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ABSTRACT

This paper presents an approach for incorporating situational context
information into an on-line Automatic Speech Recognition (ASR)
component of an Air Traffic Control (ATC) assistance system to im-
prove recognition performance. Context information is treated as
prior information to reduce the search space for recognition. It is in-
tegrated in the ASR pipeline by continually updating the recognition
network. This is achieved by automatically adapting the underlying
grammar whenever new situational knowledge becomes available.
The context-dependent recognition network is then re-created and
substituted for recognition based on these context-dependent gram-
mars. As a result, the recognizer’s search space is constantly being
limited to that subset of hypotheses that are deemed plausible in the
current situation. Since recognition and adaptation tasks can be eas-
ily performed by two separate parallel processes, on-line capabilities
of the system are maintained, and response times do not increase as
a result of context integration. Experiments conducted on about two
hours of ATC data show a reduction in command error rate by a fac-
tor of three when context is used.

Index Terms— on-line ASR, situational context, air traffic con-
trol, assistance systems

1. INTRODUCTION

In this paper we describe how situational context information can be
incorporated into on-line Automatic Speech Recognition to reduce
error rates. We show this for speech recognition in the Air Traffic
Control domain.

Air Traffic Controllers (ATCOs) are in charge of managing air
traffic in a given airspace during a particular phase of travel, such as
approach to an airport. Controllers are responsible for taking all rele-
vant decisions concerning the current traffic situation and determine
the aircraft sequence for landing. They issue commands to pilots
steering aircraft, who then carry out the requested action.

Since the planning task ATCOs have to perform can – for ex-
ample in case of dense traffic – become quite complex and mistakes
can have safety-critical consequences, assistance systems are often
employed to support ATCOs in their work. Such systems might for
example suggest optimal aircraft landing sequences or future com-
mands (command advisories) for the controller to issue to optimally
manage the situation.

This work has in part been funded by Eureka project E! 7152, the Fed-
eral Republic of Germany through the Cluster of Excellence for Multimodal
Computing and Interaction (MMCI), and DLR Technology Marketing and
Helmholtz Validation Fund. UdS was responsible for ASR, DLR provided
the arrival management system and evaluation data.
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Fig. 1. Schematic view of flow of information in AcListant R©.

In the AcListant R© project an ATC assistance system for the
landing (or approach) phase is being developed [1] [2] (see Figure
1). This assistance system generates specific command suggestions.
Often controllers use these suggestions, but sometimes they have
good reason to deviate from them, since an assistance system can
not take into account all possible factors that might influence a situ-
ation during planning. Without any knowledge about the controllers
actual decision, in such a situation the system would keep producing
advisories based on incorrect assumptions about the current situa-
tion. These suggestions would be of no use to the controller, and it
would take about 30 seconds for the planning component to be able
to infer its mistake from radar data and adjust planning accordingly.
This is the reason why in AcListant R© an on-line speech recogni-
tion component is paired with the planning component generating
command advisories. The ASR recognizes all commands the ATCO
issues to pilots in the airspace and passes its recognition hypotheses
to the planning system. By including ASR as an additional sensor,
the planning system has access to feedback about the ATCOs actual
decisions without having to wait for the consequences to become
apparent in the radar.

In addition to generating command suggestions, the planning
system can also provide the ASR component with information based
on situational context. This information can be used to improve ASR
performance. In order to not have faulty recognition hypotheses mis-
guide the planning process, high ASR performance is crucial for the
complete assistance system.

This paper is structured as follows: In Section 2 we give a short
overview of related work. Section 3 then provides a short introduc-
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tion of speech recognition using weighted finite state transducers.
Then, in Section 4, we give background information about how the
context-based information we utilize for ASR is generated. In Sec-
tion 5 we discuss how this information is incorporated into the ASR
pipeline to reduce error rates. In Section 6 we report and discuss
experimental results for our system. Finally, Section 7 provides a
conclusion and an outlook on future work.

2. RELATED WORK

In the past numerous works have incorporated different types of con-
text information into ASR systems to improve performance. Among
these are Young et al.’s works [8] and [9]. Making use of sets of
contextual constraints of varying specificity their system generates
several grammars. These grammars are then consecutively used dur-
ing recognition of each utterance, starting with the most specific
grammar and falling back to more unspecific ones until a satisfactory
recognition hypothesis is found. This approach requires multiple de-
coding passes by design and can therefore be time consuming. Thus,
it is not suitable for our application scenario, in which we depend on
stable, short system response times. Still, we will adopt the general
idea of grammar adaptation.

Fügen et al. also use dialogue context for ASR in their dia-
logue system proposed in [10]. As opposed to Young et al.’s system,
in this approach the Recursive Transition Network representing the
grammar is continually updated, which makes single-pass decoding
possible. As will be discussed below, our integration approach goes
in a similar direction.

In the work by Everitt et al. [11] a dialogue system is proposed
that keeps record of a user’s exercise routines. The ASR switches be-
tween specific pre-existing grammars tailored to different pieces of
sports equipment when sensors indicate that the user is using a par-
ticular machine. In our system, however, context dependent recog-
nition networks have to be dynamically generated.

The system presented in this paper directly builds on the work by
Shore et al. [12]. The authors provide a proof of concept for our ap-
proach as they report first experimental results for using situational
context information in ASR for the ATC domain. Reported results
strongly indicate that incorporating situational context information
significantly reduces recognition error rates. The authors evaluate
using contextual information of varying degrees of specificity. The
first type of context information Shore et al. test is information about
the callsigns of the aircraft present in the airspace at the time of ut-
terance. In aviation, the callsign is a unique identifier for aircraft
typically consisting of airline and flight number. For example, the
callsign DLH12F uniquely identifies the Lufthansa machine (DLH)
that currently is assigned the flight number 12F (one two foxtrot). In
addition to callsign information, the more specific speed and altitude
constraints were used. For this, inferred information about reason-
able values for commands regarding speed and altitude of aircraft
were utilized.

The authors incorporate context information by rescoring hy-
pothesis lattices according to current situational context. Conse-
quently, hypotheses not fitting the current situation receive a low
probability. Reported results are promising, as SER decreased by
about 18%. Since Shore et al.’s context integration approach makes a
rescoring step necessary for every recognition and our system needs
to function on-line, we opt for a different integration approach, as
will be reported in Section 5.

3. ASR USING WEIGHTED FINITE STATE
TRANSDUCERS

The main task in speech recognition is to uncover the string of words
that corresponds to a given speech signal with the highest probabil-
ity. Therefore, an ASR system typically takes an audio signal as
input and outputs a a textual representation of its recognition hypoth-
esis. More formally, it tries to uncover the most probable sequence
of words (W) in the licensed language (L), given the observed audio
signal (O) [3]:

Ŵ = argmax
W∈L

P (W |O) (1)

In order to calculate Ŵ , the equation is regularly reformulated in the
following way [3]:

Ŵ = argmax
W∈L

P (O|W )P (W )

P (O)
= argmax

W∈L
P (O|W )P (W ) (2)

Our ASR system is built using the Weighted Finite State Trans-
ducer (WFST) approach introduced by Mohri in [7]. To implement
it we used the Kaldi Speech Recognition Toolkit [4].

Generally speaking, WFSTs define relationships between sets
of strings, and can be manipulated and combined using a number of
existing standard operations [5]. In the WFST-based ASR approach,
WFSTs can be used to represent parts of the decoding graph that is
used for recognition, as well as the complete decoding graph itself.

In Kaldi, and therefore in our system, the decoding graph is con-
structed from the four basic components H,C,L,G all of which are
WFSTs. Components H and C are generally concerned with the
phone-level representation of speech. Transducer H translates 5-
state Hidden Markov Models to Gaussian Mixture Models. Trans-
ducer C introduces phone context dependency by translating context
independent phones into context dependent ones [5]. Component
L represents the pronunciation lexicon in the decoding graph, as it
translates phone sequences to words. Finally, component G contains
a WFST representation of the grammar or language model (LM)
used for recognition. In the AcListant R© project, we are currently
employing a grammar instead of an LM. G is the decoding graph
component that is continually exchanged for a context-dependent
version in our system.

In order to build the decoding graph for recognition, the H , C,
L, and G components are combined. The equation for constructing
the final decoding graph is [6]:

HCLG = det(H ◦min(det(C ◦min(det(L ◦G))))) (3)

where ◦ denotes the composition operation that combines WF-
STs [5]. For more details on WFST operations, WFST use in ASR
and decoding graph construction in Kaldi please refer to [5], [7], and
[6].

Once the decoding graph has been constructed it can be used for
decoding. In our case this is done using a Kaldi implementation of
Viterbi decoding (for details on Viterbi decoding see e.g. [3]).

4. CONTEXT INFORMATION

The context information we incorporate into the ASR pipeline is pro-
vided by the planning component in AcListant R©. The planning sys-
tem uses radar information about the airspace as well as aviation
domain knowledge (cf. Figure 1) as a basis for generating com-
mand suggestions (so-called command advisories). Since it has ac-
cess to these knowledge sources anyway, in addition to generating
command advisories it can also use them to predict which commands

14



Fig. 2. System output for commands recognized by the system. The window on the left shows output for the baseline system version not
using context information, while the window on the right shows output for version using context for the same input. Recognition errors are
marked yellow, correct hypotheses are marked green.

are in the set of possible decisions a controller could take in the close
future. This information is different from the set of command advi-
sories, as the set of possible commands is much larger: It contains all
commands the planning system deems at all possible to occur. In the
remainder of this paper, this set of possible commands is referred to
as context information for brevity. This is the information we utilize
to limit the ASR search space.

Among of the main knowledge sources for generating context
information are callsigns of the aircraft that are currently located
in the airspace (cf. [12], [1]), information on aircraft position and
heading (the direction of travel), and aircraft speed.

Once the planning system has computed the current context in-
formation, it passes it to the ASR component in an abstract form.
For example, DLH12F REDUCE 150 KT would correspond to the
command to aircraft Lufthansa one two foxtrot to reduce speed by
one hundred fifty knots.

It is important to point out that one abstract command does cor-
respond to many different possible utterances. Although the standard
language in ATC is comparatively restricted English, and so-called
phraseologies exist and should be adhered to (see for example [13]
and [14]), controllers still introduce a lot of variation into their com-
munication. Furthermore, non-nativeness is an issue that needs to be
handeled when developing ASR for ATC.

5. INCORPORATING CONTEXT INTO ASR

When incorporating context information into the recognition process
our two main objectives are to use it effectively to limit search space
as much as possible to decrease the number of recognition errors,
and at the same time not let this harm on-line capabilities of the
ASR component.

In order to achieve this, we are using an approach that is based
on the work of Shore et al. in terms of the type of context infor-
mation we use, but in terms of integrating context information it is
inspired by, for example, [10]. Our general approach is to use the
context information available to automatically adapt the grammar
used by the recognizer to only cover utterances currently deemed
possible. Based on this new, restricted grammar we are then able to
generate a new grammar WFST (G) that is smaller in size than the

Fig. 3. Controller using assistance system during simulation for data
collection.

grammar WFST based on the basic, unrestricted grammar. We can
then use this smaller WFST as a component during generation of a
corresponding new recognition network for our Kaldi-based speech
recognition system.

This integration approach has the advantage of enabling the sys-
tem to have no processing delay caused by context usage: Since on-
line recognition can continue running in one process while another
parallel process prepares the new recognition network and then ex-
changes the networks, recognition is possible at all times with stable
response time. Since the situation in the airspace only changes grad-
ually, context information only changes gradually as well, which is
why continuing to use the last existing recognition network while
a new network is prepared does not pose a problem. Furthermore,
context information is updated as soon as the planning system pre-
dicts new commands from changed radar data. Radar data is updated
roughly every five seconds which means that intervals for context
updates are just as short.
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One major advantage of this strategy is that the ASR compo-
nent only needs one decoding pass per recognition, since we are
not employing hypothesis rescoring. This, of course, is beneficial
for system response time. It should be mentioned that one possible
downside to this approach is that hypotheses missing from context
information are excluded as recognition hypotheses. However, as we
will report below, the quality of context information is already high
and improving further, so that the gain from the smaller search space
is larger than the error introduced by incomplete context.

Recognition hypotheses are abbreviated to an abstract represen-
tation before transmitting them back to the planning system since the
planner really only needs information about the ATC-relevant parts
of the utterances. Greetings and other non-ATC-relevant utterance
elements are not of importance to the planning system. However,
information about the callsign addressed by the controller and the
command issued to its pilot is crucial for carrying out the planning
task.

6. RESULTS

Our experiments were run on data consisting of recordings of ac-
tual Air Traffic Controllers in simulations of real work situations.
The simulations were performed in March 2014 at the German
Aerospace Center in Braunschweig. The data consists of recordings
of two controllers, one of them a native speaker of German and the
other one a native speaker of Czech. Recordings were collected
within simulation runs for the approach of Düsseldorf airport. The
simulation ran over a total of eight hours in 13 simulation runs.
Simulations are different from the simulated actual situation only in
the sense that ”pilots” are not located in actual aircraft during the
simulation. For controllers the work performed during a simulation
is the same as actual work. Figure 3 shows an air traffic controller
during a simulation.

The sets of possible commands that are transmitted to the ASR
component on average contained 239 predictions for the experiments
reported here. They contain the actual controller decision as a pre-
diction in about 96% of all cases.

We report recognition results separately for the two controllers
recorded, since the acoustic model used has so far been trained only
on German speakers of English with varying degrees of accents. The
acoustic model has not been trained on any English with Czech ac-
cents. The acoustic model used in our evaluations has been trained
on a total of six hours of ATC audio data recorded from various Ger-
man controllers, and includes two hours of recordings of controller
DE from a previous simulation.

For the German controller (DE), we recorded and evaluated 921
utterances, which amount to a total audio length of about 55 minutes.
The average number of commands predicted in context information
was 238 for these utterances. In general, for each utterance the con-
text information that was available at the specific time of this partic-
ular utterance was used during evaluation. For the Czech controller
(CZ) we recorded a total of 1007 utterances, which correspond to
about 67 minutes of audio. The average size of context files for
these utterances was 239 commands.

For evaluation, apart from the commonly used metric Word Er-
ror Rate (WER), ATC-specific evaluation metrics are used in the
AcListant R© project. These metrics are Concept Error Rate (ConER)
and Command Error Rate (CmdER).

Concept Error Rate is a metric that it is restricted to the so-
called concepts of an utterance. In the context of AcListant R©, con-
cepts consist either of the callsign information or of the remaining

command elements. In order to calculate ConER, ATC-relevant ut-
terance elements are automatically extracted from the recognition
candidate. These segments are then translated to an abstract rep-
resentation similar to the one that is used for representing context
information. (See Figure 2 for illustration.) If any part of a concept
is recognized incorrectly, this is enough for the complete concept to
count as having been misrecognized. ConER is calculated similarly
to WER, with the modification that instead of words, concepts are
considered. For a better intuition, consider the example DLH24F
TURN LEFT HEADING 320. This recognition hypothesis consists
of two concepts, DLH24F and TURN LEFT HEADING 320. In
case the controller really said ”Hello Lufthansa two four four turn
left heading three two zero”, ConER for this utterance would already
be at 50%.

Command Error Rate is comparable to the commonly used Sen-
tence Error Rate in the sense that is a binary measure: Either all
relevant parts of an utterance are recognized correctly, or the recog-
nition is assigned an error rate of 100%. CmdER is, however, re-
stricted to the concepts of an utterance. In above example, CmdER
would consequently be 100%. In case an utterance contains mul-
tiple commands, these are considered separately when calculating
CmdER.

Both ConER and CmdER are suitable for evaluation in our ap-
plication scenario, which ultimately uses ASR to provide feedback
about the ATC-relevant parts of an utterance to the planning sys-
tem. Recognition errors in non-ATC-relevant parts of utterances,
e.g. greetings, are less critical for our application scenario. This is
the reason we are interested in evaluating recognition errors occur-
ring within these parts separately.

In both of the tables below, Dynamic fast refers to a system
version that uses both callsign and command context information,
but does not restrict callsigns to appear with particular commands.
Thus, all callsigns listed in the context information can be combined
with any command listed in the context information. Dynamic slow
refers to a system version that allows each callsign to only occur
with the specific commands it is listed with in context information.
Therefore this system version is the more restrictive one of the two.

As a baseline we use our ASR system not enhanced by any situ-
ational context information (Without Context).

Controller Without Dynamic Dynamic
DE Context Fast Slow

%WER 7.32 7.21 8.04
%ConER 15.55 9.68 9.87
%CmdER 30.77 16.38 15.63

Respone time 0.83 2.72 7.17

Table 1. Evaluation results for recordings of German controller. To-
tal length of audio in evaluation for German controller: 55 minutes

Controller Without Dynamic Dynamic
CZ Context Fast Slow

%WER 16.93 10.71 10.73
%ConER 35.94 10.60 9.94
%CmdER 68.88 18.80 17.30

Respone time 0.43 2.55 7.14

Table 2. Evaluation results for recordings of Czech controller. Total
length of audio data in evaluation for Czech controller: 67 minutes
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For both controllers, introducing context information into the
recognition pipeline clearly improves recognition results over the
baseline. We observe the largest improvements for the metrics most
relevant for ATC: For ConER we improve performance by more than
a factor of two for the German controller, and by more than a fac-
tor of three for the Czech controller. For our most important metric,
CmdER, error rates are also reduced roughly by a factor of two for
the German controller. For the Czech controller, CmdER is reduced
by a factor of more than four.

A very interesting aspect of the reported results is the difference
in error rates we observe for the two different controllers we tested,
both regarding general ASR performance and error rate reduction
through context information use. The difference in general perfor-
mance has a rather obvious explanation: Our system has almost ex-
clusively been developed and trained with data recorded from AT-
COs who are German native speakers. Therefore, our acoustic model
fits the German controller very well, since is has seen many differ-
ent German accents for English, and even about two hours of data
from this very speaker in a previous simulation. Furthermore, our
grammar has been developed using the same data. Although English
for ATC is a rather restricted variety of English, native language still
plays a role for the optimal grammar. To give an indication, in our
experiments we observed 95 out of vocabulary words (OOV) for the
Czech controller, while we encountered only 63 OOV for the Ger-
man controller. OOVs are observed whenever controllers deviate
from standard ATC phraseology.

One aspect that is left to discuss is the fact that the improve-
ment introduced by context information is less large for the German
ATCO. The most important aspect for explaining this effect is that
the context error rate (i.e., the average number of cases in which
the correct hypothesis is missing from the context information) is
much higher for the German controller than for the Czech controller.
For the Czech controller data the correct recognition hypothesis was
missing from context information in only 1.72% of all cases, while
for the German controller it was missing in 4.92% of all cases. This
means that the dynamic context for the German controller excludes
correct hypotheses from the recognition network, causing the recog-
nizer to fail. The quality of dynamic context is improved further in
the AcListant R© project, and therefore this issue is expected to have
less of an impact very soon.

One very promising aspect of our experiments is that using con-
text in ASR for air traffic control actually has the highest impact
precisely in situations where the system is not tailored to the spe-
cific characteristics of the speaker. Our acoustic model has never
seen data recorded from a person with a Czech accent. Our gram-
mar is not optimized to Czech ATCO habits. Still, the improvements
caused by contextual information are so large that in the end the best
performing system manages to narrow the performance gap between
the two controllers to a difference of just 1.67% in CmdER. The rea-
son for this is that although the acoustic model is a not a good model
for the Czech speaker, context information helps to solve ambigu-
ities that occur when the acoustic scores of recognition candidates
are comparable, by discarding hypotheses that are implausible in
the current situation. Overall, our results therefore indicate that us-
ing contextual information makes speech recognition for ATC more
robust against speaker variations.

Reported response times include the time spent on recognition
network recreation and on recognition itself. Differences in response
times between different system versions using context are caused by
differences in the size of the resulting context-dependent recogni-
tion network component G. The size of this component influences
the determinization step that is necessary during recognition network

recreation, which is carried out in the background by a process run-
ning in parallel. The actual recognition on the newly created net-
works are comparable to the baseline response times. Therefore,
on-line performance of the recognizer is preserved.

7. CONCLUSION AND FUTURE WORK

In this paper we showed that incorporating situational context in-
formation into on-line speech recognition for ATC significantly im-
proves recognition results for the most relevant evaluation metrics.
Our experiments showed an improvement in CmdER by a factor of
up to three. For scenarios in which situational context only changes
gradually, our integration method can achieve this error rate reduc-
tion without slowing down the actual recognition process, because
recognition and recognition network recreation are run by two par-
allel processes.

Still, a trade-off exists between system response time and the
specificity of context information to which we adapt the recognition
network: Incorporating the most specific context information possi-
ble (Dynamic Slow) is currently only beneficial in cases where the
quality of available context information is very high. However, the
system version that is a little less restrictive (Dynamic Fast provides
shorter response times and still shows considerable improvements
over the non-context-enhanced system in situations where context
quality is lower.

Furthermore, we showed that using context information makes
the ASR robust against speaker variation. For an accent that was
not present in the training data, we in fact observe the largest im-
provements. Using context manages to narrow the performance gap
between the two different controllers tested to under 2%.

We expect the quality of dynamic information to become even
better and more stable in the future, which will further increase the
beneficial effect of context use.

In the future we are planning to combine the benefits of using
contextual information with the use of confidence measures. Once
the use of confidence measures is integrated into the ASR system, it
will only return hypotheses about which it is sufficiently confident to
the planning system. Possibly incorrect recognition hypotheses will
be held back in order to avoid negatively influencing the planning
system’s performance. With this modification, the overall perfor-
mance and usability of the assistance system should increase even
further in the future.

Since using statistical language models instead of a grammar-
based approach is currently being tested in the AcListant R© project,
another task to be addressed in future work will be to investigate
context adaptation for language models.
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