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Abstract In this article, we examine the effectiveness of bootstrapping supervised
machine-learning polarity classifiers with the help of a domain-independent rule-
based classifier that relies on a lexical resource, i.e., a polarity lexicon and a set of
linguistic rules. The benefit of this method is that though nolabeled training data are
required, it allows a classifier to capture in-domain knowledge by training a super-
vised classifier with in-domain features, such as bag of words, on instances labeled
by a rule-based classifier. Thus, this approach can be considered as a simple and
effective method for domain adaptation.

Among the list of components of this approach, we investigate how important the
quality of the rule-based classifier is and what features areuseful for the supervised
classifier. In particular, the former addresses the issue inhow far linguistic modeling
is relevant for this task. We not only examine how this methodperforms under more
difficult settings in which classes are not balanced and mixed reviews are included in
the data set but also compare how this linguistically-driven method relates to state-
of-the-art statistical domain adaptation.

Keywords Polarity Classification· Sentiment Analysis· Bootstrapping Methods·
Feature Engineering· Text Classification

Michael Wiegand
Spoken Language Systems, Saarland University, Building C7.1, D-66123 Saarbrücken
Tel.: +49-681-30258133
Fax: +49-681-30258124
E-mail: michael.wiegand@lsv.uni-saarland.de

Manfred Klenner
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1 Introduction

Recent years have seen a growing interest in the automatic text analysis of opinion-
ated content. One of the most popular subtasks in this area ispolarity classification
which is the task of distinguishing between positive utterances (1) and negative utter-
ances (2).

(1) The new iPhone looks greatand is easyto handle.
(2) London is awful; it’s crime-ridden, dirty, and full of rudepeople.

Various supervised classification approaches, in particular classifiers using bag of
words, are heavily domain dependent (Aue and Gamon, 2005), that is, they usually
generalize poorly across different domains. This is mostlydue to the fact that the
words employed to convey polarity can vary from domain to domain. One solution
to this problem would be to provide labeled training data forevery possible domain.
However, this is impractical as the costs for that endeavor are prohibitively expensive.

Semi-supervised learning tries to solve the problem of domain dependence by
reducing the size of the labeled data set of the target domainor using labeled out-of-
domain data. The lack of sufficient labeled in-domain training data is compensated
by a large unlabeled data set of that domain. The latter is much cheaper to obtain.

Rule-based classification does not require any labeled training data. In polarity
classification, a rule-based classifier typically relies ona lexical resource, namely a
polarity lexicon containing domain-independent polar expressions. Polar expressions
are words containing a prior polarity, such asgreatandawful. One counts the number
of positive and negative polar expressions in a test instance and assigns it the polarity
type of the majority of polar expressions. Since the classifier is restricted to domain-
independent polar expressions, it lacks the knowledge to recognize domain-specific
expressions, such ascrunchy+ in the food domain orbuggy− in the computer domain.

In this article, we explore the effectiveness of an alternative, which like most
semi-supervised learning algorithms is based onself-training, that is, the process of
labeling the unlabeled data with a preliminary classifier and then training another
(more robust) classifier by using the expanded annotated data set. Unlike traditional
semi-supervised learning, we do not use an initial classifier trained on a labeled data
set but the output of a domain-independent rule-based classifier. (For reasons of sim-
plicity, we will often refer to this specific version as plainself-trainingin the follow-
ing sections.) While the rule-based classifier is restricted to the knowledge of domain-
independent polar expressions, the supervised classifier trained on in-domain data
labeled by the rule-based classifier can make use of domain-specific features, such
as bag of words. Ideally, the supervised classifier can effectively use this domain-
specific knowledge and thus outperform the rule-based classifier.

Consider, for example, the two negative sentences (3) and (4) from the movie and
the computer domain. With the knowledge thatpoorly is a domain-independent polar
expression, one could label these sentences as negative opinions. Considering these
sentences as labeled training data and applying supervisedlearning, a classifier may
learn thatpredictableanddefectiveare polar expressions of these particular domains.

(3) Stop giving us these poorly− written thrillers with plots as predictable− as the
sunset.
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(4) The system was deemed defective− and poorly− designed.

Although this kind of self-training has already been applied to tasks in opinion
mining (Wiebe and Riloff, 2005), including polarity classification (Tan et al, 2008;
Qiu et al, 2009), there are certain aspects of this method that have not yet been fully
examined:

Firstly, what is the impact of the robustness of the rule-based classifier on the
final classifier, that is, does the supervised classifier improve when the rule-based
classifier improves? This addresses the issue to what extentthe analysis of linguistic
phenomena that are relevant for polarity classification andcan be incorporated into a
rule-based classifier, such as word disambiguation, negation modeling, modality, or
intensification, is important for this kind of self-training approach. In this article, we
take a much more detailed look at the optimization and effectiveness of individual
features than in previous work.

Secondly, how can a good labeled training set for self-training be acquired with
the help of the rule-based classifier? A contribution of thisarticle is that we compare
different data selection criteria with regard to this bootstrapping method.

Thirdly, what are typical features that can be learnt with this bootstrapped ap-
proach that are not contained within rule-based classifier?For the first time, we pro-
vide some detailed illustration of what features are learnt.

Fourthly, how does this bootstrapping approach compare to compositional rule-
based classification? Are there differences in effectiveness between these two ap-
proaches with regard to the levels of granularity that are considered (i.e., document
and sentence level)?

Fifthly, how does this type of self-training, in which a model is mainly boot-
strapped with the help of linguistic information, compare to state-of-the-art statistical
domain adaptation methods using out-of-domain labeled training data and hardly any
linguistic knowledge?

Finally, does this method work in realistic settings in which – in addition to defi-
nite polar reviews – also mixed polar reviews are part of the data set and the distribu-
tion of the classes is imbalanced?

The remainder of this article is structured as follows. Section 2 describes the
data we use. Section 3 describes in detail the set of rule-based polarity classifiers we
consider for self-training along the performance they achieve on our given data sets.
In Section 4, we present the different configurations for self-training and evaluate
them. Section 5 compares the standard rule-based classification from Section 3 with
compositional rule-based polarity classification. These classifiers are evaluated on
document-level data and sentence-level data also taking self-training into account.
Section 6 compares self-training with statistical domain adaptation, while Section 7
discusses the impact of natural class distribution and mixed reviews on self-training.
In Section 8, we discuss related work, and we conclude in Section 9.

2 Data

In this article, we carry out most experiments on a multi-domain data set that con-
sists ofIMDb movie reviews (Pang et al, 2002) and reviews extracted fromRate-It-
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Table 1 Properties of the different domain corpora.

Domain Source Positive Mixed Negative Vocabulary Average No.
(4 & 5 Stars) (3 Stars) (1 & 2 Stars) of Sentences

per Document
computer Rate-It-All 952 428 1,253 11,319 6.58
products Rate-It-All 2,292 554 1,342 16,615 6.63
sports Rate-It-All 4,975 725 1,348 19,096 4.38
travel Rate-It-All 9,397 1,772 3,289 29,685 4.65
movies IMDb 1,000 0 1,000 37,374 32.36

All1 covering the domainscomputer, products, sports, andtravel. We evaluate on the
IMDb movie reviews because they are considered benchmark data for polarity clas-
sification. The additional data are used to show that our findings are valid throughout
different domains. Moreover, they have also been used in previous work on polarity
classification (Wiegand and Klakow, 2009a, 2010).

Table 1 lists the properties of the corpora from the different domains. It lists the
individual class distributions, the size of the vocabulary, and the average number of
sentences per document. The vocabulary is computed on stemmed word forms (as
stemmed word forms will be the basis for text processing).2 The table shows that
with regard to these dimensions the domains differ among each other. With regard
to the average number of sentences per document there is a consistent difference
between theRate-It-Allcorpora and theIMDb corpus. The documents of themovies
domain are much longer.

On all data sets, the labels are automatically derived from the ratings. 1 and 2
star reviews are labeled asnegativeand 4 and 5 star reviews aspositive. Only the
Rate-it-Alldata sets include 3 star reviews. They are labeled asmixedreviews. The
actual class of these reviews is unknown. Usually a 3 star review should be neutral
in the sense that it equally enumerates both positive and negative aspects about a
certain topic, so that a definite verdict in favor or against it is not possible. That is
also why we cannot assign these instances to eitherpositiveandnegative. During
a manual inspection of some randomly chosen instances, however, we also found
definite positive and negative reviews among 3 star reviews.For this work, we leave
these instances in the category of mixed reviews.

3 Rule-based Polarity Classification

In this section, we describe how a rule-based polarity classifier can be designed with
the help of a polarity lexicon. A polarity lexicon comprisesa list of polar expres-

1 http://www.rateitall.com
2 Stemming may also negatively affect polar expressions (i.e., words containing a prior polarity, such as

greatandawful) by conflating expressions with different polarity types tothe same stem, such ashopeful
andhopelessto hope$. To estimate the impact of that problem, we stemmed the entries of the polarity
lexicon we use in this work (i.e., a list of polar expressionsalong their respective polarity type) and counted
the cases of those erroneously conflated expressions. Less than 1% of the entries were affected; most
critical suffixes, such as-less, were preserved by our stemmer (Porter, 1980). On average, we measured
only some slight improvement by using stemming (< 1% point).
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Table 2 Properties of the different rule-based classifiers.

Properties RBPlain RBbWSD RBNeg RBWeight

basic word sense disambiguation X X X

negation modeling X X

heuristic weighting X

sions, that is, words containing a prior polarity, such asgreatandawful, along their
respective polarity type (i.e.,positiveor negative). We use the Subjectivity Lexicon
from (Wilson et al, 2009) containing 2,718 positive and 4,910 negative entries.

A rule-based polarity classifier assigns scores to the polarexpressions (it identi-
fies by using the polarity lexicon) in a test document. Positive polar expressions are
assigned the positive score+1, while negative polar expressions are assigned the neg-
ative score−1. In order to classify a data instance, that is, in our case a test document,
the scores assigned to the individual polar expressions aresummed. If the sum is pos-
itive, then the instance is classified as positive. It is classified as negative, if the sum
is negative. We assign to all cases in which the sum is 0 the polarity type that gives
best performance on that individual data set (which is usually negative polarity). The
polarity sum is 0 if the amount of detected positive information equals the amount of
negative information or, in the rare case, when not a single polar expression could be
identified within the document. By including this default label for instances with a
score of 0, we have a stronger baseline that is to be beaten by self-training.

For the following experiments – with the exception of those presented in Sec-
tion 7 – we use a balanced subset (randomly generated) for each domain. TheRate-
It-All data set consists of 1,800 data instances per domain, whereas theIMDb data
set consists of 2,000 data instances. We just consider (definite) positive and (definite)
negative reviews. All words are normalized by applyingPorter stemming(Porter,
1980).

3.1 Different Versions of Classifiers

We define four different types of rule-based classifiers. They differ in complexity.
The simplest classifier, that is, RBPlain, is basically the algorithm described above.
RBbWSD is like RBPlain but also contains basic word sense disambiguation. RBNeg

is like RBbWSD but also contains negation modeling. The most complex classifier,
RBWeight , is like RBNeg but it also employs some heuristic weighting. Table 2 sum-
marizes the different classifiers with their respective properties. In the following sub-
sections, we will describe in detail each of these differentproperties.

3.2 Basic Word Sense Disambiguation with Part-of-speech Tags

There are several ambiguous words that only contain a polar meaning in some of
their senses. For some of these words the sense can be determined depending on the
part of speech of the word in its particular context. For example, the wordnovelhas
a meaning similar tonewor original if it is an adjective (5) and refers to a particular
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type of prose when it is a noun (6). Only the adjective should be considered a polar
expression.

(5) L.A. County officials offer anovelAdj idea to save millions.
(6) Papillon is a 1973 film based on anovelNoun by French ex-convict Henri Charrière.

In a similar fashion, one can establish a rule for the wordplot. It contains a polar
meaning as a verb when it describes the act of secretly, most often illegally, planning
something (7), while the noun may refer to a story told in a play, novel, or film (8).

(7) They plotV erb to instigate unrest by sending messages via the Internet, tele-
phones, and mobile phones.

(8) TheplotNoun of the novel is based upon a true story.

Unfortunately, these rules are in many cases a simplification. For instance, the word
plot has actually several senses even with a specific part of speech. The noun (when
it is a deverbal noun fromto plot) may also refer to the act of secretly planning some-
thing. However, automatic methods to distinguish such senses – in spite of the fact
that they are highly relevant to sentiment analysis (Wiebe and Mihalcea, 2006) – are
still in their infancy (Balamurali et al, 2011) as the necessary labeled resources are ex-
tremely sparse and difficult to produce (Akkaya et al, 2009, 2011). Consequently, this
type of disambiguation is beyond the scope of this work and welimit our disambigua-
tion to the one based on part-of-speech information. We obtain these disambiguation
rules from our polarity lexicon (Wilson et al, 2009). For part-of-speech tagging we
use theC&C tagger.3

3.3 Negation Modeling

Negation is one of the most prominent contextual phenomena that affects polarity.
Even though there exists a plethora of different approachesto take this into account,
it is fairly difficult to judge their general impact as the methods are often evaluated in
different contexts (Wiegand et al, 2010). We, therefore, only address the issues that
are most frequently dealt with.

3.3.1 Plain Negation

The most commonly accepted type of negation modeling is the following: If a po-
lar expression, such asnice, occurs within the scope of a negation, its polarity is
reversed (9).

(9) Overall,[nota nice+]− place to take the family!

The views differ, however, as to what should be considered a negation and how its
scope should be determined.

3 http://svn.ask.it.usyd.edu.au/trac/candc
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Fig. 1 Optimizing window size for negation.

3.3.2 Scope of Negation

Before discussing in more detail which lexical units we consider as negation ex-
pressions, we briefly describe our scope modeling. We take a simple approach that
considers a polar expression to be negated if it follows a negation marker within a
window of n words. Figure 3 shows the performance of this negation modelusing
different window sizes. The plot shows the averaged resultsover all domains. We use
the negation markers from (Wilson et al, 2009). The figure shows that negation mod-
eling is important (as the window sizen = 0 performs worst). A maximum is reached
atn = 5, however some larger windows only marginally degrade performance. This
observation is consistent with other approaches that consider the scope as anything
following a negation until the next punctuation mark (Pang et al, 2002). We will use
this optimized window size (of five words) as a scope in the following experiments,
i.e., the scope of a negation expression are the five words following the mention of
that expression.

In sentiment analysis, one often resorts to very shallow notions of scope (e.g., on
the basis of window size) (Pang et al, 2002; Wilson et al, 2009). There are only few
works which establish the scope of negation on the basis of syntactic rules (Jia et al,
2009; Council et al, 2010) while in other areas, such as the biomedical domain, this is
much more common, e.g., (Huang and Lowe, 2007; Morante, 2010). We will examine
such a potential of syntactic information in Section 5 when we discuss compositional
polarity classification but we are aware that the parsing quality is severely affected
by the heavy noise in our user generated data (e.g., misspellings, missing punctuation
etc.).

3.3.3 Polarity Shifters

In addition to common negation expressions, such asnot, there are also other lexical
units that may similarly express negation. These expressions are commonly referred
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Table 3 Accuracies of rule-based classifier with plain negation modeling (RBNegPlain) and negation
modeling with polarity shifters (RBNegShifter).

Domain RBNegPlain RBNegShifter

computer 73.33 73.56
products 70.50 71.06
sports 67.61 67.50
travel 70.83 70.72
movies 67.00 67.85
average 69.85 70.14

to aspolarity shifters. (10) and (11) differ only in the type of negation marker that
is used. While the former uses the common negation wordno, the latter employs the
polarity shifterlittle. These two sentences show that polarity shifters convey a weaker
degree of negation than common negation markers.

(10) I have[no faith+]− in that country.
(11) I have[little faith+]− in that country.

Moreover, there are several shifters that only reverse a particular polarity type.
For example, the shifterlack only modifies positive polar expressions (12), while the
shifterabateonly modifies negative polar expressions (13).

(12) The movieThe Edgehas intelligence and smart characters, but the[lackof originality+]−

is its downfall.
(13) Financial support may[abatethese problems−]+.

In this article, we treat polarity shifters in the same manner as negation mark-
ers, that is, we strongly assume that for a document-level polarity classification (10)
and (11) should be treated as synonymous. We consider the slight semantic differ-
ences as irrelevant to the (coarse) binary classification wewant to carry out. The
main advantage of taking polarity shifters into account thus should lie in the in-
creased coverage of negation detection. Table 3 compares a rule-based classifier with
plain negation modeling just using conventional negation markers (RBNegPlain) and
a classifier also incorporating polarity shifters (RBNegShifter). The list of polarity
shifters is taken from (Wilson et al, 2009).4 The table shows that there is only a
marginal impact of incorporating polarity shifters (in some domains the inclusion is
even slightly detrimental). Since the incorporation does not harm the overall perfor-
mance, however, we include polarity shifters in our subsequent experiments.

3.3.4 Disambiguation of Negation

Some negation markers are ambiguous and do not express negations when appear-
ing in certain phrases, such asnot in (14) that is part of the phrasenot only ... but
also. We ran experiments with the disambiguation rules from (Wilson et al, 2009)5

but could not find any improvement for polarity classification. A closer inspection of

4 By polarity shifters, we refer to all entries marked asgenshifter, shiftneg, orshiftposfrom that lexicon.
5 Those rules are encoded by entries marked asnotshifter.
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occurrences of those ambiguous markers in our data set revealed that the sentences
in which they appear within such phrases usually enumerate either several positive or
negative items. It is, therefore, usually irrelevant for document-level polarity classifi-
cation to carry out this kind of disambiguation as the misinterpretation of one polar
phrase will not affect the overall result since the overall amount of polar expressions
will still be correctly interpreted. In (14), for example, without the disambiguation
of negation markers we would erroneously identify one negative polar expression,
that is,not ... fascinating.6 But given that we correctly identify the other remaining
positive polar expressionsgreatest, treasure, charm, andbeauty, this single misclas-
sification will not affect the overall result.

(14) Spain isnot onlyone of Europe’s most fascinatingcountries,but is alsohome to
some of the world’s greatesttreasuresof history, culture, charm, and beauty.

3.4 Heuristic Weighting

So far, all polar expressions contained in the polarity lexicon are assigned the same
absolute weight, that is,+1 for positive polar expressions and−1 for negative polar
expressions, respectively. This does not reflect reality. Polar expressions differ in their
individual polar intensity or, in case of ambiguous words, in their likelihood to convey
polarity. Therefore, they should not obtain a uniform weight. In the following, we will
describe particular (intrinsic or contextual) propertiesof polar expressions and sug-
gest a (very simple) ad-hoc weight that should reflect that particular property. As we
do not have any development data and our classifier should be domain-independent,
we chose a very coarse-grained weighting scheme.

3.4.1 Strength of Polar Expressions (StrongPol)

The polarity lexicon we use (Wilson et al, 2009) includes a binary feature expressing
the strength of a polar expression. It distinguishes between strongandweakpolar
expressions. Strong polarity in this context does not primarily refer to a high prior
polar intensity but the tendency to appear as a polar expression in most contexts. An
example for a typical strong polar expression ishate. Weak polar expressions, such
asdream, on the other hand, are more ambiguous. They, too, may appearin polar
contexts (15) but the likelihood to occur in contexts in which they do not contain a
polar meaning, such as (16), is much higher than for strong polar expressions.

(15) Not only is it a thing of beauty, but it runs like adream!
(16) No suspense occurs in thedreamsequences either.

Intuitively, strong polar expressions should obtain a higher weight than weak po-
lar expressions. That is why we assign them the weight of 2.

6 This classification of course requires a correct identification of the scope of the negation.
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3.4.2 Intensifiers (Intens) and Detensifiers (Detens)

When a polar expression is modified by a so-calledintensifier, such asdefinitelyor
extremely, its polar intensity is increased (17). On the other hand, ifa polar expression
is modified by a so-calleddetensifieror diminisher, such askind of or slightly, its
polar intensity is decreased (18).

(17) Shedefinitelydeservedher gold.
(18) It’s kind ofexpensive, but well worth the investment.

For our experiments, we use the intensifiers from (Wilson et al, 2009) and the
list of detensifiers from (Jason, 1988). We propose to doublethe polarity score of in-
tensified polarity expressions and to halve the score of detensified polar expressions,
respectively.

For the detection of scope, we use the same method (i.e., word-based window
size) we applied to negation modeling (see Section 3.3.2). We also use the same
window size.

3.4.3 Polar Adjectives (PolAdj)

The part of speech of a polar expression may also shed some light on the level of am-
biguity of the word. If a polar expression is anadjective, its prior probability of being
polar is much higher than the one of polar expressions with other parts of speech,
such as verbs or nouns (Hatzivassiloglou and McKeown, 1997;Hatzivassiloglou and
Wiebe, 2000; Pang et al, 2002; Wiegand and Klakow, 2009a). Therefore, polar adjec-
tives should obtain a larger weight than polar expressions with other parts of speech.
That is why we assign them the weight of 2.

3.4.4 Modal Embedding (Modal)

If a proposition is embedded in an epistemic modal context, that is, a context in
which the speaker expresses some certainty about the factuality of the proposition,
the proposition itself cannot be considered factual (19).

(19) While thismaysound reasonable, it isn’t.

We identify those contexts by the occurrence of a modal verb.Unlike the previous
linguistic phenomena, it does not make sense to just decrease the weight of a polar
expression that occurs within the scope of such a verb. Instead, we totally discard
its value, that is, we set the score to 0. This feature is a simplication of themodal
operatorsproposed in (Neviarouskaya et al, 2009). In that work, each modal verb
was assigned an individual score rather assigning all modalverbs the same score. We
make use of a more coarse-grained feature design as we considered an out-of-context
annotation of individual modal verbs too difficult.

For the detection of scope, we again use the same method (i.e., word-based win-
dow size) we applied to negation modeling (see Section 3.3.2). Again, we also use
the same window size.
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3.4.5 The Importance of the Last Sentence (LastSent)

Usually, judgmental texts, such as reviews, end with a conclusion summarising the
author’s point of view. There is even psycholinguistic and psychophysical evidence
for the special significance of that sentence with respect topolarity classification (Becker
and Aharonson, 2010). A polarity classifier should therefore take this into account
and give special emphasis to polar expressions occuring in that sentence. That is why
we assign them the weight of 2.

3.4.6 Comparison of Different Features

Table 4 compares the performance of the individual featureson rule-based polar-
ity classification using the ad-hoc weights that we have previously suggested. For
polar expressions for which several properties apply, wemultiply the corresponding
weights. For instance, an intensified adjective is assignedthe value of2 · 2 since
both the feature Intens and the feature PolAdj fire. As the differences between the
resulting accuracies produced by the different feature sets are often marginal, we dis-
play the tendencies of those features, rather than the actual accuracies of the different
classifiers. Thus, we hope to improve legibility. Increasesand decreases (in terms of
accuracy) as compared to a classifier without heuristic weighting (i.e., the baseline
RBNeg) are indicated by+ or −, respectively.++ or −− indicates the change is
significant (chi-square test) at thep < 0.1 level, whereas+ + + or − − − indicates
the significance at thep < 0.05 level. Finally,© indicates no change.

The table shows that PolAdj is the best feature to use. On the basis of the union of
all domain corpora, the improvement over the baseline is even statistically significant.
The second best feature is Modal which also makes a positive contribution on all do-
mains except one. StrongPol and Intens only have a positive effect on some domains.
The low impact of Intens and Detens suggest that for polarityclassification the polar
intensity is less relevant. That is, for the classifier, it primarily matters whether some
polar expression is either positive or negative. LastSent has only a positive impact on
themoviesdomain. As this data set originates from another Web site than the other
data sets, the average document size7 between that domain and the remaining ones
hugely differs, that is, 32.36 sentences compared to 5.56 sentences (see also Table 1
in Section 2). We assume that a discourse feature, such as LastSent, only makes sense
for large documents, as they are more likely to follow a certain discourse structure
that finishes with a summary or conclusion.

Finally, we also assess the contribution of a combination ofthose features. For
that, we chose all features that have a positive impact on at least two domains, that
is, PolAdj, Modal, StrongPol, and Intens. This is also the configuration we use in
the subsequent experiments for RBWeight . For all domains, we observe some im-
provement over the baseline. On thetravelandmoviesdomain, the combination even
reaches weak significance. This shows that the addition of other features to the best
individual feature, that is, PolAdj (which as such does not reach a significant improve-
ment over the baseline) is effective. In absolute numbers (i.e., accuracy), the perfor-

7 We measure this by the average number of sentences within a document.
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Table 4 Comparison of different features employed for heuristic weighting.

Domain PolAdj Modal StrongPol Intens Detens LastSent Combination
Weight 2.0 0.0 2.0 2.0 0.5 2.0 NA
computer + + − + − − +

products + + − − © − +

sports + © + − © − +

travel + + + − − − ++

movies + + + + − + +++

all +++ + + © − −− +++

Increases and decreases (in terms of accuracy) as compared to a classifier without heuristic weighting (i.e., the baseline
RBNeg) are indicated by+ or −, respectively;++ or −− indicates the change is significant (chi-square test) at the
p < 0.1 level;+ + + or − − − indicates the significance at thep < 0.05 level;© indicates no change.

1. Lexicon loading, i.e., polar expressions, negation words, and intensifiers.
2. Preprocessing:

(i) Stem words within test instance.
(ii) Apply part-of-speech tagging to test instance.

3. Polar expression marking:
(i) Identify potential polar expressions (with polarity lexicon).

(ii) Discard expressions whose part-of-speech tag does notmatch with that stated within the polarity
lexicon (basic word sense disambiguation).

4. Negation modeling:
(i) Identify potential negation words (including polarityshifters).

(ii) Reverse polarity of polar expression in scope of negation.
5. Heuristic weighting: assign special weight in case polarexpression is:

(i) a polar adjective (weight: 2.0)
(ii) a strong polar expression (weight: 2.0)
(iii) an intensified polar expression (weight: 2.0)
(iv) a polar expression within the scope of a modal (weight: 0.0).

6. Classification: assign the polarity type to test instancewith the largest sum of scores.

Fig. 2 Algorithm of the rule-based polarity classifier (most complex classifier: RBWeight).

mance on thecomputerandproductsdomain actually also improves. Unfortunately,
this cannot be captured by the notation we chose for presenting this comparison.

3.5 Comparison of Different Rule-based Classifiers

Figure 2 summarizes all steps of the most complex rule-basedclassifier. For the less
complex classifiers, certain steps within that program are skipped.

Table 5 shows the results of the different rule-based classifiers across the differ-
ent domains. On average, the more complex the rule-based classifier becomes, the
better it performs. The only notable exception is thesportsdomain (from RBPlain to
RBbWSD). By visual inspection, we noticed some heavy noise on that particular data
set, that is, a large number of words are misspelt. This may have severely affected
text processing, especially part-of-speech tagging, which is vital for RBbWSD. On
several domains, the improvement from one classifier to the next more complex clas-
sifier is significant. On average (i.e., considering the union of all domain data sets),
the improvements are always significant.
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Table 5 Comparison of different rule-based classifiers (RB) (evaluation measure: accuracy).

Domain RBPlain RBbWSD RBNeg RBWeight

computer 64.11 70.61∗ 73.56∗ 75.11
products 60.78 66.06∗ 71.06∗ 71.72
sports 64.33 64.39 67.50 69.17
travel 64.61 67.39 70.72∗ 73.56
movies 61.75 64.80∗ 67.85∗ 72.10∗

average 63.12 66.65∗ 70.14∗ 72.33∗
∗: significantly better thanall less complex rule-based classifiers on the basis of a chi-square test usingp < 0.05; for
averagethe significance is tested on the union of all domain data sets

4 Self-Training a Polarity Classifier using the Output of a Rule-based Classifier

The idea of this bootstrapping method is that a domain-independent rule-based clas-
sifier is used to label an unlabeled data set. Unlike in semi-supervised learning, no
labeled training data are used. The only available knowledge is encoded in the rule-
based classifier. The data instances labeled by the rule-based classifier serve as la-
beled training data for a supervised machine-learning classifier. Usually, only in-
stances that have been assigned a label with a high confidenceare used. (We will
show below how we translateconfidenceto our task.) Ideally, the resulting supervised
classifier is more robust on the domain on which it was trainedthan the rule-based
classifier. The improvement can be explained by the fact thatthe rule-based classifier
only comprises domain-independent knowledge. The supervised classifier, however,
makes use of domain-specific features, that is, words such ascrunchy+ (food domain)
orbuggy− (computer domain), that are not part of the rule-based classifier. It may also
learn to correct polar expressions that are specified in the polarity lexicon but have a
wrong polarity type on the target domain. A reason for a type mismatch may be that
a polar expression is ambiguous and contains different polarity types throughout the
different domains (and common polarity lexicons usually only specify one polarity
type per entry). For instance, in the movie domain the polar expressioncheapis pre-
dominantly negative, as it can be found in expressions, suchascheap films, cheap
special-effectsetc. In the computer domain, however, it is predominantly positive as
it appears in expressions such ascheap price. If such a polar expression occurs in
sufficient documents that the rule-based classifier has labeled correctly, then the su-
pervised learner may learn the correct polarity type for this ambiguous expression on
that domain despite the fact that the opposed type is specified in the polarity lexi-
con. Figure 3 illustrates the self-training method that we are going to examine in this
article.

4.1 Feature Sets

Table 6 lists the different feature sets we examine for the supervised classifier (within
self-training). We list the feature sets along their abbreviation with which they will
henceforth be addressed. We removed the stopwords for the frequently occurring un-
igrams in Top2000 using the list by theGlasgow Information Retrieval Group.8 The

8 http://ir.dcs.gla.ac.uk/resources/linguistic utils/stop words
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Fig. 3 Illustration of self-training using a rule-based classifier for bootstrapping.

features can be divided into two groups. Top2000, Adj600, and MPQA have been
found effective for semi-supervised learning (Wiegand andKlakow, 2009a). These
feature sets contain less noise than the overall vocabularyof a domain corpus. In
particular, Adj600 or MPQA contain highly relevant features (i.e., many polar ex-
pressions) and very few or, in case of MPQA, even no irrelevant features. Uni and
Uni+Bi, on the other hand, contain those features that have been found effective for
supervised learning (Ng et al, 2006). Bigrams can be helpfulin addition to unigrams
since they take into account some context of polar expressions. Thus, crucial con-
structions, such as negation ([not nice]−) or intensification ([extremely nice]++), can
potentially be captured. Moreover, multiword polar expressions, such as[low tax]+

or [low grades]−, can be represented as individual features. Unfortunately, bigram
features are also fairly sparse.

The usage of MPQA, that is, the feature set just comprising the polar expres-
sions from the polarity lexicon that are also used for the rule-based classifier, may
seem contradictory at first sight. One motivation for self-training is that the super-
vised classifier should be trained with a different (and hopefully more expressive)
feature set than the feature set that is used for the rule-based classifier. Admittedly,
the feature set derived from the polarity lexicon cannot accomplish this. However, by
keeping the feature set between rule-based classifier and supervised learner for self-
training fixed, we can examine the impact of the domain-specific weighting. Recall
from the description of the rule-based polarity classifier in Section 3 that one major
downside of this classifier is that it does not distinguish between the different polar
expressions. We, partially, try to rectify this by applyingsome heuristic weighting
(Section 3.4) but this weighting scheme is still extremely coarse in comparison to the
weighting that can potentially be achieved by supervised learning. As the supervised
learner is only given the lexical units representing polar expressions but not the cor-
responding polarity types (these have to be inferred to fromthe data in the form of
feature weights), the learner may also find the correct orientation for polar expres-
sions whose type is incorrect in the polarity lexicon according to the domain that is to
be classified (see also the remarks concerning the ambiguouspolar expressioncheap
above).
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Table 6 Description of the different feature sets.

Feature Set Abbreviation
the 2,000 most frequent non-stopwords in the domain corpus Top2000
the 600 most frequent adjectives and adverbs in the domain corpus Adj600
all polar expressions within the polarity lexicon MPQA
all unigrams in the domain corpus Uni
all unigrams and bigrams in the domain corpus Uni+Bi

4.2 Evaluation of Self-Training

As in Section 3, the rule-based classifiers and the self-trained classifiers (bootstrapped
with the help of rule-based classification) are evaluated onthe entire (balanced)
domain data set. For the supervised classifier, we chose Support Vector Machines
(SVMs) as they are considered one of the most robust state-of-the-art learning algo-
rithm (Joachims, 1999). As a toolkit, we useSVMLight9 with its standard configura-
tion (i.e., linear kernel). Feature vectors are normalizedto unit length and additionally
weighted withtf-idf scores. All words are stemmed.

4.2.1 Optimizing the Size of Pseudo-Labeled Data

One important parameter of our self-training framework is the size of labeled training
data. We assume that it is more effective to use only those labeled data instances for
supervised learning that have been predicted with a high confidence score rather than
considering the entire data set. In order to substantiate this claim, we examine differ-
ent amounts of ranked documents for our labeled training set. The ranking is derived
from the contextual scores of the rule-based classifier (seeSection 3). For positive in-
stances we consider then instances with the highest scores and for negative instances
we take then instances with the lowest scores, respectively. By including only highly
ranked instances, documents with a score of (or close to) 0 should be excluded. Re-
call from Section 3 that these documents contain either an equal amount of positive
and negative content or no polar content (according to the rule-based classifier).

Table 7 compares the performance of self-training using 250, 500, 750, and all
labeled documents. For this experiment, we took the simplest rule-based classifier
(i.e., RBPlain) and a completely unrestricted feature set (i.e., Uni+Bi).The numbers
in brackets denote the performance of the best normalization (see also Section 4.2.2).
Overall, 500 documents per class provide best performance.This is true for both the
unnormalized and normalized scores. This is why we will use this configuration in
our subsequent experiments using this data set.

Using normalized scores does not only result in a systematicimprovement of
performance but it also occasionally means that fewer labeled data are required (this
is another side-effect of an improved ranking). This is mostobvious in theproducts
domain.

9 http://svmlight.joachims.org
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Table 7 Accuracy of different amounts of pseudo-labeled data (numbers in brackets denote performance
with best normalization).

Domain 250 per class 500 per class 750 per class entire data set
computer 61.94 (79.44) 64.17 (80.22) 64.00 (75.67) 63.50 (72.67)
products 55.39(71.83) 59.44 (70.78) 61.06 (69.22) 61.56(66.28)
sports 65.94(66.66) 65.72(66.44) 65.72(65.56) 64.94 (63.89)
travel 65.39 (66.06) 68.44 (69.56) 67.39 (67.28) 66.72 (66.00)
movies 67.70 (72.15) 70.70 (72.70) 69.75 (70.35) 66.65 (66.70)
average 63.27 (71.23) 65.69 (71.94) 65.58 (69.62) 64.67 (67.11)

Table 8 Description of the different normalization methods.

NoNorm no normalization (i.e., just contextual polarity score)
NormByPol contextual polarity score divided by the number of polar expressions in document
NormByWord contextual polarity score divided by the number of words in document
NormBySent contextual polarity score divided by the number of sentences in document

4.2.2 The Impact of Normalization

The output of the rule-based classifier as described in Section 3 is the plain sum of
contextual scores of the polar expressions. The previous section established that for
finding highly ranked data instances some kind of normalization is useful. In this
section, we examine different kinds of normalization. As Table 8 shows, we compare
the plain score without normalization (NoNorm) with a scorethat normalizes by the
overall number of polar expressions detected in a particular document (NormByPol),
a score that normalizes by the number of words in the document(NormByWord), and
a score that normalizes by the number of sentences (NormBySent).

Table 9 compares the performance of self-training using thedifferent normaliza-
tion methods. As in the previous section, we evaluate the simplest rule-based classi-
fier (i.e., RBPlain) and a completely unrestricted feature set (i.e., Uni+Bi).The table
shows that normalization as such is important, that is, for all normalization methods
the improvement over NoNorm is statistically significant ifthe union of all data sets is
evaluated. However, it is less clear which type of normalization performs best since
the performance of the different measures varies throughout the different domains.
However, none of the differences among these normalizationmethods is statistically
significant. For the subsequent experiments, we will alwaysapply NormByWord as,
on average, it performs slightly (but not significantly) better than the other normal-
ization measures.

All normalization scores have in common that they reflect thelength of a test
document.10 Thus, a document being assigned a label with a high confidencescore
can be translated as a document with a high density of polar expressions combined
with a clear majority of one particular polarity type.

10 Even NormByPol reflects the length of the document as the longer a document is the more polar
expressions it will (potentially) contain.
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Table 9 Accuracy of different normalization methods in self-training.

Domain NoNorm NormByPol NormBySent NormByWord
computer 64.17 78.61∗ 78.39∗ 80.22∗

products 59.44 69.17∗ 68.89∗ 70.78∗

sports 65.72 66.33 67.78 66.44
travel 68.44 70.50 69.67 69.56
movies 70.70 72.75 73.25 72.70
average 65.69 71.47∗ 71.60∗ 71.94∗

∗: significantly better than NoNorm; statistical significance is based on a chi-square test usingp < 0.05; for average
the significance is tested on the union of all domain data sets

4.2.3 Comparing the Different Feature Sets for Supervised Learning within
Self-Training

Table 10 compares the different feature sets used within theembedded supervised
classifier within self-training (SelfTr). As in previous sections, we bootstrap with
the standard rule-based classifier (i.e., RBPlain). We also include as a baseline the
performance of that rule-based classifier.

The table shows that – with the exception of thesportsdomain – no matter which
feature set is used, we obtain an improvement in performanceover the plain rule-
based classifier that is statistically significant. On thesportsdomain no single feature
set reaches significantly better results than the rule-based classifier. This particular
domain already displayed some problematic behavior on the comparison of the dif-
ferent rule-based classifiers in Section 3.5. The reasons given for that (e.g., many
misspelt words) may also be responsible for the deviation inperformance between
this domain and the remaining ones on the experiments discussed in this section.

Self-training exceeds the performance of the rule-based classifier using any of
the feature sets including MPQA (i.e., the feature set that is used in both the rule-
based and the supervised classifier). As already described in Section 4.1, this means
that a notable increase of performance is obtained by (just)learning domain-specific
weights for the features that are already used within the rule-based classifier. As
MPQA is, however, usually worse than the other feature sets we have evidence that
it is also important for supervised learning to consider other features (i.e., domain-
specific features) than those contained in the domain-independent polarity lexicon.
It is also worth noting that Adj600 performs on average slightly better than MPQA
(with its 7,600 features) even though this feature set only comprises 600 words. This
finding, however, is consistent with previous work on semi-supervised learning where
this feature set displayed good performance throughout thedifferent domains (Wie-
gand and Klakow, 2009a). The advantage of this feature set isthat it contains domain-
specific features of which a very high proportion are predictive words, that is, polar
expressions.

The feature set producing the best results is Uni+Bi. Thoughon some domains the
differences to other feature sets is comparatively small, there is no domain in which
another feature set outperforms this feature set. Top2000 and Uni are very similar to
each other and usually only slightly worse than Uni+Bi. Considering the union of all
domain data sets, however, the improvement of Uni+Bi (over Top2000 and Uni) is
even statistically significant. This means that, as far as feature design is concerned,
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Table 10 Accuracy of self-trained classifiers with different feature sets.

Domain RB (Baseline) SelfTr
Top2000 Adj600 MPQA Uni Uni+Bi

computer 64.11 77.67∗ 74.67∗ 73.06∗ 78.56∗ 80.22∗

products 60.78 69.00∗ 68.33∗ 66.72∗ 69.06∗ 70.78∗

sports 64.33 65.83 63.89 65.11 64.22 66.44
travel 64.61 69.33∗ 70.83∗ 68.44∗ 69.17∗ 69.56∗

movies 61.75 70.80∗ 69.50∗ 69.40∗ 71.55∗ 72.70∗

average 63.12 70.53∗ 69.44∗ 68.55∗ 70.51∗ 71.94∗†
∗: significantly better than RB;†: significantly better than any other feature set; statistical significance is based on a
chi-square test usingp < 0.05; for averagethe significance is tested on the union of all domain data sets

the supervised classifier within self-training behaves similar to an ordinary supervised
classifier (Ng et al, 2006). Unlike in semi-supervised learning (Wiegand and Klakow,
2009a), a noiseless feature set is not necessary.

Qiu et al (2009) report best performance of SelfTr using a large set of polar ex-
pressions. The feature set comprises an open-domain polarity lexicon and is automat-
ically extended by domain-specific expressions. Our results suggest that a less com-
plex alternative has a similar effect. Using SelfTr with unigrams and bigrams (i.e.,
SelfTrUni+Bi) already provides better classifiers than SelfTr with a polarity lexicon
(i.e., SelfTrMPQA). The increase is by approximately 3% points.

4.2.4 Comparing the Different Rule-based Classifiers with Self-Training

Table 11 compares the different rule-based classifiers and self-training. As a feature
set for the supervised classifier within self-training, we chose the best performing
feature set from our previous experiments, that is Uni+Bi. The table shows that im-
proving a rule-based classifier also results in an improvement of the self-trained clas-
sifier. If the union of all domain data sets is considered, this is even significant with
the exception of SelfTr(RBPlain) to SelfTr(RBbWSD).

Self-training does not work with some rule-based classifiers on particular do-
mains. This is most evident in thesportsdomain using self-training with RBbWSD.
Apparently, the better the rule-based classifier is, the more likely a notable improve-
ment by self-training can be obtained. Note that in thesportsdomain the self-trained
classifier using the most complex rule-based classifier, that is, SelfTr(RBWeight),
achieves the largest improvement compared to the rule-based classifier. We also checked
the other feature sets for this particular case and could confirm similar tendencies.

It is also worth pointing out that, considering the averagedresults over all do-
mains the gain in performance that is achieved by improving abasic rule-based clas-
sifier (i.e., RBPlain) with incorporating the largest amount of context information
(i.e., RBWeight) is very similar to the gain that is achieved by just self-training it
(i.e., RBPlain) with the best feature set (i.e., SelfTrUni+Bi). Fortunately, however,
these improvements are complementary which means that if they are combined (i.e.,
SelfTrUni+Bi(RBWeight)) this results in a further significant improvement.
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Table 11 Comparison of accuracy between different rule-based classifiers (RB) and self-trained classifiers
(SelfTr) trained with best feature set (Uni+Bi) on different domains.

Domain RBPlain RBbWSD RBNeg RBWeight

RB SelfTr RB SelfTr RB SelfTr RB SelfTr
computer 64.11 80.22 70.61 81.72 73.56 83.67∗ 75.11 83.22∗

products 60.78 70.78 66.06 73.89∗ 71.06 77.00∗† 71.72 77.39∗†

sports 64.33 66.44 64.39 64.94 67.50 68.89∗ 69.17 72.28∗†‡

travel 64.61 69.56 67.39 69.83 70.72 73.33∗† 73.56 77.61∗†‡

movies 61.75 72.70 64.80 72.45 67.85 73.55 72.10 77.80∗†‡

average 63.12 71.94 66.65 72.57 70.14 75.29∗† 72.33 77.66∗†‡
∗: significantly better than SelfTr bootstrapped on RBPlain, †: significantly better than SelfTr bootstrapped on
RBbWSD , ‡: significantly better than SelfTr bootstrapped on RBNeg ; statistical significance is based on a chi-square
test usingp < 0.05; for averagethe significance is tested on the union of all domain data sets

4.2.5 Performance on the Different Classes

Table 12 compares precision, recall, and F(1)-score of the different classes for self-
training using the best feature set (i.e., SelfTrUni+Bi). The relation between the F-
scores of the two different classes differs between RB and SelfTr:

In RB, the score of the positive class is always significantlybetter than the score
of the negative class. The high F1+ results from a high recall and lower precision
whereas the low F1− results from a fairly low recall but high precision. This is con-
sistent with previous findings (Andreevskaia and Bergler, 2008). The gap of F1 be-
tween the two classes, however, varies depending on the complexity of the classifier.
In RBPlain, the gap is 17.45% points, in RBbWSD it is 8.6% points, whereas it is just
approximately 5% points in RBNeg and RBWeight. These numbers can be interpreted
in the following way: People usually explicitly employ positive polar expressions in
order to utter a positive opinion. However, they are more reluctant to use negative po-
lar expressions to convey negative opinions. In RBPlain, many negative instances are
classified as positive since many negative opinions in a document are not recognized.
Moreover, due to the lacking disambiguation of polar expressions many false posi-
tive polar expressions are detected. A notable improvementis obtained by applying
some disambiguation (i.e., RBbWSD) as thus fewer (false) positive polar expressions
are detected. Since we measured another notable improvement on the detection of
negative opinions by incorporating negation modeling and the improvement on F1−

is much larger than on F1+, we may infer that people often employ negated posi-
tive polar expressions to convey negative opinions. The fact, however, that we still
measure a performance gap between the detection of positiveand negative opinions
in spite of all linguistic modeling (i.e., RBWeight) and using a polarity lexicon that
contains almost twice as many negative polar expressions aspositive expressions (see
Section 3), shows that detecting negative opinions is really a hard problem.

In SelfTr, F1− is usually better than F1+. By applying SelfTr, the amount of in-
stances being predicted as positive is reduced (in comparison to RB) which results
in a decrease in recall but a notable rise in precision. At thesame time, the classi-
fier predicts more negative instances resulting in a boost inrecall and a slight drop
in precision. This relation between the two classes is typical of supervised polarity
classifiers (Andreevskaia and Bergler, 2008). However, it should also be pointed out
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Table 12 Comparison of different evaluation measures between different rule-based classifiers (RB) and
self-trained classifiers (SelfTr) trained with best feature set (Uni+Bi) on different domains.

Domain RBPlain RBbWSD RBNeg RBWeight

RB SelfTr RB SelfTr RB SelfTr RB SelfTr
Prec+ 59.15 73.28 63.25 74.38 67.19 76.96 68.97 80.71
Rec+ 85.36 69.13 79.37 68.67 78.61 72.01 81.23 72.69
F1+ 69.81 71.14 70.39 71.41 72.42 74.39 74.58 76.47
Prec− 73.98 70.76 72.50 71.02 74.45 73.84 77.26 75.21
Rec− 40.87 74.75 53.93 76.46 61.66 78.57 63.43 82.63
F1− 52.36 74.69 61.79 73.64 67.40 76.12 69.62 78.73
Acc. 63.12 71.94 66.65 72.57 70.14 75.29 72.33 77.66

that the gap between F1+ and F1− is much smaller (approximately 2 to 3% points).
Moreover, the size of the gap does not bear any relation to thegap in the original
RB, that is, although there is a considerable difference in size between the gaps of
RBPlain and RBNeg (i.e., the gap in RBPlain is much larger than in RBNeg), the
size of the gaps in the self-trained versions is fairly similar. We assume that it lies
in the nature of the supervised learner to produce a model that equally well detects
positive and negative instances (provided that one uses a data set with an equal class
distribution). Since it is not bound to polar expressions and infers negative polarity
in a data-driven manner, the supervised learner may be more successful in doing so
than the rule-based classifier.

4.2.6 Why the Features from Rule-based Classifier and Supervised Classifier Must
Be Kept Apart

We also experimented with a feature set for the supervised classifier (within self-
training) combining bag of words and the knowledge encoded in the rule-based clas-
sifier. The features we derive from the rule-based classifierare the two basic features,
that is, the number of positive and negative polar expressions within a data instance
(according to the output of RBNeg) and for each property that we considered for
heuristic weighting in RBWeight a feature conjoined with either of those basic fea-
tures. For instance, for the property StrongPol (see Section 3.4.1), there is one feature
indicating the number of strong positive polar expressionsand another indicating the
number of strong negative polar expressions, respectively.

Table 13 compares the performance of self-training withoutusing those features
derived from the rule-based classifier (SelfTrwithout) and a classifier using those
features (SelfTrwith). That is, SelfTrwithout just uses bag-of-words features while
SelfTrwith uses bag-of-words features and the additional features derived from RB.
For self-training, we chose the best configuration from previous experiments (i.e.,
RBWeight and Uni+Bi for bag of words). Note that for the supervised classifier we
omit the tf-idf encoding since it does not make sense to applyit on the features derived
from the rule-based classifier.11 The table shows that the performance of this com-
bination is worse than a classifier trained on bag of words. The correlation between

11 Since those features will occur much more frequently than plain words throughout the documents,
the inverted document frequency will always be very low which would consequently heavily downweight
those features.



Bootstrapping Polarity Classifiers with Rule-based Classification 21

Table 13 Accuracy of self-trainingwith/without features from rule-based classifier within supervised
learner.

Type computer products sports travel movies average
SelfTrwithout 82.50 75.78 72.39 75.61 75.85 76.43
SelfTrwith 78.39 74.44 69.17 73.61 71.65 73.45

the features derived from the rule-based classifier, in particular the basic features, and
the class labels12 is disproportionately high since these features essentially encode the
prediction of the rule-based classifier. (Individual words, on the other hand, correlate
much less with those class labels.) Consequently, the supervised classifier develops a
strong bias towards these features and inappropriately downweights the bag-of-words
features. Therefore, the supervised classifier within self-training should not use any
features from the rule-based classifier or more complex features that expand those
features from that classifier.

4.2.7 What is Learned by Self-Training

In this section, we want to illustrate that the knowledge learned by self-training is
potentially more expressive than the knowledge encoded in arule-based classifier. For
this purpose, we inspect the most highly ranked n-grams in a particular domain data
set – we chose thecomputerdomain – according to the point-wise mutual information
to the class labels as predicted by self-training. Table 14(a) illustrates the 50 most
highly ranked positive instances while Table 14(b) illustrates the most highly ranked
negative instances.

There are many highly ranked n-grams that do not contain intuitive polar expres-
sions. Several n-grams include product brands, such asMac, Intel, Dell Computer,
or My Yahoo, or items towards which people usually have a strong sentiment, for
instance,high-speed internet, installation fee, or collection agency. Such entities are
domain-specific and are not contained in the polarity lexicon we use, yet they may be
helpful for polarity classification (as the previous evaluation has shown). On our data
set they correlate with some specific polarity type. Therefore, these expressions can
be treated as (traditional) polar expressions as long as oneuses this particular data
set. However, the general effectiveness of some of these expressions, such as brands,
beyond our data set is debatable. The correlation of those brands with a polarity type
reflects a strong sentiment of public opinion towards them. This sentiment may be
transient. In other words, public opinion towards these items may be different from
that five years ago or five years in the future. After all, theseexpressions should be
classified as opinion targets rather than polar expressions. As a consequence, those
features could mislead the classification on data sets takenfrom another point in time
rather than improve it. So, at least brands should be used with caution on other data
sets. Some opinion targets, however, become fairly reliable polar expressions. For
example, in the sports domain we found thatgretzkyis a highly positive cue. It refers
to former professional ice hockey playerWayne Gretzkywho due to his outstanding

12 We mean the class labels that are predicted by RBWeight and henceforth treated as actual class labels
by the supervised learner.
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success is often used as a (positive) reference point for other opinion targets. In these
situations, the former hockey player is not evaluated himself but used as a means of
evaluating another sportsperson, usually by applying patterns of the formX is almost
as good as/better than Gretzky.

Other n-grams not containing polar expressions become plausible if we recon-
struct their contexts. For instance, the bigramalso hasis considered positive as it
occurs in contexts enumerating a plethora of functions offered by a product (which,
as such, can already be interpreted as a positive property).

In general, both tables contain a large portion of bigrams. Our polarity lexicon
only contains unigrams, so this is another indication that different features are taken
into consideration. Quite many of those bigrams contain polar expressions from the
polarity lexicon. A bigram containing a polar expression may be less ambiguous (and
hence more expressive) than just the occurrence of a polar expression as the bigram
encodes some local context. As we already discussed in Section 4.1, such bigrams
may encode relevant linguistic phenomena. Indeed, we find cases of these phenomena
in the two tables, such as intensification (e.g.,most stableor real problem) or negation
(e.g.,not cover).

An interesting case is the highly ranked negative n-gramwonder how. The word
wonder is ambiguous. As a noun its meaning is similar tomarvel or miracle and
as a verb it means eitherenquireor question. In the former case, the word is defi-
nitely positive, whereas in the latter case the word is either not polar or negative (but
admittedly with a much weaker polar intensity). Unfortunately, our polarity lexicon
does not make this distinction and always classifieswonder(irrespective of its part
of speech) as positive. Self-training (at least partially)resolves this ambiguity, as it
establishedwonder howas a negative n-gram. The wordwonderfollowed by how
usually refers to the verb with the sense ofenquire. At least for our domain corpus
it is appropriate to classify this bigram as negative as a typical context such as (20)
taken from our corpus suggests.

(20) I wonderhow many error reports I’ve sent to Microsoft in the last hour.

A similar case isgreat which often appears as a modifier of product properties
(e.g.,great valueor great feature). The word as such is also ambiguous. Apart from
being a positive polar expression, it can also function as anintensifier containing no
polarity (21).

(21) We are often required to spend agreatdeal of time at each other’s homes when
there is agreatdeal of work to be done.

There are also several n-grams comprising a tensed auxiliary followed by a pos-
itive polar expression, for example,is right, is superb, is outstanding. Tense may be
informative within this domain, as we observed quite often positive polar expressions
in a past tense in negative reviews (22). Present tense, on the other hand, may then be
indicative of positive polarity.

(22) I lovedPast the Inspiron 8600 ... until after one week, the hard drive died.
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Table 14 Illustration of the50 most highly ranked features per class from thecomputerdomain.

(a) positive features

moststable intel justbought everythingfrom europe
is superb prodigy isannoying outstanding. mp

programwith high-speedinternet greatvalue alsohas belland
graphicsand planeticket greatin an apple (although

is right somereally acrobat design, chile
a fantastic mac, everyone. processingprogram member.

sheet joystick. a 4 this joystick is outstanding
is amazing bestoperating blocker, greatfeature thewww

stack socialnetwork amigawas myyahoo tocommunicate
, read theblog appleis predecessor greetingcard

(b) negative features

installation fee saidwe dell computer pastthe rateto
get slower directly. stole wefinally real problem

on ever holdand followedby collectionagency notcover
but get sureenough neversigned itwere bbband

unbelievable. last 4 promisedit sbc service sinceoctober
all have goesdown 3of town and isnt
a favor you feel care, it like g20

terrible service sentthe monththe im not at&t worldnet
are simply $100, sign of repsi issuesand

andy nevercall wonderhow would send wasout

Table 15 Illustration of rules for NP level from PolArt.

ADJ NOUN → NP Example
NEGATIVE POSITIVE → NEGATIVE a disappointed hope
NEGATIVE NEGATIVE → NEGATIVE a horrible liar
POSITIVE POSITIVE → POSITIVE a good friend
POSITIVE NEGATIVE → NEGATIVE a perfect misery
POSITIVE NEUTRAL → POSITIVE a perfect meal
NEGATIVE NEUTRAL → NEGATIVE a horrible meal

5 Compositional Polarity Classification and Self-Training

In this section, we will compare the rule-based classification we presented in previous
sections with compositional polarity classification (alsowith respect to self-training).
As a rule-based compositional polarity classifier, we will examine the PolArt sys-
tem (RBPolArt). This is a multilingual classifier that has already been evaluated on
various data sets (Klenner, 2009; Klenner et al, 2009a,b).

The main difference between this classifier and the classifiers that have been eval-
uated in the previous sections is that polar expressions arenot considered in isolation
from each other but are combined by rules to form larger linguistic units, such as
noun phrases (NPs), verbs phrases (VPs), and sentences. Thepolarity composition is
implemented as a cascade of transducers operating on the prior polarities of a polarity
lexicon, a chunk parser (TreeTagger (Schmid, 1994)), and a set of pattern-matching
rules. For instance, Table 15 illustrates the rules for NPs.The system employs a total
of 60 compositional rules.
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Due to the fact that polarity is assigned to general linguistic units rather than
just lexical units, PolArt also employs a more dynamic negation scope modeling
than the previously proposed method using fixed (word-based) window size (see also
Section 3.3.2). In general, the rules of PolArt restrict thescope of negation to the
following chunk containing content bearing words, that is,typically noun or verb
chunks (23). While scope modeling based on window size (recall that the window
size we use is 5) may erroneously reverse polar expressions that are not within the
actual scope of the negation, such as (24)-(26), the modeling based on chunk parsing
is more likely to determine the correct scope.

(23) Locating the human soul and discovering what makes us survive is [not [such an
easy+ task]+NounChunk]

− .
(24) Still earthlink[cannot[tell]V erbChunk] me what is wrong−.
(25) Do[not [deal]V erbChunk] with these morons−!
(26) This is a really good movie.[No []], this is a great+ movie.

5.1 Evaluation at the Document Level

We will now compare the performance of compositional polarity classification with
that of traditional rule-based classification at the document level. The two types of
classifiers will also be evaluated with regard to self-training. We will carry out the
experiments on the same data on which the experiments of previous sections have
been conducted. As a standard rule-based classifier, we consider the best rule-based
classifier from previous sections, that is RBWeight. Since the resources that PolArt
uses are different to the ones that have been employed in previous experiments, that is,
PolArt uses a different part-of-speech tagger (TreeTagger(Schmid, 1994)) and differ-
ent lexical resources, such as negation words and intensifiers, we modify our standard
rule-based classifier in that it uses the identical resources as PolArt in order to ensure
comparability between those classifiers.13 In order to indicate the difference between
the standard rule-based classifier employed in previous experiments and the one used
in the experiments described in this section, we will refer to the (standard) classifier
using the resources of PolArt as RBWeight∗ (rather than RBWeight). For self-training,
we also use the best configuration of previous experiments, that is SelfTrUni+Bi.

Table 16 displays the results. RBPolArt does not outperform RBWeight∗ . On most
domains, it is actually worse than RBWeight∗ though on no domain the drop is statisti-
cally significant. Self-training, however, consistently improves a rule-based classifier,
no matter whether it operates on the output of a standard classifier or a compositional
classifier. As in previous experiments, the degree of improvement varies. The low im-
pact of the compositional classifier is reminiscent of the impact of the different (indi-
vidual) features used for heuristic weighting in the standard classifier (Section 3.4.6).
Apparently, it is difficult (at least at the document level) to greatly improve polarity
classification with straight-forward linguistic methods.

13 We also ensure that both classifiers predict the same defaultpolarity if the rule-based classifier predicts
a tie.
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Table 16 Comparison of standard rule-based polarity classifier (RBWeight∗ ) and compositional classifier
(RBPolArt) with respect to self-training on document-level data sets(evaluation measure: accuracy).

Domain RBWeight∗ RBPolArt

RB SelfTr RB SelfTr
computer 72.50 82.61 72.67 81.56
products 70.78 77.56 68.33 74.22
sports 65.14 67.66 62.94 66.49
travel 70.44 72.22 67.83 69.61
movies 67.30 73.25 67.30 69.85
average 69.23 74.66 67.81 72.35

5.2 Evaluation at the Sentence Level

In this section, we evaluate the performance of compositional polarity classifica-
tion at the sentence level. Sentence-level polarity classification is usually harder than
document-level polarity classification since less text (within an instance) for classi-
fication is available. The difficulty is also reflected by a lower accuracy achieved by
supervised learning with bag-of-words features (Wiegand and Klakow, 2009b). Since
there is less text and therefore also fewer polar expressions, it may also be more im-
portant to disambiguate each individual expression at the sentence level than at the
document level.

We evaluate the performance on a standard data set (Hu and Liu, 2004) on which
PolArt has already been evaluated (Klenner et al, 2009a). Wedownsample the data
set to equal class sizes as class imbalance is a complex issueand will, therefore,
be discussed separately in Section 7. The resulting data setcontains 2888 sentences
(i.e., 1444 sentences per class). Again we compare the standard rule-based classifier
RBWeight∗ with the compositional classifier RBPolArt. For self-training, we use the
same configuration as in previous experiments (with, of course, the exception that we
use unlabeled sentence-level data instead of unlabeled document-level data). Table 17
shows the results. Unlike in the experiments at the documentlevel, the compositional
classifier outperforms the standard classifier. The improvement obtained by the for-
mer is even statistically significant. This supports our assumption that fine-grained
polarity classification requires more linguistically-informed analyses. This insight is
also reflected by the fact that other compositional approaches similar to PolArt have
not been evaluated at the document level but on expression level (Choi and Cardie,
2008) or at the sentence level (Moilanen and Pulman, 2007).

Table 17 also shows that self-training consistently improves the rule-based clas-
sifier but the general impact is fairly low. This can be explained by the fact that bag-
of-words feature sets are much sparser on a sentence-level classification task than
on a document-level classification task (as a document usually contains much more
unique words than a sentence) (Wiegand and Klakow, 2009b).

In summary, compositional polarity classification is much more effective on sentence-
level classification tasks than on document-level tasks. Onthe latter, a standard rule-
based classifier in combination with self-training is a morepromising alternative.
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Table 17 Comparison of standard rule-based polarity classier (RBWeight∗ ) and compositional classifier
(RBPolArt) with respect to self-training on sentence-level data set (evaluation measure: accuracy).

RB SelfTr
RBWeight∗ 69.81 70.98
RBPolArt 73.16∗ 75.55

∗: significantly better than RBWeight∗ ; statistical significance is based on a chi-square test using p < 0.05

6 Comparison with Statistical Domain Adaptation

In this section, we will compare self-training with statistical domain adaptation. Again,
we will consider document-level classification as this is the typical task on which do-
main adaptation is evaluated in sentiment analysis (Beineke et al, 2004; Blitzer et al,
2007; Tan et al, 2008; Melville et al, 2009; Prabowo and Thelwall, 2009; Qiu et al,
2009; Tan et al, 2009; Titov, 2011). By statistical domain adaptation one understands
data-driven algorithms that combine labeled out-of-domain training data with unla-
beled in-domain training data. This setting mirrors real-life situations as usually the
labeled training data that are available for a particular task do not originate from
the domain for which one intends to build a classifier. On the other hand, unlabeled
in-domain training data are easy to obtain as they require nomanual annotation.

Statistical domain adaptation can be considered as a special type of semi-supervised
learning, which, in general, incorporates labeled and unlabeled training data but not
necessarily labeled training data from a domain that is different to the one from which
the test data are sampled. The main differences between statistical domain adaptation
and self-training, therefore, are that the former is data-driven and considers little lin-
guistic structure (e.g., most approaches applied on sentiment analysis usually just
consider a plain bag-of-words feature representation) while the latter does not con-
siderany labeled training data but a polarity lexicon and linguisticrules.

In this work, we only consider (statistical) domain adaptation methods and ex-
clude traditional semi-supervised learning algorithms from our evaluation since a
direct comparison of semi-supervised learning and self-training has already been
published in (Wiegand and Klakow, 2010) showing that self-training is much more
effective.

Many state-of-the-art adaptation approaches are based on the idea ofshared fea-
ture representation(Blitzer et al, 2006) in which a new representation of the data
instances is induced from the original feature representation (usually bag of words)
that makes instances from source and target domain look moresimilar than in the
original representation. This feature representation allows to train more robust clas-
sifiers. A popular algorithm that incorporates this idea isstructural corresponding
learning(Blitzer et al, 2007) in which predictive features from a source domain (they
are derived from a manually labeled training set) are automatically aligned to a set of
predictive features in a target domain (for which only unlabeled data are available)
with the help of a set of domain-independentpivot features. Designing those pivot
features can be considered as an auxiliary task and formulating those features is a
non-trivial engineering problem that requires task-specific knowledge. That is why
we will make use of a more recent adaptation method that is notdependent on this
auxiliary task (even though it still uses shared feature representation). Titov (2011)



Bootstrapping Polarity Classifiers with Rule-based Classification 27

presents a domain adaptation approach based onlatent variable models. These latent
variables capture regularities on unlabeled data from bothdomains. In order to damp
the influence of latent variables that correspond to clusters of features only specific to
the source domain (which would cause classifiers being tested on the target domain
to perform poorly) the objective function of the learning algorithm includes a term
that regularizes inter-domain differences in marginal distributions of each latent vari-
able. This adaptation method has been shown to be competitive with that of structural
corresponding learning despite the omission of pivot features.

6.1 Evaluation

Since we cannot replicate the set-up used in (Titov, 2011) for our self-training method
as that data set only exists in the form of a bag-of-words feature representation14 and
our rule-based classifier requires some natural language text tagged with parts of
speech, we need to re-run the statistical domain adaptationon some different data
set on which we can also re-rerun our self-training approach. As a data set, we sam-
pled some data from the original crawl from which Titov (2011) got his preprocessed
data.15 Note that we could not reuse the data set from our previous experiments at
the document level (see Section 2) as the amount of unlabeleddata is insufficient for
the statistical domain adaptation method. As labeled training data we use 2000 docu-
ments (i.e., 1000 positive and 1000 negative documents each), and as unlabeled train-
ing data we use exactly the amount of data that was employed in(Titov, 2011) (the
size varies throughout the different domains).16 We always test on 2000 data instances
(again, 1000 positive and 1000 negative documents each). Since we have a varying
amount of unlabeled data ranging from 3586 to 5945 documentsper domain, we need
to set the number of unlabeled documents that will be used as (pseudo-)labeled train-
ing data within self-training in proportion to the total amount of available documents
per domain (rather than employing a fixed number of documentsas has been done in
Sections 4 and 5). We always use 70% which provided good performance on all do-
mains. The optimal performance on each individual domain does not necessarily co-
incide with this configuration. Previous experiments (see Section 4.2.1) have shown
that the optima of different domains may diverge. We consequently felt that using
the specific optimal configuration for each respective domain would be tantamount
to overfitting since for an unknown domain the specific configuration would not be
known. Therefore, the choice of 70% is a fairly domain-independent configuration
which should also provide reasonable results for a new (unknown) domain.

Table 18 displays the results of this comparison. In addition to the results of sta-
tistical domain adaptation and self-training, we also display the results of the best
rule-based classifier from previous experiments (i.e., RBWeight from Section 3) and

14 Titov (2011) made his experiments on the data set available at:
http://www.cs.jhu.edu/˜mdredze/datasets/sentiment/p rocessed acl.tar.gz.

15 available at:
http://www.cs.jhu.edu/˜mdredze/datasets/sentiment/u nprocessed.tar.gz

16 We even replicated the distribution of positive and negative instances in the unlabeled training data
(note that the crawl does not contain any mixed reviews), even though those distributions were always
close to uniform class distribution.
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both out-of-domain and in-domain supervised learning. Forboth types of supervised
classifiers, we employ SVMs. As a feature set, we use all unigrams and bigrams.17

For domain adaptation, we only consider the best classifier presented in (Titov, 2011),
that is, a latent variable model with regularization term combined with an out-of-
domain model using product-of-experts.18 For the out-of-domain classifiers and do-
main adaptation, we always present three different results(each of them differs in
the labeled training set that is used): one considers the source domain that produces
worst results on a particular test set (i.e.,Worst Out-of-domain SupervisedandWorst
Domain Adaptation), one that considers the source domain that produces best results
(i.e., Best Out-of-domain Supervisedand Best Domain Adaptation), and the aver-
age of all source domains19 (i.e., Average Out-of-domain Supervisedand Average
Domain Adaptation). For self-training, we consider the best model from previous
experiments, i.e., SelfTrUni+Bi(RBWeight).

The results of Table 18 show that RB is by far the worst classifier. EvenWorst
Out-of-domain Supervisedis systematically better. There is always a large gap be-
tween the worst and the best source domain for out-of-domainsupervised learning
(and this is also reflected by domain adaptation). The reasonfor that is that some
domains are very similar, in particularelectronicsandkitchen.20 As a consequence,
the corresponding out-of-domain classifiers, e.g., a classifier that is trained onkitchen
and tested onelectronics, produce good results which are extremely hard to beat.

Each domain adaptation method outperforms its supervised out-of-domain coun-
terpart with one exception beingBest Domain Adaptationtested onbooks. However,
the drop in performance compared toBest Out-of-domain Supervisedis not statistical
significant.21

On this data set, self-training definitely works as well. It always achieves a notable
improvement over our previous baseline RB. However, it is difficult to judge whether
self-training or domain adaptation is more robust. The performance of domain adap-
tation very much depends on the source domain. Self-training, on the other hand,
exclusively considers unlabeled in-domain training data.Compared toWorst Domain
Adaptation, SelfTr is the clear winner. The opposite situation is the case, however,
whenSelfTr is compared withBest Domain Adaptation. If we consider the average
performance of domain adaptation, however, self-trainingand domain adaptation are
on a par with each other, i.e., on two (test) domainsAverage Domain Adaptation
slightly outperformsSelfTrand on the other two (test) domainsSelfTrslightly out-
performsAverage Domain Adaptation.22 As expectedIn-domain Supervisedpresents

17 Note that unigrams alone did not produce better results for either in-domain or out-of-domain classi-
fication.

18 In (Titov, 2011) this model is referred to asReg+.
19 Of course, we only consider those source domains which are different to the target domain on which

is tested.
20 This is due to the fact that many items inkitchenare electric devices whose reviews cover aspects

that are similar to the ones discussed in the reviews from theelectronicsdomain, such as usability or
malfunctioning components.

21 Significance is based on a chi-square test usingp < 0.05.
22 Unfortunately, we cannot carry out any statistical significance tests on the results of this comparison,

as there is no commonly established significance test to compare an averaged result (i.e.,Average Domain
Adaptation) with an individual result (i.e.,SelfTr).
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Table 18 Comparison of statistical domain adaptation with other classifiers (evaluation measure: accu-
racy).

Classifier Domain
books dvd electronics kitchen average

RB 67.15 65.60 64.00 68.25 66.25
Worst Ouf-of-domain Supervised 70.15 70.55 70.45 73.70 71.21
Best Out-of-domain Supervised 78.65 77.50 81.00 82.60 79.94
Average Ouf-of-domain Supervised 73.43 73.12 74.12 77.08 74.44
Worst Domain Adaptation 71.55 73.15 74.10 78.50 74.33
Best Domain Adaptation 76.90 79.40 84.20 86.50 81.75
Average Domain Adaptation 74.23 75.23 78.00 81.48 77.24
SelfTr 76.89 74.63 80.88 80.19 78.15
In-domain Supervised 83.20 82.60 86.70 84.25 84.19

an upper bound. OnlyBest Domain Adaptationslightly outperformsIn-domain Su-
pervisedon kitchen. Both Average Domain AdaptationandSelfTrare still notably
lower than this upper bound. This shows that there is still some considerable room
for improvement.

In conclusion, there is no clear winner between statisticaldomain adaptation and
self-training. Considering the average performance of domain adaptation, the perfor-
mance of these two approaches is in fact very similar. We can only formulate a rule-
of-thumb that suggests to consider statistical domain adaptation if the source domain
is fairly similar to the target domain, and if a distant source domain is considered,
self-training might be a safer option.

7 Natural Class Imbalance and Mixed Reviews

In this section, we want to investigate what impact natural class imbalance has on
bootstrapping polarity classifiers with a rule-based classifier. We want to explore how
different class-ratio estimation methods approximating the class distribution on the
test set perform. Note that the best classification performance is usually obtained
when the class distribution of the training set and test set are identical.

In this section, the unlabeled data set will include mixed reviews (in addition to
definite positive and negative reviews), that is, 3 star reviews (see Section 2). We
refrain from including those reviews in our test data. The reason for this is that (as
already stated in Section 2) these reviews present a very heterogeneous data set that
contain both indefinite polar reviews and definite polar reviews (i.e., positive or nega-
tive reviews). Therefore, it is inappropriate to assign allthese reviews the same class
label. Due to the availability of such data the experiments are only carried out on the
Rate-It-Alldata. We also add the constraint that the test data must be disjoint from
the unlabeled training data.

Test data are exclusively definite positive reviews (i.e., 4& 5 star reviews) and
definite negative reviews (i.e., 1 & 2 star reviews). 3 star reviews are ignored. From
each domain, we randomly sample 200 data instances 10 times.We preserve the class
ratio on each test set corresponding to the distribution of definite polar reviews. In the
following, we will state the results averaged over these different test sets.
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Fig. 4 Set-up of experiments using self-training on data sets withimbalanced class distribution.

As labeled training data for the embedded supervised classifier within self-training,
we – similar to Section 6 – use 70% of data instances labeled by the rule-based clas-
sifier ranked by confidence of prediction. We consider again the best classifier from
previous experiments, that is, SelfTrUni+Bi(RBWeight). Figure 4 illustrates the set-
up of the experiments in this section.

7.1 Comparison of Different Class-Ratio Estimates

We will compare how alternative class-ratio estimates relate to each other when ap-
plied to self-training. We compare the actual distribution(Ratio-Oracle) with the bal-
anced class ratio (Ratio-Balanced), the class ratio as predicted by the rule-based clas-
sifier over the entire data set (Ratio-RB) and estimates gained from a small amount
of randomly sampled labeled data instances from the data set. We randomly sample
20 (Ratio-20), 50 (Ratio-50) and 100 (Ratio-100) instances. For each configuration
(i.e., 20, 50, and 100), we sample 10 times, run SelfTr for each sample and report the
averaged result. Table 19 summarizes the different class-ratio estimation methods.

We compare the self-trained classifier with two baselines, that is, a classifier al-
ways assigning a test instance to the majority class (Majority-Cl) and the most ro-
bust rule-based classifier from previous experiments (RBWeight). Note that these two
baselines are complementary. While on a balanced data set, Majority-Cl is usually a
weak baseline (i.e., in binary classification this corresponds to an accuracy of 50%),
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it is a fairly strong baseline on data sets with a heavily skewed class distribution. The
larger the proportion of the majority class is, the more difficult it is for a classifier to
produce a model that also assigns the label of the minority class to data instances and
at the same time makes fewer misclassifications than Majority-Cl. RBWeight , on the
other hand, is a much stronger baseline on balanced data sets, while on data sets with
a heavily skewed class distribution, it may be worse than Majority-Cl. 23

Table 20 displays the performance of the different classifiers. (We display the re-
sults of the data sets using 3 star reviews within brackets. Note, however, that we will
discuss the impact of mixed reviews in the next section.) SelfTr using Ratio-Balanced
produces the worst results among the self-trained classifiers. On average, it outper-
forms Majority-Cl but it is still worse than RBWeight . On Chinese data, this method
(i.e., SelfTr using Ratio-Balanced) has been reported to score rather well (Tan et al,
2008; Qiu et al, 2009). We can only speculate about the reasonfor these different
results, e.g., differences between Chinese and English, differences in the annotation
schemes of those data sets, etc. The fact that Ratio-Oracle produces best results comes
as no surprise since the class distribution in training and test set is the same. On av-
erage, Ratio-100 produces the second best result. Ratio-RBis better than both Ratio-
Balanced and the class-ratio estimation method using the smallest labeled sample,
that is, Ratio-20.

These results can be best explained by also considering the average deviation (in
percentage points) of the individual class-ratio estimation methods towards the actual
class distribution on the test set.24 This information is displayed in Table 21. Ratio-
Balanced has the largest deviation and therefore performs worst. Ratio-100 has the
smallest deviation and consequently performs better than the other estimation meth-
ods. On average, Ratio-RB is slightly better than Ratio-20.As the performance results
on Table 20 show, this is mainly due to the fact that Ratio-RB is better on thesports
andtraveldomains. We found that these are domains in which the number of positive
opinions largely outweighs the number of negative opinions(see also Table 1). We
assume that Ratio-RB works well on these distributions as rule-based classifiers have
a general bias towards positive opinions (see also Section 4.2.5).

In summary, using (small) samples of labeled data instancesis an effective way
for class-ratio estimation enabling SelfTr to consistently outperform Majority-CL and
RBWeight .

7.2 Impact of Mixed Reviews

As Ratio-Oracle, Ratio-RB, Ratio-20, Ratio-50, and Ratio-100 suggest, the presence
of mixed polar reviews (see results within brackets in Table20) does not produce
notably different results. The results of Ratio-Balanced even show that using 3 star

23 Similar to Section 6, we refrain from doing statistical significance tests in this section since Ratio-20,
Ratio-50, and Ratio-100 are averaged results over 10 samples whereas the remaining classifiers are single
results and there is no commonly accepted way of comparing those different types of data (i.e., averaged
results vs. single results).

24 Example: if the actual class ratio is 80:20 and the estimatedratio is 90:10, then the deviation will be
10.
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Table 19 Description of the different class-ratio estimation methods.

Ratio-Oracle class ratio corresponding to test set(upper bound)
Ratio-Balanced balanced class ratio(lower bound)
Ratio-RB class ratio derived from predictions of that data set according to best rule-based

classifier (i.e., RBWeight)
Ratio-20 class ratio based on 20 randomly sampled (labeled) documents from the data set
Ratio-50 class ratio based on 50 randomly sampled (labeled) documents from the data set
Ratio-100 class ratio based on 100 randomly sampled (labeled) documents from the data

set

reviews results in a marginally yet consistently better performance throughout all do-
mains. The reason for these results may be that self-training successfully manages to
exclude harmful 3 star reviews and include useful 3 star reviews for the labeled train-
ing set. As already stated in Section 2, 3 star reviews do not only contain indefinite
polar reviews (harmful reviews) but also positive and negative reviews (potentially
helpful reviews). If those reviews with an actually definitepolarity were selected for
the training collection (and by random selection we identified such cases), this would
have the same impact as if a 1, 2, 4, or 5 star review were chosen.

8 Related Work

There has been much work on document-level polarity classification using super-
vised machine learning methods. Various classifiers and feature sets have been ex-
plored (Pang et al, 2002; Ng et al, 2006; Salvetti et al, 2006). Support Vector Ma-
chines (SVMs) (Joachims, 1999) usually provide best results (Pang et al, 2002). Un-
igram and bigram features outperform complex linguistic features (Ng et al, 2006).

Rule-based polarity classification has attracted similar attention as supervised
classification during the last decade. Most rule-based classifiers (that have been em-
pirically validated) share the basic concept of using a polarity lexicon to determine
the polarity of a text that is to be classified. These works mainly differ in the way that
contextual modification is modeled. Polanyi and Zaenen (2006) propose a framework
in which scores are heuristically assigned to polar expressions depending on their in-
dividual contexts. Thus, various phenomena such asnegationandintensificationare
taken into consideration. Implementations inspired by that framework have empiri-
cally been proven effective (Kennedy and Inkpen, 2006). Further extensions incor-
porate more complex rules that determine how the polarity ofindividual expressions
or syntactic constituents is combined in order to compute the overall polarity of a
phrase, sentence, or even document (Moilanen and Pulman, 2007; Shaikh et al, 2007;
Choi and Cardie, 2008; Klenner et al, 2009b; Min and Park, 2011). In addition to
these rules, Taboada et al (2011) propose to assign scores toindividual polar expres-
sions rather than giving all polar expressions a uniform (prior-polarity) score. Thus,
unlike many other approaches, the individual differences between polar expressions
are successfully incorporated into the rule-based classifier.

Semi-supervised learning for polarity classification has been shown to be effec-
tive on inducing polarity lexicons from general lexical resources, such as Word-
Net (Esuli and Sebastiani, 2006, 2007; Rao and Ravichandran, 2009; Baccianella
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Table 20 Accuracy of different classifiers tested on naturally imbalanced data: for self-trained classifiers the numbers in brackets state the results on a data set that includes
3 star reviews in the unlabeled (training) data.

SelfTr
Domain Majority-Cl RB Weight Ratio-Oracle Ratio-Balanced Ratio-RB Ratio-20 Ratio-50 Ratio-100
computer 56.83 75.05 82.95 (82.80) 82.55 (82.90) 77.05 (76.20) 77.41 (76.63) 80.70 (79.85) 81.24 (81.11)
products 63.07 76.55 81.70 (81.40) 75.85 (76.10) 78.65 (78.55) 77.87 (77.89) 80.26 (80.29) 81.00 (81.47)
sports 78.68 77.35 80.50 (80.80) 61.50 (62.60) 80.35 (81.15) 78.97 (79.32) 79.70 (79.80) 80.31 (80.31)
travel 74.07 79.45 82.25 (82.00) 67.00 (68.15) 81.80 (81.75) 79.71 (79.59) 81.26 (81.12) 81.31 (81.44)
average 68.16 77.10 81.85 (81.75) 71.73 (72.44) 79.46 (79.41) 78.49 (78.36) 80.48 (80.27) 80.97 (81.08)

Table 21 Average deviation (in percentage points) of the different class-ratio estimation methods from the actual class distribution along their average accuracy.

Ratio-Balanced Ratio-RB Ratio-20 Ratio-50 Ratio-100 (Ratio-Oracle)
Average Deviation 18.16 7.50 8.07 4.28 3.33 (0.00)
Average Accuracy 71.73 79.46 78.49 80.48 80.97 (81.85)
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et al, 2010), or the Web (Turney and Littman, 2003; Velikovich et al, 2010) but on
text classification, the effectiveness is heavily dependent on the parameter settings.
Significant improvement over supervised classification canoften only be achieved
in the presence of few labeled training data and a predictivefeature set, such as in-
domain adjectives or polar expressions from a polarity lexicon (Wiegand and Klakow,
2009a). A detailed study on cross-domain polarity classification comparing super-
vised and semi-supervised learning is presented in (Aue andGamon, 2005). Semi-
supervised learning (i.e., a derivation of the expectation-maximization algorithm for
a naive Bayes classifier) using unlabeled in-domain training data along labeled out-
of-domain data outperforms the usage of supervised learning just using labeled out-
of-domain data. Another effective semi-supervised approach suggests to apply unsu-
pervised learning (i.e., clustering) to classify unambiguous data instances and restrict
manual annotation to hard data instances (Dasgupta and Ng, 2009).

Apart from the statistical domain adaptation methods that we already discussed
in Section 6, there have been other notable methods examinedfor polarity classifica-
tion: Tan et al (2009) propose a semi-supervised version of the naive Bayes classifier,
in which the initial classifier using labeled out-of-domaintraining data is restricted
to domain-independent (generalizable) features that are acquired by incorporating a
metric based on the Frequently Co-occurring Entropy. During the iterations larger
weights are assigned to the contribution of the unlabeled in-domain training data,
allowing domain-specific knowledge to be included into the model. There is some
conceptual similarity to the self-training algorithm proposed in this article as both
approaches make use of an initial classifier with domain-independent knowledge for
bootstrapping. Beineke et al (2004) propose a model in whichthe knowledge gained
from Web-based lexicon induction (Turney and Littman, 2003) is incorporated into a
Bayes classifier using labeled in-domain training data. Similarly, Andreevskaia and
Bergler (2008) present an approach in which a rule-based classifier based on a polar-
ity lexicon and a supervised classifier trained on in-domaindata are combined. The
combination exploits the complementary precision of the two approaches on positive
and negative data instances. Melville et al (2009) and Prabowo and Thelwall (2009)
consider the same types of classifiers as Andreevskaia and Bergler (2008). While in
(Melville et al, 2009) they are incorporated into a generative model, in (Prabowo and
Thelwall, 2009) a sequential order of the classifiers is determined and a prediction of
an individual classifier is only considered if the precedingclassifier (according to that
order) fails to provide a classification. The major difference between Andreevskaia
and Bergler (2008), Melville et al (2009), and Prabowo and Thelwall (2009), on the
one hand, and the approach presented in this article, on the other hand, is that our
method is the only approach that does not require any labeledtraining data as we
present a (strictly) sequential classifier in which the (unsupervised) rule-based classi-
fier always comes first.

Bootstrapping supervised machine-learning classifiers with the help of rule-based
classification has already been effectively applied to subjectivity detection of sen-
tences (Wiebe and Riloff, 2005). The method has also been applied to polarity clas-
sification, but so far only on Chinese data (Tan et al, 2008; Qiu et al, 2009). While
the performance with out-of-domain supervised classifiersis compared in (Tan et al,
2008), this method is embedded into a complex bootstrappingsystem that also ex-
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tends the vocabulary (i.e., feature set) of the rule-based classifier in (Qiu et al, 2009).
In (Wiegand and Klakow, 2010), we already presented furthernovel contributions,
such as examining the impact of the rule-based classifier on the final result, the rela-
tion between self-training and semi-supervised learning,and various settings of the
self-training algorithm, in particular, different feature sets for the supervised classi-
fier and the impact of imbalanced class distribution. However, this work significantly
extends that initial evaluation. In this article, we had a more detailed look at the
impact of the different components within a rule-based classifier. For negation mod-
eling, we examined the importance of polarity shifters, negation disambiguation, and
scope optimization. For heuristic weighting, we evaluatedindividual features and also
extended the set of features introduced in (Wiegand and Klakow, 2010). We found
that on a cross-domain evaluation, only very few features (e.g., polar adjectives and
modality) systematically help. Moreover, we also examinedthe impact of compo-
sitional rule-based classification showing that these two types of classification are
complementary. While self-training works better at the document level than at the
sentence level, the reverse case is true for compositional rule-based classification. As
far as the self-trainingalgorithmis concerned, we looked in more detail at the impor-
tance of confidence ranking and normalization and found thatthe choice of parame-
ters plays a crucial role for the effectiveness of the resulting classifier. In addition, we
illustrated for one domain what actual features are learnedduring self-training and
thus proved that these features differ from the knowledge encoded in the rule-based
classifier and that they are potentially much more expressive. Last but not least, we
compared self-training with state-of-the-art statistical domain adaptation using la-
beled out-of-domain training data and found that on averageself-training produces
performance that is competitive to that type of algorithms.

9 Conclusion and Future Work

In this article, we examined the effectiveness of bootstrapping a supervised polarity
classifier using the output of an open-domain rule-based classifier. The resulting self-
trained classifier is usually significantly better than the open-domain classifier since
the supervised classifier exploits in-domain features. As far as the choice of the fea-
ture set is concerned, the supervised classifier within self-training behaves very much
like an ordinary supervised classifier. The set of all unigrams and bigrams performs
best.

The type of rule-based classifier has an impact on the performance of the final
classifier. To some extent, the more accurate the rule-basedclassifier is, the better the
resulting self-trained classifier is. However, not all types of linguistic modeling that
can be applied for polarity classification have the same impact. Word disambigua-
tion with the help of part of speech, negation modeling and some ad-hoc heuristic
weighting of polar expressions accounting for special contextual properties improve
performance. Compositional rule-based polarity classification in which polarity is
propagated from lexical units to larger linguistic units, on the other hand, has a more
restricted impact. We only measured some improvement on sentence-level data. On
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such a fine-grained text level, however, the improvement caused by self-training is
more limited as text instances are composed of fewer words (i.e., features).

A comparison to statistical domain adaptation revealed that self-training produces
performance competitive with that of state-of-the-art domain adaptation.

Self-training also outperforms a rule-based classifier anda majority-class clas-
sifier in more difficult settings in which mixed reviews are part of the data set and
the class distribution is imbalanced, provided that the class-ratio estimate does not
deviate too much from the actual ratio on the test set. A class-ratio estimate can be
obtained by the output of the rule-based classifier but, on average, using small labeled
samples from the data collection produces more reliable results.

In future work, we would like to examine what impact a more fine-grained po-
larity lexicon assigning individual scores to polar expressions has on self-training.
Moreover, we would like to extend the binary classification proposed in this article
to a three-way classification in which apart from positive and negative polarity mixed
polar reviews are not only part of the unlabeled training data but are also among the
test data and consequently have to be explicitly modeled.
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