
k

Z
·

Nt∑
n=1

SM(GnTq ,N q
k ) (13)

Z is the normalization term. Fig. 1c shows an example of enhancing
a TDOA GM using the tracking information of two active speakers.

The new mixture weights incorporate the tracking prior of all
confirmed speakers at time t into the detection step. In fact (as shown
in Fig. 1c), the update step smoothes out the unlikely components
in the GM and enhances the ones which are close to the predicted
TDOA distributions. The enhanced PSRP track is given by

PSRP track(s) ∝
Q∑

q=1

Kq∑
k=1

w̄q
k · N

q
k (τq(s), µq

k, (σ
q
k)2) (14)

The updated PSRP track integrates only the tracking information of
the confirmed speakers, whereas it smoothes out the space regions
which do not contain an active target. These regions, however, may
contain new emerging speakers (at the birth state of the tracking
framework) that will be suppressed in the update step. To counteract
this problem, we propose to preserve the new potential targets
information provided by the PSRP according to (see example Fig. 1d)

KSRP = α · PSRP track + (1− α) · PSRP (15)

α is a confidence factor characterizing how much trust is placed
on the tracking information, and how unlikely it is that new speakers
appear in the scene, α can also be learned as a time-dependent factor.



Table 1: Precision rate ps, trajectory estimation rate tr , speaker detection rate dr and RMSE in degrees (see definitions below)
seq18 (2 speakers) seq24 (2 speakers) seq40 (3 speakers) seq37 (3 speakers)

STC STT KSRP STC STT KSRP STC STT KSRP STC STT KSRP
ps 85.0 99.0 97.2 81.6 81.1 80.9 94.1 94.3 92.9 90.6 94.3 92.9
tr 81.5 90.4 92.9 63.7 66.8 72.4 75.7 86.6 88.9 82.2 84.2 87.8

dr of Speaker 1 53.1 61.1 67.5 54.9 59.0 62.7 39.2 49.7 53.3 28.8 29.9 32.2
dr of Speaker 2 51.6 54.8 62.5 34.3 37.9 46.5 38.4 40.0 45.0 66.2 71.0 75.2
dr of Speaker 3 — — — — — — 56.8 62.6 66.3 46.7 40.2 44.5

Average dr 52.3 58.0 65.0 44.6 48.4 54.6 44.8 50.8 54.9 47.9 47.0 50.6
Average RMSE (◦) 1.96 2.34 2.27 3.07 3.04 3.11 6.56 4.70 4.59 2.47 2.30 2.25

Table 1: Precision rate ps, trajectory estimation rate tr , speaker detection rate dr and RMSE in degrees (see definitions below)
seq18 (2 speakers) seq24 (2 speakers) seq40 (3 speakers) seq37 (3 speakers)

STC STT KSRP STC STT KSRP STC STT KSRP STC STT KSRP
ps 85.0 99.0 97.2 81.6 81.1 80.9 94.1 94.3 92.9 90.6 94.3 92.9
tr 81.5 90.4 92.9 63.7 66.8 72.4 75.7 86.6 88.9 82.2 84.2 87.8

dr of Speaker 1 53.1 61.1 67.5 54.9 59.0 62.7 39.2 49.7 53.3 28.8 29.9 32.2
dr of Speaker 2 51.6 54.8 62.5 34.3 37.9 46.5 38.4 40.0 45.0 66.2 71.0 75.2
dr of Speaker 3 — — — — — — 56.8 62.6 66.3 46.7 40.2 44.5

Average dr 52.3 58.0 65.0 44.6 48.4 54.6 44.8 50.8 54.9 47.9 47.0 50.6
Average RMSE (◦) 1.96 2.34 2.27 3.07 3.04 3.11 6.56 4.70 4.59 2.47 2.30 2.25

Table 2: Overlap detection rate (%) of N simultaneous speakers, N=1 is the percentage of frames with a single speaker estimate (no overlap)
N (Number of seq18 (2 speakers) seq24 (2 speakers) seq40 (3 speakers) seq37 (3 speakers)

Overlapping Speakers) STC STT KSRP STC STT KSRP STC STT KSRP STC STT KSRP
0 (No Detection) 30.5 23.4 21.1 68.3 66.7 64.0 36.1 26.7 24.8 25.2 23.4 20.2
1 (No Overlap) 50.2 55.6 48.0 25.6 25.3 25.6 28.5 33.6 30.0 50.2 52.0 51.1

2 Speakers 19.3 21.0 30.9 6.12 8.05 10.4 30.6 37.6 40.7 23.6 23.7 27.3
3 Speakers — — — — — — 4.83 2.18 4.55 0.99 0.92 1.40

Table 2: Overlap detection rate (%) of N simultaneous speakers, N=1 is the percentage of frames with a single speaker estimate (no overlap)
N (Number of seq18 (2 speakers) seq24 (2 speakers) seq40 (3 speakers) seq37 (3 speakers)

Overlapping Speakers) STC STT KSRP STC STT KSRP STC STT KSRP STC STT KSRP
0 (No Detection) 30.5 23.4 21.1 68.3 66.7 64.0 36.1 26.7 24.8 25.2 23.4 20.2
1 (No Overlap) 50.2 55.6 48.0 25.6 25.3 25.6 28.5 33.6 30.0 50.2 52.0 51.1

2 Speakers 19.3 21.0 30.9 6.12 8.05 10.4 30.6 37.6 40.7 23.6 23.7 27.3
3 Speakers — — — — — — 4.83 2.18 4.55 0.99 0.92 1.40

IV. EXPERIMENTS AND RESULTS

We evaluate the proposed approach using the publicly available
AV16.3 corpus [22]. In this corpus, human speakers have been
recorded in a smart meeting room (approximately 30m2 in size) with
a 20cm 8-channel circular microphone array. The sampling rate is 16
kHz and the real mouth position is known with a 3D error ≈ 1.2cm
[22]. The AV16.3 corpus proposes a variety of scenarios, such as
stationary and quickly moving speakers, varying number of over-
lapping speakers, etc. In these experiments, the signal was divided
into frames of 512 samples (32ms). The PSRP-based instantaneous
location estimator [6] and the speaker/noise classification task [16]
were accomplished using the same setting proposed in [16]. We also
use the same evaluation method proposed in [14], which estimates
a 2-component GM which separates the “noise+speaker(s)” tracking
estimates. The evaluation statistics are derived from the component
representing the speaker estimates. More precisely, we report 1)
the precision rate ps, which represents the percentage of correct
estimates, 2) the tracking rate tr , which is calculated as the correct
tracking duration with respect to the duration of frames with (at least
one) ground truth location, 3) the individual and average speaker
detection rate dr , and finally 4) the average azimuth Root-Mean-
Square Error (RMSE) in degrees. The speaker overlap detection rate
of N simultaneous speakers is reported as the ratio of the number
of detected frames with N correct simultaneous speaker estimates to
the total number of frames. Similarly to the work proposed in [23],
[24], the tracking is limited to the azimuth angle. This is due to the
far-field assumption and the small size of the microphone array. The
proposed approach, however, is general and can be applied to 3D
tracking problems with other types of microphone arrays, such as
distributed microphone arrays.

In the experiments reported below, the multiple speaker Short-
Term Tracking (STT) approach proposed in [19] is used to estimate
the tracking information, which is necessary to enhance the PSRP
(Section III). The proposed approach, however, can be integrated into
any multiple speaker tracking framework. The tracking confidence
factor α is set to 0.9, and KLD is used to calculate the similarity
scores. The STT parameter setting is the same as the one proposed
in [19], except for the target-measurement confidence probability
pconfid, which is set to 10−2 (see [19] for more details).

Table 1 and Table 2 present the performance of the original STT
approach, which uses the PSRP approach as measurement detector to
track multiple overlapping speakers, and compares it to the proposed
approach (KSRP), which uses the tracking information provided by
the STT to enhance the PSRP as described in this paper. Moreover,
the results are compared to the complete multiple speaker Short-Term

Clustering (STC) framework proposed in [23], [24]. This framework
consists of 1) an instantaneous detection-localization approach, fol-
lowed by 2) an automatic threshold that controls the false alarm rate.
The obtained estimates are then 3) clustered into speech utterances
using an STC approach. Finally, 4) a speech/non-speech classification
is performed to discard estimates from non-speech frames (more
details can be found in [24]).

Table 1 shows a clear improvement of the KSRP over the STT
and the STC approaches. We can see that the KSRP achieves longer
correct tracking trajectories (the increased correct tracking duration
rate tr), as well as higher individual and average speaker detection
rates, and that is for most multiple speaker sequences from the
AV16.3 corpus. More precisely, the KSRP approach achieves an
average detection rate improvement of about 18.7% and 10.5%
compared to STC and STT approaches, respectively, whereas the
average trajectory estimation rate improvement is 13.0% and 4.5%.
These results show that the main improvement of the KSRP approach
is due to 1) the increased speaker detection in frames with low-
energy, which is reflected by the improved trajectory rate, and to
2) the increased detection of (overlapping) speakers in low-energy
frames or frames where the dominant speaker masks the secondary
speakers. This is reflected in the Table 1 by the improved detection
rates. This conclusion is also confirmed by Table 2, which shows
that the KSRP significantly reduces the fraction of frames with no
detection, which are typically low-energy/silence frames. Moreover,
KSRP achieves a higher percentage of frames with (two or three)
overlapping speakers, whereas the percentage of frames with a single
speaker (no overlap detection) is decreased. The low overlap detection
of three simultaneous speakers shows that speaker overlap mostly
occurs between two speakers in spontaneous speech.

We can also conclude that the three approaches achieve comparable
RMSE. The precision rate, however, shows a negligible degradation.
The slight degradation introduced by the KSRP is mainly due to the
absence of a speech/non-speech classifier, which uses speech cues to
reject noise estimates during long silence/noise frames. As a result,
the KSRP also enhances the noise trajectories during these frames
leading to this slight degradation.

V. CONCLUSION AND FUTURE WORK

We have proposed a novel multiple overlapping speaker detection
approach, which couples the detection and tracking stages to enhance
the detection of low-energy speakers. This approach uses the tracking
information, obtained in the tracking prediction step, to enhance the
PSRP-based overlapping speaker detector. This approach, however,
does not include any speech features to increase its robustness to
noise trajectories. This will be part of future work.
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