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Abstract In this article, we examine the effectiveness of bootstirapgupervised
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based classifier that relies on a lexical resource, i.e. laippolexicon and a set of
linguistic rules. The benefit of this method is that thougHateled training data are
required, it allows a classifier to capture in-domain knalgle by training a super-
vised classifier with in-domain features, such as bag of sjond instances labeled
by a rule-based classifier. Thus, this approach can be @mesichs a simple and
effective method for domain adaptation.

Among the list of components of this approach, we investijatv important the
quality of the rule-based classifier is and what featuresiaedul for the supervised
classifier. In particular, the former addresses the isst@nfar linguistic modeling
is relevant for this task. We not only examine how this metpedorms under more
difficult settings in which classes are not balanced and dhiggiews are included in
the data set but also compare how this linguistically-driveethod relates to state-
of-the-art statistical domain adaptation.
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1 Introduction

Recent years have seen a growing interest in the automatiartalysis of opinion-
ated content. One of the most popular subtasks in this angalasity classification
which is the task of distinguishing between positive uttees (1) and negative utter-
ances (2).

(1) The new iPhone looks greand is easyo handle.
(2) London is awfulit's crime-ridden dirty, and full of rudepeople.

Various supervised classification approaches, in padticcibssifiers using bag of
words, are heavily domain dependent (Aue and Gamon, 200&)ig, they usually
generalize poorly across different domains. This is modtlg to the fact that the
words employed to convey polarity can vary from domain to domOne solution
to this problem would be to provide labeled training datagfeery possible domain.
However, this is impractical as the costs for that endeawopeohibitively expensive.
Semi-supervised learning tries to solve the problem of dordapendence by
reducing the size of the labeled data set of the target doamaising labeled out-of-
domain data. The lack of sufficient labeled in-domain tragnilata is compensated
by a large unlabeled data set of that domain. The latter idobeaper to obtain.
Rule-based classification does not require any labeleditigaidata. In polarity
classification, a rule-based classifier typically reliesadexical resource, namely a
polarity lexicon containing domain-independent polarresgions. Polar expressions
are words containing a prior polarity, suchgasatandawful. One counts the number
of positive and negative polar expressions in a test instand assigns it the polarity
type of the majority of polar expressions. Since the classifi restricted to domain-
independent polar expressions, it lacks the knowledgedogrze domain-specific
expressions, such asunchy" in the food domain obuggy- in the computer domain.
In this article, we explore the effectiveness of an altémeatwhich like most
semi-supervised learning algorithms is basedelfitraining that is, the process of
labeling the unlabeled data with a preliminary classified #men training another
(more robust) classifier by using the expanded annotatedsgat Unlike traditional
semi-supervised learning, we do not use an initial classiféned on a labeled data
set but the output of a domain-independent rule-basedfitasé-or reasons of sim-
plicity, we will often refer to this specific version as plaslf-trainingin the follow-
ing sections.) While the rule-based classifier is restiitde¢he knowledge of domain-
independent polar expressions, the supervised classi#iget on in-domain data
labeled by the rule-based classifier can make use of dompaicific features, such
as bag of words. Ideally, the supervised classifier can tffdg use this domain-
specific knowledge and thus outperform the rule-basedifitass
Consider, for example, the two negative sentences (3) 3rfcbf# the movie and
the computer domain. With the knowledge tpabrlyis a domain-independent polar
expression, one could label these sentences as negathierapiConsidering these
sentences as labeled training data and applying supeteiaedng, a classifier may
learn thapredictableanddefectiveare polar expressions of these particular domains.

(3) Stop giving us these poortywritten thrillers with plots as predictableas the
sunset.
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(4) The system was deemed defectivand poorly designed.

Although this kind of self-training has already been applie tasks in opinion
mining (Wiebe and Riloff, 2005), including polarity clagsation (Tan et al, 2008;
Qiu et al, 2009), there are certain aspects of this methddthee not yet been fully
examined:

Firstly, what is the impact of the robustness of the ruleebadassifier on the
final classifier, that is, does the supervised classifier avpmwhen the rule-based
classifier improves? This addresses the issue to what dkieanalysis of linguistic
phenomena that are relevant for polarity classificationaardbe incorporated into a
rule-based classifier, such as word disambiguation, ragaibdeling, modality, or
intensification, is important for this kind of self-traigjmpproach. In this article, we
take a much more detailed look at the optimization and effexess of individual
features than in previous work.

Secondly, how can a good labeled training set for self-ingitve acquired with
the help of the rule-based classifier? A contribution of #i&le is that we compare
different data selection criteria with regard to this bém@igping method.

Thirdly, what are typical features that can be learnt witis thootstrapped ap-
proach that are not contained within rule-based classifier2he first time, we pro-
vide some detailed illustration of what features are learnt

Fourthly, how does this bootstrapping approach comparetpositional rule-
based classification? Are there differences in effectigerimtween these two ap-
proaches with regard to the levels of granularity that arestered (i.e., document
and sentence level)?

Fifthly, how does this type of self-training, in which a mdde mainly boot-
strapped with the help of linguistic information, comparatate-of-the-art statistical
domain adaptation methods using out-of-domain labeléditiggdata and hardly any
linguistic knowledge?

Finally, does this method work in realistic settings in whicin addition to defi-
nite polar reviews — also mixed polar reviews are part of titadet and the distribu-
tion of the classes is imbalanced?

The remainder of this article is structured as follows. Bec? describes the
data we use. Section 3 describes in detail the set of ruledhaalarity classifiers we
consider for self-training along the performance they eadion our given data sets.
In Section 4, we present the different configurations fof-saining and evaluate
them. Section 5 compares the standard rule-based clasisifiéaom Section 3 with
compositional rule-based polarity classification. Thelsessifiers are evaluated on
document-level data and sentence-level data also takifiiya@@ing into account.
Section 6 compares self-training with statistical domalaggation, while Section 7
discusses the impact of natural class distribution and dnigeiews on self-training.
In Section 8, we discuss related work, and we conclude in@esét

2 Data

In this article, we carry out most experiments on a multi-dandata set that con-
sists ofIMDb movie reviews (Pang et al, 2002) and reviews extracted fRate-It-
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Table 1 Properties of the different domain corpora.

Domain Source Positive Mixed Negative Vocabulary Average 0l
(4&5Stars) (3Stars) (1 &2 Stars) of Sentences
per Document
computer  Rate-It-All 952 428 1,253 11,319 6.58
products Rate-It-All 2,292 554 1,342 16,615 6.63
sports Rate-It-All 4,975 725 1,348 19,096 4.38
travel Rate-It-All 9,397 1,772 3,289 29,685 4.65
movies IMDb 1,000 0 1,000 37,374 32.36

All* covering the domainsomputey products sports andtravel. We evaluate on the
IMDb movie reviews because they are considered benchmaakfalapolarity clas-
sification. The additional data are used to show that ourrfjglare valid throughout
different domains. Moreover, they have also been used wiqars work on polarity
classification (Wiegand and Klakow, 2009a, 2010).

Table 1 lists the properties of the corpora from the diffedomains. It lists the
individual class distributions, the size of the vocabulairyd the average number of
sentences per document. The vocabulary is computed on stemword forms (as
stemmed word forms will be the basis for text processighe table shows that
with regard to these dimensions the domains differ amonp e#wer. With regard
to the average number of sentences per document there issestem difference
between thdRate-It-Allcorpora and th&Db corpus. The documents of tineovies
domain are much longer.

On all data sets, the labels are automatically derived floenratings. 1 and 2
star reviews are labeled aggativeand 4 and 5 star reviews @®sitive Only the
Rate-it-Alldata sets include 3 star reviews. They are labelethiasdreviews. The
actual class of these reviews is unknown. Usually a 3 staeweshould be neutral
in the sense that it equally enumerates both positive andtivegaspects about a
certain topic, so that a definite verdict in favor or agaih$s$ inot possible. That is
also why we cannot assign these instances to efibsitive and negative During
a manual inspection of some randomly chosen instances,Veoywee also found
definite positive and negative reviews among 3 star reviassthis work, we leave
these instances in the category of mixed reviews.

3 Rule-based Polarity Classification

In this section, we describe how a rule-based polarity flassan be designed with
the help of a polarity lexicon. A polarity lexicon comprisadist of polar expres-

1 http://www.rateitall.com

2 Stemming may also negatively affect polar expressions ferds containing a prior polarity, such as
greatandawful) by conflating expressions with different polarity typeghe same stem, such hepeful
and hopelesgo hope$ To estimate the impact of that problem, we stemmed theesnti the polarity
lexicon we use in this work (i.e., a list of polar expressiatmng their respective polarity type) and counted
the cases of those erroneously conflated expressions. hasd% of the entries were affected; most
critical suffixes, such adess were preserved by our stemmer (Porter, 1980). On averagepeasured
only some slight improvement by using stemmirg {% point).



Bootstrapping Polarity Classifiers with Rule-based Cfasgion 5

Table 2 Properties of the different rule-based classifiers.

Properties RBpiain  RBypwsp  RBwneg  RBweignt
basic word sense disambiguation v v v
negation modeling v v
heuristic weighting v

sions, that is, words containing a prior polarity, suctgesatandawful, along their
respective polarity type (i.epositiveor negativg. We use the Subjectivity Lexicon
from (Wilson et al, 2009) containing 2,718 positive and 4,8&gative entries.

A rule-based polarity classifier assigns scores to the gdpressions (it identi-
fies by using the polarity lexicon) in a test document. Pesifiolar expressions are
assigned the positive scofel, while negative polar expressions are assigned the neg-
ative score-1. In order to classify a data instance, that is, in our casstalbcument,
the scores assigned to the individual polar expressiorsuamened. If the sumis pos-
itive, then the instance is classified as positive. It issifaed as negative, if the sum
is negative. We assign to all cases in which the sum is 0 tharipotype that gives
best performance on that individual data set (which is lpun@igative polarity). The
polarity sum is 0 if the amount of detected positive inforimatquals the amount of
negative information or, in the rare case, when not a singlargxpression could be
identified within the document. By including this defaulbé& for instances with a
score of 0, we have a stronger baseline that is to be beategifityasning.

For the following experiments — with the exception of thosesented in Sec-
tion 7 — we use a balanced subset (randomly generated) fbrdeswain. TheRate-
It-All data set consists of 1,800 data instances per domain, vehtredMDb data
set consists of 2,000 data instances. We just consider ii@¢fiositive and (definite)
negative reviews. All words are normalized by applyiPgrter stemmingPorter,
1980).

3.1 Different Versions of Classifiers

We define four different types of rule-based classifiers.yTdhéer in complexity.
The simplest classifier, that is, RB,;,., is basically the algorithm described above.
RByw sp is like RBpqin, but also contains basic word sense disambiguationy 2B

is like RB,y sp but also contains negation modeling. The most complex ifiess
RByveignt, is like RBy.4 but it also employs some heuristic weighting. Table 2 sum-
marizes the different classifiers with their respectiveperties. In the following sub-
sections, we will describe in detail each of these diffepFoperties.

3.2 Basic Word Sense Disambiguation with Part-of-speegh Ta

There are several ambiguous words that only contain a patamnimg in some of
their senses. For some of these words the sense can be deteéihepending on the
part of speech of the word in its particular context. For egkenthe wordnovelhas

a meaning similar tmewor original if it is an adjective (5) and refers to a particular
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type of prose when it is a noun (6). Only the adjective shoel¢dnsidered a polar
expression.

(5) L.A. County officials offer anovelsq; idea to save millions.
(6) Papillonisa 1973 film based omavely,.., by French ex-convict Henri Charriere.

In a similar fashion, one can establish a rule for the walad. It contains a polar
meaning as a verb when it describes the act of secretly, nftestitiegally, planning
something (7), while the noun may refer to a story told in g ph@vel, or film (8).

(7) They ploty.,, to instigate unrest by sending messages via the Interrlet, te
phones, and mobile phones.
(8) Theploty .., of the novel is based upon a true story.

Unfortunately, these rules are in many cases a simplificakor instance, the word
plot has actually several senses even with a specific part of Bp&ke noun (when
it is a deverbal noun froro plof) may also refer to the act of secretly planning some-
thing. However, automatic methods to distinguish suchesnsin spite of the fact
that they are highly relevant to sentiment analysis (WietzkMihalcea, 2006) — are
stillin their infancy (Balamurali et al, 2011) as the ne@ggdabeled resources are ex-
tremely sparse and difficult to produce (Akkaya et al, 2009,19. Consequently, this
type of disambiguation is beyond the scope of this work antimieour disambigua-
tion to the one based on part-of-speech information. Weilobitese disambiguation
rules from our polarity lexicon (Wilson et al, 2009). For paf-speech tagging we
use theC&C tagger

3.3 Negation Modeling

Negation is one of the most prominent contextual phenomiestaatffects polarity.
Even though there exists a plethora of different approatthske this into account,
it is fairly difficult to judge their general impact as the metls are often evaluated in
different contexts (Wiegand et al, 2010). We, therefordy address the issues that
are most frequently dealt with.

3.3.1 Plain Negation

The most commonly accepted type of negation modeling isdhewing: If a po-
lar expression, such asce, occurs within the scope of a negation, its polarity is
reversed (9).

(9) Overall,[nota nice™|~ place to take the family!

The views differ, however, as to what should be consideredgation and how its
scope should be determined.

3 http://svn.ask.it.usyd.edu.au/trac/candc
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Fig. 1 Optimizing window size for negation.

3.3.2 Scope of Negation

Before discussing in more detail which lexical units we é¢desas negation ex-
pressions, we briefly describe our scope modeling. We takmples approach that
considers a polar expression to be negated if it follows atieg marker within a
window of n words. Figure 3 shows the performance of this negation masialy
different window sizes. The plot shows the averaged resuls all domains. We use
the negation markers from (Wilson et al, 2009). The figurexshibhat negation mod-
eling is important (as the window size= 0 performs worst). A maximum is reached
atn = 5, however some larger windows only marginally degrade perémce. This
observation is consistent with other approaches that densine scope as anything
following a negation until the next punctuation mark (Pahgle2002). We will use
this optimized window size (of five words) as a scope in théofeing experiments,
i.e., the scope of a negation expression are the five worltsviolg the mention of
that expression.

In sentiment analysis, one often resorts to very shallowonstof scope (e.g., on
the basis of window size) (Pang et al, 2002; Wilson et al, 2008ere are only few
works which establish the scope of negation on the basisraéstic rules (Jia et al,
2009; Council et al, 2010) while in other areas, such as thmédical domain, this is
much more common, e.g., (Huang and Lowe, 2007; Morante,)2@&will examine
such a potential of syntactic information in Section 5 whendiscuss compositional
polarity classification but we are aware that the parsindityua severely affected
by the heavy noise in our user generated data (e.g., miggpelimissing punctuation
etc.).

3.3.3 Polarity Shifters

In addition to common negation expressions, suchasthere are also other lexical
units that may similarly express negation. These expressice commonly referred
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Table 3 Accuracies of rule-based classifier with plain negation efiad (RBy.4piain) and negation
modeling with polarity shifters (REegsnifter)-

Domain RBNegPlain RBNegShifter'
computer 73.33 73.56
products 70.50 71.06
sports 67.61 67.50
travel 70.83 70.72
movies 67.00 67.85
average 69.85 70.14

to aspolarity shifters (10) and (11) differ only in the type of negation marker that
is used. While the former uses the common negation wordhe latter employs the
polarity shifterlittle. These two sentences show that polarity shifters conveya&eve
degree of negation than common negation markers.

(10) I have[nofaith™]~ in that country.
(11) I havellittle faith™]~ in that country.

Moreover, there are several shifters that only reverse tcpkar polarity type.
For example, the shiftdack only modifies positive polar expressions (12), while the
shifterabateonly modifies negative polar expressions (13).

(12) The movieThe Edgénas intelligence and smart characters, bufltek of originalityt]~
is its downfall.
(13) Financial support majabatethese problens| ™.

In this article, we treat polarity shifters in the same marae negation mark-
ers, that is, we strongly assume that for a document-levafippclassification (10)
and (11) should be treated as synonymous. We consider tite sekmantic differ-
ences as irrelevant to the (coarse) binary classificatiorwesat to carry out. The
main advantage of taking polarity shifters into accountstishould lie in the in-
creased coverage of negation detection. Table 3 compaués-based classifier with
plain negation modeling just using conventional negatiankers (RBy.ypiqin) and
a classifier also incorporating polarity shifters (RBsnifter). The list of polarity
shifters is taken from (Wilson et al, 2009)The table shows that there is only a
marginal impact of incorporating polarity shifters (in selomains the inclusion is
even slightly detrimental). Since the incorporation doesharm the overall perfor-
mance, however, we include polarity shifters in our subsatiaxperiments.

3.3.4 Disambiguation of Negation

Some negation markers are ambiguous and do not expressomsgahen appear-
ing in certain phrases, such astin (14) that is part of the phraset only ... but
also. We ran experiments with the disambiguation rules from $@il et al, 2009)

but could not find any improvement for polarity classificatié closer inspection of

4 By polarity shifters, we refer to all entries markedgemishifter shiftneg or shiftposfrom that lexicon.
5 Those rules are encoded by entries markedatshifter
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occurrences of those ambiguous markers in our data setleeMet the sentences
in which they appear within such phrases usually enumeithtereseveral positive or
negative items. It is, therefore, usually irrelevant focdment-level polarity classifi-
cation to carry out this kind of disambiguation as the misiptetation of one polar
phrase will not affect the overall result since the overalbaint of polar expressions
will still be correctly interpreted. In (14), for examplejthout the disambiguation
of negation markers we would erroneously identify one rieggiolar expression,
that is,not ... fascinating But given that we correctly identify the other remaining
positive polar expressiongeatesttreasure charm andbeauty this single misclas-
sification will not affect the overall result.

(14) Spain isot onlyone of Europe’s most fascinatimguntriesputis alsohome to
some of the world’s greateseasuresf history, culture, chargrand beauty

3.4 Heuristic Weighting

So far, all polar expressions contained in the polaritydewriare assigned the same
absolute weight, that isi-1 for positive polar expressions and. for negative polar
expressions, respectively. This does not reflect realitharexpressions differ in their
individual polar intensity or, in case of ambiguous wordshieir likelihood to convey
polarity. Therefore, they should not obtain a uniform weidthe following, we will
describe particular (intrinsic or contextual) propertdépolar expressions and sug-
gest a (very simple) ad-hoc weight that should reflect theitqudar property. As we
do not have any development data and our classifier shouldfeaid-independent,
we chose a very coarse-grained weighting scheme.

3.4.1 Strength of Polar Expressions (StrongPol)

The polarity lexicon we use (Wilson et al, 2009) includesraaby feature expressing
the strength of a polar expression. It distinguishes betvet®ng and weakpolar
expressions. Strong polarity in this context does not prilsneefer to a high prior
polar intensity but the tendency to appear as a polar expressmost contexts. An
example for a typical strong polar expressiom#ée Weak polar expressions, such
asdream on the other hand, are more ambiguous. They, too, may appg@atar
contexts (15) but the likelihood to occur in contexts in whtbey do not contain a
polar meaning, such as (16), is much higher than for strotay papressions.

(15) Not only is it a thing of beauty, but it runs likedaeam
(16) No suspense occurs in tHeeamsequences either.

Intuitively, strong polar expressions should obtain a kighieight than weak po-
lar expressions. That is why we assign them the weight of 2.

6 This classification of course requires a correct identificabf the scope of the negation.
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3.4.2 Intensifiers (Intens) and Detensifiers (Detens)

When a polar expression is modified by a so-caligdnsifier such agdefinitelyor
extremelyits polar intensity is increased (17). On the other haralpiblar expression
is modified by a so-calledetensifieror diminisher such askind of or slightly, its
polar intensity is decreased (18).

(17) Shedefinitelydeservedher gold.
(18) It'skind ofexpensivebut well worth the investment.

For our experiments, we use the intensifiers from (Wilsonl,e2@09) and the
list of detensifiers from (Jason, 1988). We propose to dothi@golarity score of in-
tensified polarity expressions and to halve the score ohdéted polar expressions,
respectively.

For the detection of scope, we use the same method (i.e. -bameld window
size) we applied to negation modeling (see Section 3.3.2).al8lb use the same
window size.

3.4.3 Polar Adjectives (PolAdj))

The part of speech of a polar expression may also shed som@fighe level of am-
biguity of the word. If a polar expression is adjective its prior probability of being
polar is much higher than the one of polar expressions witkeroparts of speech,
such as verbs or nouns (Hatzivassiloglou and McKeown, 198#ivassiloglou and
Wiebe, 2000; Pang et al, 2002; Wiegand and Klakow, 2009a&réfbre, polar adjec-
tives should obtain a larger weight than polar expressidttsather parts of speech.
That is why we assign them the weight of 2.

3.4.4 Modal Embedding (Modal)

If a proposition is embedded in an epistemic modal contét ts, a context in
which the speaker expresses some certainty about the liactfathe proposition,
the proposition itself cannot be considered factual (19).

(19) While thismaysound reasonahlé isn't.

We identify those contexts by the occurrence of a modal \imbke the previous
linguistic phenomena, it does not make sense to just dexthaswveight of a polar
expression that occurs within the scope of such a verb.ddstee totally discard
its value, that is, we set the score to 0. This feature is algiatjpn of themodal
operatorsproposed in (Neviarouskaya et al, 2009). In that work, eacdahverb
was assigned an individual score rather assigning all maatak the same score. We
make use of a more coarse-grained feature design as we eogtsh out-of-context
annotation of individual modal verbs too difficult.

For the detection of scope, we again use the same methqadv@.el-based win-
dow size) we applied to negation modeling (see Section B.Bdain, we also use
the same window size.
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3.4.5 The Importance of the Last Sentence (LastSent)

Usually, judgmental texts, such as reviews, end with a emigch summarising the
author’s point of view. There is even psycholinguistic asgighophysical evidence
for the special significance of that sentence with respgmlarity classification (Becker
and Aharonson, 2010). A polarity classifier should themetake this into account
and give special emphasis to polar expressions occuritgirsentence. That is why
we assign them the weight of 2.

3.4.6 Comparison of Different Features

Table 4 compares the performance of the individual feataresule-based polar-
ity classification using the ad-hoc weights that we have iptesly suggested. For
polar expressions for which several properties applynwitiply the corresponding
weights. For instance, an intensified adjective is assighedvalue of2 - 2 since
both the feature Intens and the feature PolAdj fire. As thfedihces between the
resulting accuracies produced by the different featuieaet often marginal, we dis-
play the tendencies of those features, rather than thelaciaaracies of the different
classifiers. Thus, we hope to improve legibility. Increaeed decreases (in terms of
accuracy) as compared to a classifier without heuristic mt@ig (i.e., the baseline
RBy.y) are indicated by or —, respectively++ or —— indicates the change is
significant (chi-square test) at thpe< 0.1 level, whereas- + + or — — — indicates
the significance at the < 0.05 level. Finally,() indicates no change.

The table shows that PolAdj is the best feature to use. Onebis bf the union of
all domain corpora, the improvement over the baseline in statistically significant.
The second best feature is Modal which also makes a posiivieibution on all do-
mains except one. StrongPol and Intens only have a posffeet @n some domains.
The low impact of Intens and Detens suggest that for polatitysification the polar
intensity is less relevant. That is, for the classifier, itarily matters whether some
polar expression is either positive or negative. LastSastdmly a positive impact on
the moviesdomain. As this data set originates from another Web site tha other
data sets, the average document stzetween that domain and the remaining ones
hugely differs, that is, 32.36 sentences compared to 5.5@sees (see also Table 1
in Section 2). We assume that a discourse feature, such t&drdsonly makes sense
for large documents, as they are more likely to follow a derthscourse structure
that finishes with a summary or conclusion.

Finally, we also assess the contribution of a combinatiotho$e features. For
that, we chose all features that have a positive impact osaat kwo domains, that
is, PolAdj, Modal, StrongPol, and Intens. This is also thafiguration we use in
the subsequent experiments for RB,,;. For all domains, we observe some im-
provement over the baseline. On th@velandmoviesddomain, the combination even
reaches weak significance. This shows that the additionhefrdeatures to the best
individual feature, thatis, PolAdj (which as such does path a significantimprove-
ment over the baseline) is effective. In absolute numbegs @ccuracy), the perfor-

7 We measure this by the average number of sentences withicuargmt.
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Table 4 Comparison of different features employed for heuristiagivéng.

Domain PolAdj Modal StrongPol Intens Detens LastSent Combiation

Weight 2.0 0.0 2.0 2.0 0.5 2.0 NA

computer + + — + — — +

products + + — — O — +

sports + O + - O - +

travel + + + — — — ++

movies + + + + - + +++

all + + + + + O - - +++
Increases and decreases (in terms of accuracy) as compaedassifier without heuristic weighting (i.e., the baseli
RBnegy) are indicated by or —, respectively++ or —— indicates the change is significant (chi-square test) at the
p < 0.1 level; + 4+ + or — — — indicates the significance at tie< 0.05 level; O indicates no change.

1. Lexicon loading, i.e., polar expressions, negation woathd intensifiers.
2. Preprocessing:
(i) Stem words within test instance.
(ii) Apply part-of-speech tagging to test instance.
3. Polar expression marking:
(i) Identify potential polar expressions (with polarityieon).
(ii) Discard expressions whose part-of-speech tag doematith with that stated within the polarity
lexicon (asic word sense disambiguatjon
4. Negation modeling:
(i) Identify potential negation words (including polaripifters).
(ii) Reverse polarity of polar expression in scope of negati
5. Heuristic weighting: assign special weight in case pelqression is:
(i) a polar adjective (weight: 2.0)
(ii) astrong polar expression (weight: 2.0)
(iii)y an intensified polar expression (weight: 2.0)
(iv) a polar expression within the scope of a modal (weighd).0
6. Classification: assign the polarity type to test instamith the largest sum of scores.

Fig. 2 Algorithm of the rule-based polarity classifier (most coexptlassifier: RBycign)-

mance on theomputerandproductsdomain actually also improves. Unfortunately,
this cannot be captured by the notation we chose for preggtitis comparison.

3.5 Comparison of Different Rule-based Classifiers

Figure 2 summarizes all steps of the most complex rule-belsadifier. For the less
complex classifiers, certain steps within that program kirgped.

Table 5 shows the results of the different rule-based diassiacross the differ-
ent domains. On average, the more complex the rule-basssif@a becomes, the
better it performs. The only notable exception is$pertsdomain (from RB;;,, to
RB,wsp). By visual inspection, we noticed some heavy noise on tagtqular data
set, that is, a large number of words are misspelt. This mag baverely affected
text processing, especially part-of-speech tagging, wkicvital for RB,yysp. On
several domains, the improvement from one classifier to éxémore complex clas-
sifier is significant. On average (i.e., considering the nr@ball domain data sets),
the improvements are always significant.
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Table 5 Comparison of different rule-based classifiers (RB) (estitun measure: accuracy).

Domain RBpisin  RBewsp  RBneg  RBweight
computer 64.11 70.61 73.56° 75.11
products 60.78 66.06 71.06° 71.72
sports 64.33 64.39 67.50 69.17
travel 64.61 67.39 70.72 73.56
movies 61.75 64.80 67.85 72.10¢
average 63.12 66.65 70.14 72.3%

*: significantly better thamll less complex rule-based classifiers on the basis of a cliredast using < 0.05; for
averagethe significance is tested on the union of all domain data sets

4 Self-Training a Polarity Classifier using the Output of a Rue-based Classifier

The idea of this bootstrapping method is that a domain-iaddpnt rule-based clas-
sifier is used to label an unlabeled data set. Unlike in sempésvised learning, no
labeled training data are used. The only available knovdeésig@ncoded in the rule-
based classifier. The data instances labeled by the ruedlidassifier serve as la-
beled training data for a supervised machine-learningsiflas Usually, only in-
stances that have been assigned a label with a high confideaassed. (We will
show below how we translat®nfidenceo our task.) Ideally, the resulting supervised
classifier is more robust on the domain on which it was traiiea the rule-based
classifier. The improvement can be explained by the facthieatule-based classifier
only comprises domain-independent knowledge. The sugsthdlassifier, however,
makes use of domain-specific features, that is, words suztuashy™ (food domain)
orbuggy (computer domain), that are not part of the rule-basedifils#t may also
learn to correct polar expressions that are specified indleipy lexicon but have a
wrong polarity type on the target domain. A reason for a tyjgnmatch may be that
a polar expression is ambiguous and contains differentipptgpes throughout the
different domains (and common polarity lexicons usuallyy@pecify one polarity
type per entry). For instance, in the movie domain the polpressiorcheapis pre-
dominantly negative, as it can be found in expressions, agdmneap filmscheap
special-effectgtc. In the computer domain, however, it is predominantlsitpe as

it appears in expressions suchdmeap price If such a polar expression occurs in
sufficient documents that the rule-based classifier hasddl®rrectly, then the su-
pervised learner may learn the correct polarity type fos #mbiguous expression on
that domain despite the fact that the opposed type is spiéifiehe polarity lexi-
con. Figure 3 illustrates the self-training method that weegning to examine in this
article.

4.1 Feature Sets

Table 6 lists the different feature sets we examine for tipestised classifier (within
self-training). We list the feature sets along their ablaton with which they will
henceforth be addressed. We removed the stopwords forepeently occurring un-
igrams in Top2000 using the list by ti@&asgow Information Retrieval GroupThe

8 http://ir.dcs.gla.ac.uk/resources/linguistic _utils/stop _words
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Fig. 3 lllustration of self-training using a rule-based classif@ bootstrapping.

features can be divided into two groups. Top2000, Adj60d, EiPQA have been
found effective for semi-supervised learning (Wiegand Kfakow, 2009a). These
feature sets contain less noise than the overall vocabofaaydomain corpus. In
particular, Adj600 or MPQA contain highly relevant featsi@e., many polar ex-
pressions) and very few or, in case of MPQA, even no irrelefeatures. Uni and
Uni+Bi, on the other hand, contain those features that haea iound effective for
supervised learning (Ng et al, 2006). Bigrams can be helpfatidition to unigrams
since they take into account some context of polar expressibhus, crucial con-
structions, such as negatidndt nice] ) or intensification fextremely nicef ™), can
potentially be captured. Moreover, multiword polar exgiess, such afow tax]™
or [low grades], can be represented as individual features. Unfortunaieyam
features are also fairly sparse.

The usage of MPQA, that is, the feature set just comprisiegptblar expres-
sions from the polarity lexicon that are also used for the-hdsed classifier, may
seem contradictory at first sight. One motivation for seifting is that the super-
vised classifier should be trained with a different (and Hiolpemore expressive)
feature set than the feature set that is used for the ruledbaassifier. Admittedly,
the feature set derived from the polarity lexicon cannobagalish this. However, by
keeping the feature set between rule-based classifier grehdsed learner for self-
training fixed, we can examine the impact of the domain-djgewiighting. Recall
from the description of the rule-based polarity classifieSection 3 that one major
downside of this classifier is that it does not distinguistween the different polar
expressions. We, partially, try to rectify this by applyisgme heuristic weighting
(Section 3.4) but this weighting scheme is still extrem@grse in comparison to the
weighting that can potentially be achieved by supervisathiag. As the supervised
learner is only given the lexical units representing polqressions but not the cor-
responding polarity types (these have to be inferred to fiteendata in the form of
feature weights), the learner may also find the correct tat&m for polar expres-
sions whose type is incorrect in the polarity lexicon acomgdo the domain that is to
be classified (see also the remarks concerning the ambiguadarsexpressionheap
above).
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Table 6 Description of the different feature sets.

Feature Set Abbreviation
the 2,000 most frequent non-stopwords in the domain corpus 0op2000
the 600 most frequent adjectives and adverbs in the domgiuso Adj600

all polar expressions within the polarity lexicon MPQA
all unigrams in the domain corpus Uni
all unigrams and bigrams in the domain corpus Uni+Bi

4.2 Evaluation of Self-Training

As in Section 3, the rule-based classifiers and the selfigthtlassifiers (bootstrapped
with the help of rule-based classification) are evaluatedhenentire (balanced)
domain data set. For the supervised classifier, we choseoB8uggctor Machines
(SVMs) as they are considered one of the most robust stateeedirt learning algo-
rithm (Joachims, 1999). As a toolkit, we uS&MLigh? with its standard configura-
tion (i.e., linear kernel). Feature vectors are normalipathit length and additionally
weighted withtf-idf scores. All words are stemmed.

4.2.1 Optimizing the Size of Pseudo-Labeled Data

One important parameter of our self-training framework&sgize of labeled training
data. We assume that it is more effective to use only thosdddlata instances for
supervised learning that have been predicted with a higfidarce score rather than
considering the entire data set. In order to substanti@elkhim, we examine differ-
ent amounts of ranked documents for our labeled trainingi$et ranking is derived
from the contextual scores of the rule-based classifiergee#on 3). For positive in-
stances we consider thanstances with the highest scores and for negative inssance
we take then instances with the lowest scores, respectively. By inclgainly highly
ranked instances, documents with a score of (or close topOldioe excluded. Re-
call from Section 3 that these documents contain either aaleamount of positive
and negative content or no polar content (according to tleelvased classifier).

Table 7 compares the performance of self-training using 260, 750, and all
labeled documents. For this experiment, we took the simhplds-based classifier
(i.e., RBp;4in) and a completely unrestricted feature set (i.e., Uni+Bije numbers
in brackets denote the performance of the best normalizédie also Section 4.2.2).
Overall, 500 documents per class provide best performdinigis true for both the
unnormalized and normalized scores. This is why we will & ¢onfiguration in
our subsequent experiments using this data set.

Using normalized scores does not only result in a systenmajcovement of
performance but it also occasionally means that fewer éabehta are required (this
is another side-effect of an improved ranking). This is matstious in theproducts
domain.

9 http://svmlight.joachims.org
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Table 7 Accuracy of different amounts of pseudo-labeled data (remim brackets denote performance
with best normalization).

Domain 250 perclass 500 perclass 750 per class  entire data se
computer 61.94 (79.44) 64.17 (80.22) 64.00 (75.67) 63.50 (72.67)
products  55.39(71.83) 59.44 (70.78) 61.06 (69.22) 61.56(66.28)
sports 65.94(66.66) 65.7466.44) 65.72(65.56)  64.94 (63.89)
travel 65.39 (66.06) 68.44 (69.56) 67.39 (67.28)  66.72 (66.00)
movies 67.70 (72.15) 70.70(72.70) 69.75(70.35)  66.65 (66.70)
average 63.27 (71.23) 65.69(71.94) 65.58 (69.62) 64.67 (67.11)

Table 8 Description of the different normalization methods.

NoNorm no normalization (i.e., just contextual polarity score)

NormByPol contextual polarity score divided by the number of polarregpions in document
NormByWord  contextual polarity score divided by the number of wordsaouiment
NormBySent contextual polarity score divided by the number of sentemeelocument

4.2.2 The Impact of Normalization

The output of the rule-based classifier as described in @e#tis the plain sum of
contextual scores of the polar expressions. The previat®saeestablished that for
finding highly ranked data instances some kind of normatmais useful. In this
section, we examine different kinds of normalization. ABI€8 shows, we compare
the plain score without normalization (NoNorm) with a sctirat normalizes by the
overall number of polar expressions detected in a particidaument (NormByPol),
a score that normalizes by the number of words in the docu(hemmnByWord), and
a score that normalizes by the number of sentences (NormiySe

Table 9 compares the performance of self-training usinglifierent normaliza-
tion methods. As in the previous section, we evaluate thelsishrule-based classi-
fier (i.e., RBpi4;,) and a completely unrestricted feature set (i.e., Uni+Bie table
shows that normalization as such is important, that is, forxamalization methods
the improvement over NoNorm is statistically significaribié union of all data sets is
evaluated. However, it is less clear which type of normélimeperforms best since
the performance of the different measures varies througtheudifferent domains.
However, none of the differences among these normalizatiethods is statistically
significant. For the subsequent experiments, we will alvaasy NormByWord as,
on average, it performs slightly (but not significantly) teetthan the other normal-
ization measures.

All normalization scores have in common that they reflectlémngth of a test
document? Thus, a document being assigned a label with a high confidsrare
can be translated as a document with a high density of pofanresgions combined
with a clear majority of one particular polarity type.

10 Even NormByPol reflects the length of the document as thedioagdocument is the more polar
expressions it will (potentially) contain.
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Table 9 Accuracy of different normalization methods in self-tiamn

Domain NoNorm  NormByPol NormBySent NormByWord

computer 64.17 78.61 78.39 80.22
products 59.44 69.17 68.89 70.78
sports 65.72 66.33 67.78 66.44
travel 68.44 70.50 69.67 69.56
movies 70.70 72.75 73.25 72.70
average 65.69 71.47 71.60¢ 71.94

*: significantly better than NoNorm; statistical significaris based on a chi-square test using< 0.05; for average
the significance is tested on the union of all domain data sets

4.2.3 Comparing the Different Feature Sets for Supervisstiing within
Self-Training

Table 10 compares the different feature sets used withirethieedded supervised
classifier within self-training (SelfTr). As in previousdi®ns, we bootstrap with
the standard rule-based classifier (i.e.,/2B.). We also include as a baseline the
performance of that rule-based classifier.

The table shows that — with the exception of #p@rtsdomain — no matter which
feature set is used, we obtain an improvement in performaneethe plain rule-
based classifier that is statistically significant. Ongpertsdomain no single feature
set reaches significantly better results than the ruleebelsssifier. This particular
domain already displayed some problematic behavior ondheparison of the dif-
ferent rule-based classifiers in Section 3.5. The reasomndor that (e.g., many
misspelt words) may also be responsible for the deviatigpeiriormance between
this domain and the remaining ones on the experiments diedus this section.

Self-training exceeds the performance of the rule-basaskifler using any of
the feature sets including MPQA (i.e., the feature set thaised in both the rule-
based and the supervised classifier). As already describ®edtion 4.1, this means
that a notable increase of performance is obtained by (g&thing domain-specific
weights for the features that are already used within the-bbalsed classifier. As
MPQA is, however, usually worse than the other feature sethave evidence that
it is also important for supervised learning to considereotieatures (i.e., domain-
specific features) than those contained in the domain-igrggnt polarity lexicon.
It is also worth noting that Adj600 performs on average dlighetter than MPQA
(with its 7,600 features) even though this feature set ooitgrises 600 words. This
finding, however, is consistent with previous work on seapeyvised learning where
this feature set displayed good performance throughoulifferent domains (Wie-
gand and Klakow, 2009a). The advantage of this feature #edti# contains domain-
specific features of which a very high proportion are predictvords, that is, polar
expressions.

The feature set producing the best results is Uni+Bi. Tharg$ome domains the
differences to other feature sets is comparatively sntake is no domain in which
another feature set outperforms this feature set. Top208®ai are very similar to
each other and usually only slightly worse than Uni+Bi. Gdegng the union of all
domain data sets, however, the improvement of Uni+Bi (0wg2D00 and Uni) is
even statistically significant. This means that, as far atufe design is concerned,
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Table 10 Accuracy of self-trained classifiers with different feasets.

Domain RB (Baseline) SelfTr

Top2000 Adj600 MPQA Uni Uni+Bi
computer 64.11 77.67 74.67 73.06° 78.56 80.22
products 60.78 69.00 68.33 66.72 69.06" 70.78
sports 64.33 65.83 63.89 65.11 64.22 66.44
travel 64.61 69.33 70.83 68.44 69.17 69.56°
movies 61.75 70.80 69.50° 69.40° 71.55 72.70¢
average 63.12 70.53 69.44 68.55° 70517  71.94°

*: significantly better than RBf: significantly better than any other feature set; staistiignificance is based on a
chi-square test using < 0.05; for averagethe significance is tested on the union of all domain data sets

the supervised classifier within self-training behaveslairto an ordinary supervised
classifier (Ng et al, 2006). Unlike in semi-supervised l@agriWiegand and Klakow,
2009a), a noiseless feature set is not necessary.

Qiu et al (2009) report best performance of SelfTr using gdaet of polar ex-
pressions. The feature set comprises an open-domaintydéaticon and is automat-
ically extended by domain-specific expressions. Our resuiggest that a less com-
plex alternative has a similar effect. Using SelfTr with gnaims and bigrams (i.e.,
SelfTry.:+ 5;) already provides better classifiers than SelfTr with a figigexicon
(i.e., SelfThspga). The increase is by approximatel§c3oints.

4.2.4 Comparing the Different Rule-based Classifiers witlfr Braining

Table 11 compares the different rule-based classifiers elfidraining. As a feature

set for the supervised classifier within self-training, wese the best performing
feature set from our previous experiments, that is Uni+Bie Table shows that im-
proving a rule-based classifier also results in an improveimighe self-trained clas-
sifier. If the union of all domain data sets is considered; thieven significant with

the exception of SelfTr(RB;4i») to SelfTr(RBw sp).

Self-training does not work with some rule-based classifan particular do-
mains. This is most evident in tlgportsdomain using self-training with RBy sp.
Apparently, the better the rule-based classifier is, theertibely a notable improve-
ment by self-training can be obtained. Note that inghertsdomain the self-trained
classifier using the most complex rule-based classifiet, itheSelfTr(RBy cign:).
achieves the largestimprovement compared to the ruledizdesssifier. We also checked
the other feature sets for this particular case and coulfiraosimilar tendencies.

It is also worth pointing out that, considering the averageslilts over all do-
mains the gain in performance that is achieved by improvibgsac rule-based clas-
sifier (i.e., RBp;4,) With incorporating the largest amount of context inforioat
(i.e., RBwecignt) is very similar to the gain that is achieved by just selirtirzg it
(i.e., RBp4in) With the best feature set (i.e., Selfiy;+ 5;). Fortunately, however,
these improvements are complementary which means thagyifate combined (i.e.,
SelfTryni+Bi(RBweign:)) this results in a further significant improvement.
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Table 11 Comparison of accuracy between different rule-basedifilerss(RB) and self-trained classifiers
(SelfTr) trained with best feature set (Uni+Bi) on diffet@omains.

Domain RBpiain RByw sD RBNeg RBweight
RB SelfTr RB SelfTr RB SelfTr RB SelfTr
computer 64.11  80.22 70.61 81.72 7356 8367 75.11 83.22
products 60.78 70.78 66.06 73.89 71.06 77.00f 7172 77.39f
sports 64.33 66.44 64.39 64.94 67.50 6889 69.17 72.28ff
travel 64.61 69.56 67.39 69.83 70.72 7383 7356 77.61ft
movies 61.75 72.70 64.80 72.45 67.85 73.55 72.10 7780
average 63.12 7194 66.65 7257 70.14 7539 72.33 77.6611
. significantly better than SelfTr bootstrapped on RBi., ': significantly better than SelfTr bootstrapped on

RB,w sp, *: significantly better than SelfTr bootstrapped on RB,; statistical significance is based on a chi-square
testusingp < 0.05; for averagethe significance is tested on the union of all domain data sets

*

4.2.5 Performance on the Different Classes

Table 12 compares precision, recall, and F(1)-score of iffereint classes for self-
training using the best feature set (i.e., SelfJt ;). The relation between the F-
scores of the two different classes differs between RB affdiSe

In RB, the score of the positive class is always significabéiter than the score
of the negative class. The high FXesults from a high recall and lower precision
whereas the low F1 results from a fairly low recall but high precision. This isne
sistent with previous findings (Andreevskaia and Bergle8). The gap of F1 be-
tween the two classes, however, varies depending on thelerityof the classifier.
In RBp4in, the gap is 17.4% points, in RBy sp it is 8.6% points, whereas it is just
approximately % points in RBy., and RBycign:. These numbers can be interpreted
in the following way: People usually explicitly employ ptigé polar expressions in
order to utter a positive opinion. However, they are moreatint to use negative po-
lar expressions to convey negative opinions. IngRB,, many negative instances are
classified as positive since many negative opinions in amect are not recognized.
Moreover, due to the lacking disambiguation of polar exgicess many false posi-
tive polar expressions are detected. A notable improvementitained by applying
some disambiguation (i.e., BB sp) as thus fewer (false) positive polar expressions
are detected. Since we measured another notable improveméhe detection of
negative opinions by incorporating negation modeling dreditnprovement on F1
is much larger than on F1, we may infer that people often employ negated posi-
tive polar expressions to convey negative opinions. Thg femwvever, that we still
measure a performance gap between the detection of paaitd/@egative opinions
in spite of all linguistic modeling (i.e., RBe;gr:) @and using a polarity lexicon that
contains almost twice as many negative polar expressignssitive expressions (see
Section 3), shows that detecting negative opinions isyeaiard problem.

In SelfTr, F1I~ is usually better than F1 By applying SelfTr, the amount of in-
stances being predicted as positive is reduced (in congratis RB) which results
in a decrease in recall but a notable rise in precision. Atsdrae time, the classi-
fier predicts more negative instances resulting in a boostdall and a slight drop
in precision. This relation between the two classes is i€ supervised polarity
classifiers (Andreevskaia and Bergler, 2008). Howevehadutd also be pointed out
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Table 12 Comparison of different evaluation measures betweenrdifterule-based classifiers (RB) and
self-trained classifiers (SelfTr) trained with best featset (Uni+Bi) on different domains.

Domain  RBpigin RBywsp RBNeg RBw cight

RB Selffr RB SelfTr RB Selffr RB SelfTr
Prect 59.15 73.28 63.25 74.38 67.19 76.96 68.97 80.71
Rect 85.36 69.13 79.37 68.67 78.61 72.01 81.23 72.69

F1t 69.81 71.14 70.39 7141 7242 74.39 7458 76.47
Prec™ 73.98 70.76 7250 71.02 7445 73.84 77.26 75.21
Rec™ 40.87 74.75 53.93 76.46 61.66 78.57 63.43 82.63
F1™ 52.36 74.69 61.79 73.64 67.40 76.12 69.62 78.73
Acc. 63.12 7194 66.65 72.57 70.14 75.29 72.33 77.66

that the gap between Fland FI is much smaller (approximately 2 t&3points).
Moreover, the size of the gap does not bear any relation t@aipein the original
RB, that is, although there is a considerable differencézea between the gaps of
RBpiqin @and RByeq (i.€., the gap in RByq:, is much larger than in RB.,), the
size of the gaps in the self-trained versions is fairly samilWe assume that it lies
in the nature of the supervised learner to produce a modeéthally well detects
positive and negative instances (provided that one usetaasdbwith an equal class
distribution). Since it is not bound to polar expressiond arfers negative polarity
in a data-driven manner, the supervised learner may be ruopessful in doing so
than the rule-based classifier.

4.2.6 Why the Features from Rule-based Classifier and SiggéerZlassifier Must
Be Kept Apart

We also experimented with a feature set for the supervisasbsifier (within self-
training) combining bag of words and the knowledge encodéle rule-based clas-
sifier. The features we derive from the rule-based classifethe two basic features,
that is, the number of positive and negative polar expressigthin a data instance
(according to the output of R&.,) and for each property that we considered for
heuristic weighting in RB/.;4x+ @ feature conjoined with either of those basic fea-
tures. For instance, for the property StrongPol (see Se8ti$.1), there is one feature
indicating the number of strong positive polar expressamdanother indicating the
number of strong negative polar expressions, respectively

Table 13 compares the performance of self-training withmsing those features
derived from the rule-based classifier (SelffF..:) and a classifier using those
features (SelfTy;n). That is, SelfTrnour just uses bag-of-words features while
SelfTr,;:1, Uses bag-of-words features and the additional featuregedieirom RB.
For self-training, we chose the best configuration from jmev experiments (i.e.,
RByweight @and Uni+Bi for bag of words). Note that for the supervisedssiter we
omit the tf-idf encoding since it does not make sense to apptythe features derived
from the rule-based classifi€r.The table shows that the performance of this com-
bination is worse than a classifier trained on bag of words. ddrrelation between

11 Since those features will occur much more frequently thamplivords throughout the documents,
the inverted document frequency will always be very low vahimould consequently heavily downweight
those features.
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Table 13 Accuracy of self-trainingwith/without features from rule-based classifier within supervised
learner.

Type computer products sports travel ~movies average
SelfTrwithout 82.50 75.78 7239 7561 75.85 76.43
SelfTryith 78.39 74.44 69.17 73.61 71.65 73.45

the features derived from the rule-based classifier, inqudatr the basic features, and
the class labelg is disproportionately high since these features essgngiatode the
prediction of the rule-based classifier. (Individual wqrais the other hand, correlate
much less with those class labels.) Consequently, the gispdrclassifier develops a
strong bias towards these features and inappropriatelypdeights the bag-of-words
features. Therefore, the supervised classifier withintsalhing should not use any
features from the rule-based classifier or more complexifeatthat expand those
features from that classifier.

4.2.7 What is Learned by Self-Training

In this section, we want to illustrate that the knowledgered by self-training is
potentially more expressive than the knowledge encodedileebased classifier. For
this purpose, we inspect the most highly ranked n-grams rticplar domain data
set—we chose theomputerdomain — according to the point-wise mutual information
to the class labels as predicted by self-training. Tabl@)ldlustrates the 50 most
highly ranked positive instances while Table 14(b) illastis the most highly ranked
negative instances.

There are many highly ranked n-grams that do not contaiitivepolar expres-
sions. Several n-grams include product brands, sudlas Intel, Dell Computer
or My Yahoo or items towards which people usually have a strong sentinier
instancehigh-speed interneinstallation feg or collection agencySuch entities are
domain-specific and are not contained in the polarity laxiee use, yet they may be
helpful for polarity classification (as the previous evéiolahas shown). On our data
set they correlate with some specific polarity type. Tharsfthese expressions can
be treated as (traditional) polar expressions as long ause this particular data
set. However, the general effectiveness of some of thesessipns, such as brands,
beyond our data set is debatable. The correlation of thasedsrwith a polarity type
reflects a strong sentiment of public opinion towards thehis Eentiment may be
transient. In other words, public opinion towards thesm#éenay be different from
that five years ago or five years in the future. After all, thesgressions should be
classified as opinion targets rather than polar expressima consequence, those
features could mislead the classification on data sets fatemanother point in time
rather than improve it. So, at least brands should be uséddoaiition on other data
sets. Some opinion targets, however, become fairly reigolar expressions. For
example, in the sports domain we found tgegtzkyis a highly positive cue. It refers
to former professional ice hockey playéayne Gretzkywho due to his outstanding

12 \We mean the class labels that are predicted byRB .+ and henceforth treated as actual class labels
by the supervised learner.
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success is often used as a (positive) reference point fer oftinion targets. In these
situations, the former hockey player is not evaluated hifhigg used as a means of
evaluating another sportsperson, usually by applyingpadtof the fornX is almost
as good as/better than Gretzky

Other n-grams not containing polar expressions becomesiplauif we recon-
struct their contexts. For instance, the bigralso hasis considered positive as it
occurs in contexts enumerating a plethora of functionseffdy a product (which,
as such, can already be interpreted as a positive property).

In general, both tables contain a large portion of bigrams. @larity lexicon
only contains unigrams, so this is another indication tliff¢mnt features are taken
into consideration. Quite many of those bigrams contaiapekpressions from the
polarity lexicon. A bigram containing a polar expressioryrha less ambiguous (and
hence more expressive) than just the occurrence of a pgeegsion as the bigram
encodes some local context. As we already discussed ino8ettl, such bigrams
may encode relevant linguistic phenomena. Indeed, we fisekoaf these phenomena
in the two tables, such as intensification (engost stabler real problen) or negation
(e.g.,not covey.

An interesting case is the highly ranked negative n-gnaonder how The word
wonderis ambiguous. As a noun its meaning is similambarvel or miracle and
as a verb it means eithenquireor question In the former case, the word is defi-
nitely positive, whereas in the latter case the word is eitio¢ polar or negative (but
admittedly with a much weaker polar intensity). Unfortuaigtour polarity lexicon
does not make this distinction and always classifiesder(irrespective of its part
of speech) as positive. Self-training (at least partialgolves this ambiguity, as it
establishedvonder howas a negative n-gram. The wowbnderfollowed by how
usually refers to the verb with the senseeoiquire At least for our domain corpus
it is appropriate to classify this bigram as negative as &ajgontext such as (20)
taken from our corpus suggests.

(20) Iwonderhow many error reports I've sent to Microsoft in the last hour

A similar case iggreat which often appears as a modifier of product properties
(e.g.,great valueor great featurg. The word as such is also ambiguous. Apart from
being a positive polar expression, it can also function aim@msifier containing no
polarity (21).

(21) We are often required to spendjeeatdeal of time at each other's homes when
there is agreatdeal of work to be done.

There are also several n-grams comprising a tensed ayxitilowed by a pos-
itive polar expression, for examplis, right, is superbis outstandingTense may be
informative within this domain, as we observed quite oftesifive polar expressions
in a past tense in negative reviews (22). Present tenseeathter hand, may then be
indicative of positive polarity.

(22) llovedp,s; the Inspiron 8600 ... until after one week, the hard driveldie
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Table 14 lllustration of the50 most highly ranked features per class from ¢oenputerdomain.

(a) positive features

moststable intel justbought everythingrom europe
is_superb prodigy i|annoying outstanding mp
programwith  high-speednternet  greawalue alsohas belland
graphicsand planeticket greatin anapple (although
is_right somereally acrobat design chile
a fantastic mag everyone. processingprogram member
sheet joystick. a4 this joystick is outstanding
is_amazing besbperating blocker, greatfeature thewww
stack sociahetwork amigawas myyahoo tacommunicate
,-read theblog appleis predecessor greetinzard

(b) negative features

installationfee saidwe delL.computer pasthe rateto
getslower directly. stole wefinally realproblem
on.ever holdand followedby collectionagency natcover
but get sureenough nevesigned itwere bbhand
unbelievable. last4 promisedit sbcservice sincenctober
all_have goesiown 3of town.and isnt
afavor youfeel care, it_like g20
terrible_service senthe monththe im_not at&tworldnet
aresimply $10Q, sign.of repsi issuesand
andy nevercall wondethow would.send wasout

Table 15 lllustration of rules for NP level from PolArt.

ADJ NOUN
NEGATIVE POSITIVE
NEGATIVE NEGATIVE
POSITIVE POSITIVE
POSITIVE NEGATIVE
POSITIVE NEUTRAL
NEGATIVE NEUTRAL

NP Example
NEGATIVE adisappointed hope
NEGATIVE ahorrible liar
POSITIVE a good friend
NEGATIVE a perfect misery
POSITIVE a perfect meal
NEGATIVE ahorrible meal

U AR AR

5 Compositional Polarity Classification and Self-Training

In this section, we will compare the rule-based classificatve presented in previous
sections with compositional polarity classification (aléth respect to self-training).
As a rule-based compositional polarity classifier, we wiamine the PolArt sys-
tem (RBp, 4.-¢)- This is a multilingual classifier that has already beernuatad on
various data sets (Klenner, 2009; Klenner et al, 2009a,b).

The main difference between this classifier and the classifiat have been eval-
uated in the previous sections is that polar expressionsmreonsidered in isolation
from each other but are combined by rules to form larger listiriunits, such as
noun phrases (NPs), verbs phrases (VPs), and sentencgml@hgy composition is
implemented as a cascade of transducers operating on thi@plarities of a polarity
lexicon, a chunk parser (TreeTagger (Schmid, 1994)), ared afpattern-matching
rules. For instance, Table 15 illustrates the rules for NIRg. system employs a total
of 60 compositional rules.
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Due to the fact that polarity is assigned to general lingrishits rather than
just lexical units, PolArt also employs a more dynamic niegascope modeling
than the previously proposed method using fixed (word-Dasidiow size (see also
Section 3.3.2). In general, the rules of PolArt restrict $ieepe of negation to the
following chunk containing content bearing words, thattiygically noun or verb
chunks (23). While scope modeling based on window size fréa the window
size we use is 5) may erroneously reverse polar expresdiahsiute not within the
actual scope of the negation, such as (24)-(26), the magk#sed on chunk parsing
is more likely to determine the correct scope.

(23) Locating the human soul and discovering what makes véveis [not [such an

ﬁy_ tasHEounChunk]_ .
(24) still earthlink[cannotftell]y ¢ bchunk] Me what is wrong.

(25) Dolnot[dealyerbchunk] With these morons!
(26) This is a really good movig¢No []], this is a great movie.

5.1 Evaluation at the Document Level

We will now compare the performance of compositional ptyarlassification with
that of traditional rule-based classification at the docoinhevel. The two types of
classifiers will also be evaluated with regard to self-tiragn We will carry out the
experiments on the same data on which the experiments ofopiegections have
been conducted. As a standard rule-based classifier, wéleoitise best rule-based
classifier from previous sections, that is ffB4n:. Since the resources that PolArt
uses are differentto the ones that have been employed ilbpsssxperiments, that is,
PolArt uses a different part-of-speech tagger (TreeTagdermid, 1994)) and differ-
ent lexical resources, such as negation words and intessifie modify our standard
rule-based classifier in that it uses the identical resauasd?olArt in order to ensure
comparability between those classifiét$n order to indicate the difference between
the standard rule-based classifier employed in previousrarpnts and the one used
in the experiments described in this section, we will refethe (standard) classifier
using the resources of PolArt as RB; ¢~ (rather than RB/;4n¢). For self-training,
we also use the best configuration of previous experimédrasis SelfT; ;1 5.

Table 16 displays the results. R 4,. does not outperform RB¢;qn¢+. On most
domains, it is actually worse than RB; 4.+ though on no domain the drop is statisti-
cally significant. Self-training, however, consistenttydroves a rule-based classifier,
no matter whether it operates on the output of a standarsifitasor a compositional
classifier. As in previous experiments, the degree of imgmoent varies. The low im-
pact of the compositional classifier is reminiscent of thpait of the different (indi-
vidual) features used for heuristic weighting in the stadddassifier (Section 3.4.6).
Apparently, it is difficult (at least at the document leval)greatly improve polarity
classification with straight-forward linguistic methods.

13 We also ensure that both classifiers predict the same defalalty if the rule-based classifier predicts
atie.
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Table 16 Comparison of standard rule-based polarity classifiery¢RE;.;~) and compositional classifier
(RBp,;art) With respect to self-training on document-level data éeialuation measure: accuracy).

Domain RByweight* RBpoiart
RB SelfTr RB SelfTr

computer 7250 82.61 72.67 81.56
products  70.78 77.56 68.33 74.22
sports 65.14 67.66 62.94 66.49
travel 70.44 72.22 67.83 69.61
movies 67.30 73.25 67.30 69.85
average 69.23 74.66 67.81 72.35

5.2 Evaluation at the Sentence Level

In this section, we evaluate the performance of compositipolarity classifica-
tion at the sentence level. Sentence-level polarity diaasion is usually harder than
document-level polarity classification since less textlitim an instance) for classi-
fication is available. The difficulty is also reflected by a éavaccuracy achieved by
supervised learning with bag-of-words features (Wieganttidakow, 2009b). Since
there is less text and therefore also fewer polar expressiomay also be more im-
portant to disambiguate each individual expression at éméesice level than at the
document level.

We evaluate the performance on a standard data set (Hu anaddd) on which
PolArt has already been evaluated (Klenner et al, 2009a)ddamsample the data
set to equal class sizes as class imbalance is a complexassuwill, therefore,
be discussed separately in Section 7. The resulting datzoetins 2888 sentences
(i.e., 1444 sentences per class). Again we compare theasthnade-based classifier
RBw eignt+ With the compositional classifier BB, 4,.. For self-training, we use the
same configuration as in previous experiments (with, of s®the exception that we
use unlabeled sentence-level data instead of unlabeleshant-level data). Table 17
shows the results. Unlike in the experiments at the docuteeel, the compositional
classifier outperforms the standard classifier. The imprearg obtained by the for-
mer is even statistically significant. This supports ounuagstion that fine-grained
polarity classification requires more linguistically-immed analyses. This insight is
also reflected by the fact that other compositional appresshmilar to PolArt have
not been evaluated at the document level but on expressieh(leéhoi and Cardie,
2008) or at the sentence level (Moilanen and Pulman, 2007).

Table 17 also shows that self-training consistently impsothe rule-based clas-
sifier but the general impact is fairly low. This can be expéal by the fact that bag-
of-words feature sets are much sparser on a sentence-lagsification task than
on a document-level classification task (as a document lyst@htains much more
unigue words than a sentence) (Wiegand and Klakow, 2009b).

In summary, compositional polarity classification is muatreneffective on sentence-
level classification tasks than on document-level tasksh@matter, a standard rule-
based classifier in combination with self-training is a mam@mising alternative.
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Table 17 Comparison of standard rule-based polarity classier{RB ;) and compositional classifier
(RBp,;art) With respect to self-training on sentence-level dataesetlgation measure: accuracy).

RB SelfTr

RBweigntx  69.81 70.98

RBpoiart 73.16° 75.55
*: significantly better than RB.; 4+ ; Statistical significance is based on a chi-square tesgysit 0.05

6 Comparison with Statistical Domain Adaptation

In this section, we will compare self-training with staitis domain adaptation. Again,
we will consider document-level classification as this estypical task on which do-
main adaptation is evaluated in sentiment analysis (Beire¢kl, 2004; Blitzer et al,
2007; Tan et al, 2008; Melville et al, 2009; Prabowo and Tlaiiv2009; Qiu et al,
2009; Tan et al, 2009; Titov, 2011). By statistical domaiaatdtion one understands
data-driven algorithms that combine labeled out-of-dantiaining data with unla-
beled in-domain training data. This setting mirrors réf@-$ituations as usually the
labeled training data that are available for a particulak tdo not originate from
the domain for which one intends to build a classifier. On ttieiohand, unlabeled
in-domain training data are easy to obtain as they requiraaual annotation.

Statistical domain adaptation can be considered as a $pgrgaf semi-supervised
learning, which, in general, incorporates labeled andheitd training data but not
necessarily labeled training data from a domain that ighffit to the one from which
the test data are sampled. The main differences betwedgstistdtdomain adaptation
and self-training, therefore, are that the former is dataed and considers little lin-
guistic structure (e.g., most approaches applied on sentimnalysis usually just
consider a plain bag-of-words feature representationjenthe latter does not con-
sideranylabeled training data but a polarity lexicon and linguistites.

In this work, we only consider (statistical) domain adaptaimethods and ex-
clude traditional semi-supervised learning algorithmmrfrour evaluation since a
direct comparison of semi-supervised learning and saifitng has already been
published in (Wiegand and Klakow, 2010) showing that selining is much more
effective.

Many state-of-the-art adaptation approaches are basdtkadda ofshared fea-
ture representatior{Blitzer et al, 2006) in which a new representation of theadat
instances is induced from the original feature represiemdtsually bag of words)
that makes instances from source and target domain look simitar than in the
original representation. This feature representatiamalto train more robust clas-
sifiers. A popular algorithm that incorporates this ideatisictural corresponding
learning(Blitzer et al, 2007) in which predictive features from a smdomain (they
are derived from a manually labeled training set) are auticady aligned to a set of
predictive features in a target domain (for which only ueleld data are available)
with the help of a set of domain-independeitot features. Designing those pivot
features can be considered as an auxiliary task and forimglttose features is a
non-trivial engineering problem that requires task-sfi@&nowledge. That is why
we will make use of a more recent adaptation method that islepéndent on this
auxiliary task (even though it still uses shared featureegsgntation). Titov (2011)
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presents a domain adaptation approach baséatent variable modelsThese latent

variables capture regularities on unlabeled data from dothains. In order to damp
the influence of latent variables that correspond to clasigfeatures only specific to
the source domain (which would cause classifiers beingdestehe target domain
to perform poorly) the objective function of the learning@ilithm includes a term
that regularizes inter-domain differences in margindritistions of each latent vari-
able. This adaptation method has been shown to be competitir that of structural

corresponding learning despite the omission of pivot fesstu

6.1 Evaluation

Since we cannot replicate the set-up used in (Titov, 20IXjdoself-training method
as that data set only exists in the form of a bag-of-wordsifeaepresentatidfiand
our rule-based classifier requires some natural languagdagged with parts of
speech, we need to re-run the statistical domain adaptaticsome different data
set on which we can also re-rerun our self-training approAsta data set, we sam-
pled some data from the original crawl from which Titov (2Dgbt his preprocessed
datal® Note that we could not reuse the data set from our previousrarpnts at
the document level (see Section 2) as the amount of unlabakads insufficient for
the statistical domain adaptation method. As labeleditrgidata we use 2000 docu-
ments (i.e., 1000 positive and 1000 negative documentg eauthas unlabeled train-
ing data we use exactly the amount of data that was employ€dtov, 2011) (the
size varies throughoutthe different domaitfs)Ve always test on 2000 data instances
(again, 1000 positive and 1000 negative documents eaaige Sie have a varying
amount of unlabeled data ranging from 3586 to 5945 docunpemtdomain, we need
to set the number of unlabeled documents that will be usepsasifio-)labeled train-
ing data within self-training in proportion to the total anomt of available documents
per domain (rather than employing a fixed number of docunenteas been done in
Sections 4 and 5). We always use 70% which provided good qeégfoce on all do-
mains. The optimal performance on each individual doma#gsdwt necessarily co-
incide with this configuration. Previous experiments (seeti®n 4.2.1) have shown
that the optima of different domains may diverge. We coneatjy felt that using
the specific optimal configuration for each respective domauld be tantamount
to overfitting since for an unknown domain the specific corrfigjon would not be
known. Therefore, the choice of 70% is a fairly domain-inglegent configuration
which should also provide reasonable results for a new (onvkindomain.

Table 18 displays the results of this comparison. In addlitiothe results of sta-
tistical domain adaptation and self-training, we also ldigghe results of the best
rule-based classifier from previous experiments (i.e.wRBr: from Section 3) and

14 Titov  (2011) made his  experiments on the data set availablet: a

http://lwww.cs.jhu.edu/"mdredze/datasets/sentiment/p rocessed _acl.tar.gz.
15 available at:
http://www.cs.jhu.edu/"'mdredze/datasets/sentiment/u nprocessed.tar.gz

16 We even replicated the distribution of positive and negaiivstances in the unlabeled training data
(note that the crawl does not contain any mixed reviews)n ékeugh those distributions were always
close to uniform class distribution.
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both out-of-domain and in-domain supervised learning.dédh types of supervised
classifiers, we employ SVMs. As a feature set, we use all anmgrand bigram¥.
For domain adaptation, we only consider the best classifesrgmted in (Titov, 2011),
that is, a latent variable model with regularization ternrmbined with an out-of-
domain model using product-of-expetfs-or the out-of-domain classifiers and do-
main adaptation, we always present three different re¢edtsh of them differs in
the labeled training set that is used): one considers thesalomain that produces
worst results on a particular test set (iWorst Out-of-domain SupervisaddWorst
Domain Adaptatiol one that considers the source domain that produces Isedtsre
(i.e., Best Out-of-domain Supervisead Best Domain Adaptationand the aver-
age of all source domaifis(i.e., Average Out-of-domain Supervisadd Average
Domain Adaptatiop For self-training, we consider the best model from prasio
experiments, i.e., Selfft,;+ i (RBweight)-

The results of Table 18 show that RB is by far the worst classiEvenWorst
Out-of-domain Supervised systematically better. There is always a large gap be-
tween the worst and the best source domain for out-of-dosgiervised learning
(and this is also reflected by domain adaptation). The refmothat is that some
domains are very similar, in particulatectronicsandkitchen?® As a consequence,
the corresponding out-of-domain classifiers, e.g., aiflasthat is trained otkitchen
and tested orlectronics produce good results which are extremely hard to beat.

Each domain adaptation method outperforms its supervigedfedomain coun-
terpart with one exception beirBest Domain Adaptatiotested orbooks However,
the drop in performance compareddest Out-of-domain Supervisexhot statistical
significant?!

On this data set, self-training definitely works as well \Ways achieves a notable
improvement over our previous baseline RB. However, itfiéodilt to judge whether
self-training or domain adaptation is more robust. Thegraenaince of domain adap-
tation very much depends on the source domain. Self-trgjron the other hand,
exclusively considers unlabeled in-domain training d@@mpared td\Vorst Domain
Adaptation SelfTris the clear winner. The opposite situation is the case, Wiewe
whenSelfTris compared wittBest Domain Adaptatiarif we consider the average
performance of domain adaptation, however, self-traiaimgj domain adaptation are
on a par with each other, i.e., on two (test) domawsrage Domain Adaptation
slightly outperformsSelfTrand on the other two (test) domaiBglfTrslightly out-
performsAverage Domain Adaptatioff As expectedn-domain Supervisegresents

17 Note that unigrams alone did not produce better resultsifioerein-domain or out-of-domain classi-
fication.

18 In (Titov, 2011) this model is referred to &eg+

19 Of course, we only consider those source domains which &ezetit to the target domain on which
is tested.

20 This is due to the fact that many items kitchenare electric devices whose reviews cover aspects
that are similar to the ones discussed in the reviews fromelbetronicsdomain, such as usability or
malfunctioning components.

21 significance is based on a chi-square test ugirg0.05.

22 Unfortunately, we cannot carry out any statistical sigatfice tests on the results of this comparison,
as there is no commonly established significance test to amran averaged result (i.Average Domain
Adaptation) with an individual result (i.e.SelfTy).
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Table 18 Comparison of statistical domain adaptation with othesdgifers (evaluation measure: accu-
racy).

Classifier Domain
books dvd electronics  kitchen average

RB 67.15 65.60 64.00 68.25 66.25
Worst Ouf-of-domain Supervised 70.15 70.55 70.45 73.70 71.21
Best Out-of-domain Supervised 78.65  77.50 81.00 82.60 79.94
Average Ouf-of-domain Supervised 73.43  73.12 74.12 77.08 74.44
Worst Domain Adaptation 7155 73.15 74.10 78.50 74.33
Best Domain Adaptation 76.90 79.40 84.20 86.50 81.75
Average Domain Adaptation 74.23  75.23 78.00 81.48 77.24
SelfTr 76.89 74.63 80.88 80.19 78.15
In-domain Supervised 83.20 82.60 86.70 84.25 84.19

an upper bound. Onlest Domain Adaptatioslightly outperformdn-domain Su-
pervisedon kitchen Both Average Domain Adaptatioand SelfTrare still notably
lower than this upper bound. This shows that there is stithes@onsiderable room
for improvement.

In conclusion, there is no clear winner between statistioahain adaptation and
self-training. Considering the average performance ofa@laradaptation, the perfor-
mance of these two approaches is in fact very similar. We onformulate a rule-
of-thumb that suggests to consider statistical domaintatiap if the source domain
is fairly similar to the target domain, and if a distant saudomain is considered,
self-training might be a safer option.

7 Natural Class Imbalance and Mixed Reviews

In this section, we want to investigate what impact natulaés imbalance has on
bootstrapping polarity classifiers with a rule-based di@ss\We want to explore how
different class-ratio estimation methods approximathey ¢lass distribution on the
test set perform. Note that the best classification perfaomas usually obtained
when the class distribution of the training set and testseidentical.

In this section, the unlabeled data set will include mixedews (in addition to
definite positive and negative reviews), that is, 3 starawsi(see Section 2). We
refrain from including those reviews in our test data. Thesomn for this is that (as
already stated in Section 2) these reviews present a vegydgeineous data set that
contain both indefinite polar reviews and definite polareess (i.e., positive or nega-
tive reviews). Therefore, it is inappropriate to assigritadise reviews the same class
label. Due to the availability of such data the experimergsomly carried out on the
Rate-It-Alldata. We also add the constraint that the test data must jeéntlisom
the unlabeled training data.

Test data are exclusively definite positive reviews (i.e% 8 star reviews) and
definite negative reviews (i.e., 1 & 2 star reviews). 3 staiaws are ignored. From
each domain, we randomly sample 200 data instances 10 tkegsreserve the class
ratio on each test set corresponding to the distributioreéihie polar reviews. In the
following, we will state the results averaged over thestediit test sets.
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Fig. 4 Set-up of experiments using self-training on data sets witralanced class distribution.

As labeled training data for the embedded supervised @ixssithin self-training,
we — similar to Section 6 — use 70of data instances labeled by the rule-based clas-
sifier ranked by confidence of prediction. We consider agarbiest classifier from
previous experiments, that is, Selfily;+ gi(RBweignt). Figure 4 illustrates the set-
up of the experiments in this section.

7.1 Comparison of Different Class-Ratio Estimates

We will compare how alternative class-ratio estimatestedia each other when ap-
plied to self-training. We compare the actual distributjBatio-Oracle) with the bal-
anced class ratio (Ratio-Balanced), the class ratio asqegiby the rule-based clas-
sifier over the entire data set (Ratio-RB) and estimatesegdirom a small amount
of randomly sampled labeled data instances from the dat&\&etandomly sample
20 (Ratio-20), 50 (Ratio-50) and 100 (Ratio-100) instan&es each configuration
(i.e., 20, 50, and 100), we sample 10 times, run SelfTr foheatnple and report the
averaged result. Table 19 summarizes the different chtssestimation methods.
We compare the self-trained classifier with two baselirtes, is, a classifier al-
ways assigning a test instance to the majority class (Mgj@) and the most ro-
bust rule-based classifier from previous experiments{RB.). Note that these two
baselines are complementary. While on a balanced data s@irilg-Cl is usually a
weak baseline (i.e., in binary classification this corregfsto an accuracy of 50%),
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it is a fairly strong baseline on data sets with a heavily sedalass distribution. The
larger the proportion of the majority class is, the more difii it is for a classifier to
produce a model that also assigns the label of the minoassdo data instances and
at the same time makes fewer misclassifications than Mgj@fitRByy ;41 , ON the
other hand, is a much stronger baseline on balanced datavbétson data sets with
a heavily skewed class distribution, it may be worse tharokitgj-Cl. 23

Table 20 displays the performance of the different clagsifi@\Ve display the re-
sults of the data sets using 3 star reviews within brackedte Nowever, that we will
discuss the impact of mixed reviews in the next sectionflaking Ratio-Balanced
produces the worst results among the self-trained classif@n average, it outper-
forms Majority-Cl but it is still worse than RB.;4x:. On Chinese data, this method
(i.e., SelfTr using Ratio-Balanced) has been reported aoesather well (Tan et al,
2008; Qiu et al, 2009). We can only speculate about the refisaihese different
results, e.g., differences between Chinese and Engliiaretices in the annotation
schemes of those data sets, etc. The fact that Ratio-Onaxlages best results comes
as no surprise since the class distribution in training astiget is the same. On av-
erage, Ratio-100 produces the second best result. Ratis-B&ter than both Ratio-
Balanced and the class-ratio estimation method using tlelesshlabeled sample,
that is, Ratio-20.

These results can be best explained by also consideringénage deviation (in
percentage points) of the individual class-ratio estiorathethods towards the actual
class distribution on the test sétThis information is displayed in Table 21. Ratio-
Balanced has the largest deviation and therefore perforonstwRatio-100 has the
smallest deviation and consequently performs better thawther estimation meth-
ods. On average, Ratio-RB is slightly better than RatioA2he performance results
on Table 20 show, this is mainly due to the fact that Ratio-RBétter on theports
andtraveldomains. We found that these are domains in which the nunfipersitive
opinions largely outweighs the number of negative opinie® also Table 1). We
assume that Ratio-RB works well on these distributions Esbiased classifiers have
a general bias towards positive opinions (see also Sectibh)4

In summary, using (small) samples of labeled data instaiscas effective way
for class-ratio estimation enabling SelfTr to consisteatitperform Majority-CL and

RBWeight .

7.2 Impact of Mixed Reviews

As Ratio-Oracle, Ratio-RB, Ratio-20, Ratio-50, and R4t} suggest, the presence
of mixed polar reviews (see results within brackets in T&¢ does not produce
notably different results. The results of Ratio-Balanceeneshow that using 3 star

23 gimilar to Section 6, we refrain from doing statistical sfipance tests in this section since Ratio-20,
Ratio-50, and Ratio-100 are averaged results over 10 samylereas the remaining classifiers are single
results and there is no commonly accepted way of comparegtlifferent types of data (i.e., averaged
results vs. single results).

24 Example: if the actual class ratio is 80:20 and the estimedtid is 90:10, then the deviation will be
10.
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Table 19 Description of the different class-ratio estimation mekho

Ratio-Oracle class ratio corresponding to test g@pper bound)

Ratio-Balanced balanced class ratigower bound)

Ratio-RB class ratio derived from predictions of that data set agogrtb best rule-based
classifier (i.e., RBycignt)

Ratio-20 class ratio based on 20 randomly sampled (labeled) docsnfrem the data set

Ratio-50 class ratio based on 50 randomly sampled (labeled) docsnfremh the data set

Ratio-100 class ratio based on 100 randomly sampled (labeled) dodsnfram the data

set

reviews results in a marginally yet consistently bettefgrenance throughout all do-
mains. The reason for these results may be that self-tgagincessfully manages to
exclude harmful 3 star reviews and include useful 3 staeresifor the labeled train-
ing set. As already stated in Section 2, 3 star reviews do nigtapntain indefinite
polar reviews (harmful reviews) but also positive and nizgateviews (potentially
helpful reviews). If those reviews with an actually defirpiarity were selected for
the training collection (and by random selection we idegdi§uch cases), this would
have the same impactasifal, 2, 4, or 5 star review were chosen

8 Related Work

There has been much work on document-level polarity classifin using super-
vised machine learning methods. Various classifiers antifeasets have been ex-
plored (Pang et al, 2002; Ng et al, 2006; Salvetti et al, 2086pport Vector Ma-
chines (SVMs) (Joachims, 1999) usually provide best reg¢Ring et al, 2002). Un-
igram and bigram features outperform complex linguistatdiees (Ng et al, 2006).

Rule-based polarity classification has attracted simiteendon as supervised
classification during the last decade. Most rule-basedifias (that have been em-
pirically validated) share the basic concept of using a fityléexicon to determine
the polarity of a text that is to be classified. These worksyaliffer in the way that
contextual modification is modeled. Polanyi and Zaeneng2pfopose a framework
in which scores are heuristically assigned to polar exmassliepending on their in-
dividual contexts. Thus, various phenomena sucheggmtionandintensificationare
taken into consideration. Implementations inspired by fremework have empiri-
cally been proven effective (Kennedy and Inkpen, 2006)tHaurextensions incor-
porate more complex rules that determine how the polaritgpdif/idual expressions
or syntactic constituents is combined in order to compugeaberall polarity of a
phrase, sentence, or even document (Moilanen and Pulm@n; 8Baikh et al, 2007;
Choi and Cardie, 2008; Klenner et al, 2009b; Min and Park, 120t addition to
these rules, Taboada et al (2011) propose to assign scdrativimual polar expres-
sions rather than giving all polar expressions a unifornofgpolarity) score. Thus,
unlike many other approaches, the individual differencasvben polar expressions
are successfully incorporated into the rule-based classifi

Semi-supervised learning for polarity classification hasrbshown to be effec-
tive on inducing polarity lexicons from general lexical easces, such as Word-
Net (Esuli and Sebastiani, 2006, 2007; Rao and Ravichan@@09; Baccianella



Table 20 Accuracy of different classifiers tested on naturally inspaled data: for self-trained classifiers the numbers inkbtactate the results on a data set that includ

3 star reviews in the unlabeled (training) data.

SelfTr
Domain Majority-CI  RB ywciqn: | Ratio-Oracle  Ratio-Balanced Ratio-RB Ratio-20 Ratio-50 Rtio-100
computer 56.83 75.05 82.95(82.80) 82.55(82.90) 77.05(76.20) 77.41(76.63) 80.70(79.85) 81.24(81.11)
products 63.07 76.55 81.70 (81.40)  75.85(76.10)  78.65(78.55) 77.87 (77.89) 2@(B0.29) 81.00 (81.47)
sports 78.68 77.35 80.50 (80.80) 61.50 (62.60) 80.35(81.15) 78.97(79.32) 79.70(79.80) 80.31(80.31)
travel 74.07 79.45 82.25(82.00)  67.00 (68.15) 81.80 (81.75) 79.71(79.59) 81.26(81.12) 81.31(81.44)
average 68.16 77.10 81.85 (81.75)  71.73 (72.44)  79.46 (79.41) 78.49(78.36) 4®(B0.27) 80.97 (81.08)

Table 21 Average deviation (in percentage points) of the differdassratio estimation methods from the actual class Higidn along their average accuracy.

Ratio-Balanced Ratio-RB  Ratio-20 Ratio-50 Ratio-100 (Rab-Oracle)
Average Deviation 18.16 7.50 8.07 4.28 3.33 (0.00)
Average Accuracy 71.73 79.46 78.49 80.48 80.97 (81.85)
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et al, 2010), or the Web (Turney and Littman, 2003; Velikbvét al, 2010) but on
text classification, the effectiveness is heavily depehderthe parameter settings.
Significant improvement over supervised classification aften only be achieved
in the presence of few labeled training data and a predittisure set, such as in-
domain adjectives or polar expressions from a polaritycdexi(\Wiegand and Klakow,
2009a). A detailed study on cross-domain polarity clasdifim comparing super-
vised and semi-supervised learning is presented in (AueGamdon, 2005). Semi-
supervised learning (i.e., a derivation of the expectatimximization algorithm for
a naive Bayes classifier) using unlabeled in-domain trgixiata along labeled out-
of-domain data outperforms the usage of supervised legjnst using labeled out-
of-domain data. Another effective semi-supervised apgr@aiggests to apply unsu-
pervised learning (i.e., clustering) to classify unambigsidata instances and restrict
manual annotation to hard data instances (Dasgupta andi9§).2

Apart from the statistical domain adaptation methods thatweady discussed
in Section 6, there have been other notable methods exarftinpdlarity classifica-
tion: Tan et al (2009) propose a semi-supervised versiomeofiive Bayes classifier,
in which the initial classifier using labeled out-of-doméiaining data is restricted
to domain-independent (generalizable) features that@reied by incorporating a
metric based on the Frequently Co-occurring Entropy. Dyithre iterations larger
weights are assigned to the contribution of the unlabeledbimain training data,
allowing domain-specific knowledge to be included into thedel. There is some
conceptual similarity to the self-training algorithm posed in this article as both
approaches make use of an initial classifier with domaimjireshdent knowledge for
bootstrapping. Beineke et al (2004) propose a model in wiietknowledge gained
from Web-based lexicon induction (Turney and Littman, 2063ncorporated into a
Bayes classifier using labeled in-domain training data.il@my, Andreevskaia and
Bergler (2008) present an approach in which a rule-basadifiker based on a polar-
ity lexicon and a supervised classifier trained on in-dondaita are combined. The
combination exploits the complementary precision of the &pproaches on positive
and negative data instances. Melville et al (2009) and Rvaland Thelwall (2009)
consider the same types of classifiers as Andreevskaia aigteB€008). While in
(Melville et al, 2009) they are incorporated into a generathodel, in (Prabowo and
Thelwall, 2009) a sequential order of the classifiers ismieiteed and a prediction of
an individual classifier is only considered if the preceditagsifier (according to that
order) fails to provide a classification. The major differerbetween Andreevskaia
and Bergler (2008), Melville et al (2009), and Prabowo andlwiall (2009), on the
one hand, and the approach presented in this article, ontliee band, is that our
method is the only approach that does not require any laligdéting data as we
present a (strictly) sequential classifier in which the (pesvised) rule-based classi-
fier always comes first.

Bootstrapping supervised machine-learning classifietts the help of rule-based
classification has already been effectively applied to exthjity detection of sen-
tences (Wiebe and Riloff, 2005). The method has also beeliedfp polarity clas-
sification, but so far only on Chinese data (Tan et al, 2008; &ial, 2009). While
the performance with out-of-domain supervised classifiecompared in (Tan et al,
2008), this method is embedded into a complex bootstrappiatem that also ex-
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tends the vocabulary (i.e., feature set) of the rule-bakessidier in (Qiu et al, 2009).
In (Wiegand and Klakow, 2010), we already presented funtiorel contributions,
such as examining the impact of the rule-based classifien@firtal result, the rela-
tion between self-training and semi-supervised learramgl, various settings of the
self-training algorithm, in particular, different featusets for the supervised classi-
fier and the impact of imbalanced class distribution. Howgehés work significantly
extends that initial evaluation. In this article, we had arendetailed look at the
impact of the different components within a rule-basedsifes. For negation mod-
eling, we examined the importance of polarity shifters,at@m disambiguation, and
scope optimization. For heuristic weighting, we evaluatedidual features and also
extended the set of features introduced in (Wiegand andd@laR010). We found
that on a cross-domain evaluation, only very few features,(polar adjectives and
modality) systematically help. Moreover, we also examitteslimpact of compo-
sitional rule-based classification showing that these types$ of classification are
complementary. While self-training works better at the woent level than at the
sentence level, the reverse case is true for compositiateabased classification. As
far as the self-traininglgorithmis concerned, we looked in more detail at the impor-
tance of confidence ranking and normalization and foundttieathoice of parame-
ters plays a crucial role for the effectiveness of the rasgttlassifier. In addition, we
illustrated for one domain what actual features are leathethg self-training and
thus proved that these features differ from the knowledge@ed in the rule-based
classifier and that they are potentially much more expressiast but not least, we
compared self-training with state-of-the-art statidtidamain adaptation using la-
beled out-of-domain training data and found that on avessdfetraining produces
performance that is competitive to that type of algorithms.

9 Conclusion and Future Work

In this article, we examined the effectiveness of bootgtiragpa supervised polarity
classifier using the output of an open-domain rule-basessifiar. The resulting self-
trained classifier is usually significantly better than tipem-domain classifier since
the supervised classifier exploits in-domain features.aka$ the choice of the fea-
ture setis concerned, the supervised classifier withirtegiliing behaves very much
like an ordinary supervised classifier. The set of all uniggand bigrams performs
best.

The type of rule-based classifier has an impact on the pedocmof the final
classifier. To some extent, the more accurate the rule-ludassifier is, the better the
resulting self-trained classifier is. However, not all typé linguistic modeling that
can be applied for polarity classification have the same anp&brd disambigua-
tion with the help of part of speech, negation modeling andesad-hoc heuristic
weighting of polar expressions accounting for special extotal properties improve
performance. Compositional rule-based polarity clas#ificn in which polarity is
propagated from lexical units to larger linguistic units,the other hand, has a more
restricted impact. We only measured some improvement aieiseg-level data. On
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such a fine-grained text level, however, the improvemenseauy self-training is
more limited as text instances are composed of fewer worels fgatures).

A comparison to statistical domain adaptation revealedstli& training produces
performance competitive with that of state-of-the-art dimradaptation.

Self-training also outperforms a rule-based classifier amdajority-class clas-
sifier in more difficult settings in which mixed reviews arertpaf the data set and
the class distribution is imbalanced, provided that thesiatio estimate does not
deviate too much from the actual ratio on the test set. A alass estimate can be
obtained by the output of the rule-based classifier but, eneae, using small labeled
samples from the data collection produces more reliabldtses

In future work, we would like to examine what impact a more fgrained po-
larity lexicon assigning individual scores to polar exgiess has on self-training.
Moreover, we would like to extend the binary classificatisogmsed in this article
to a three-way classification in which apart from positivd aegative polarity mixed
polar reviews are not only part of the unlabeled trainingdatt are also among the
test data and consequently have to be explicitly modeled.
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