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Abstract

In order to automatically extract opinion
holders, we propose to harness the con-
texts of prototypical opinion holders, i.e.
common nouns, such asexperts or an-
alysts, that describe particular groups of
people whose profession or occupation is
to form and express opinions towards spe-
cific items. We assess their effectiveness
in supervised learning where these con-
texts are regarded as labeled training data
and in rule-based classification which uses
predicates that frequently co-occur with
mentions of the prototypical opinion hold-
ers. Finally, we also examine in how far
knowledge gained from these contexts can
compensate the lack of large amounts of
labeled training data in supervised learn-
ing by considering various amounts of ac-
tually labeled training sets.

1 Introduction

Building an opinion holder (OH) extraction sys-
tem on the basis of supervised classifiers requires
large amounts of labeled training data which are
expensive to obtain. Therefore, alternative meth-
ods requiring less human effort are required. Such
methods would be particularly valuable for lan-
guages other than English as for most other lan-
guages sentiment resources are fairly sparse.

In this paper, we propose to leverage contex-
tual information from prototypical opinion holders
(protoOHs), such asexperts or analysts. We define
prototypical opinion holders as common nouns de-
noting particular groups of people whose profes-
sion or occupation is to form and express opinions
towards specific items. Mentions of these nouns
are disproportionately often OHs:

1. Experts agree it generally is a good idea to follow the
manufacturers’ age recommendations.

2. Shares of Lotus Development Corp. dropped sharply
afteranalysts expressed concern about their business.

Since protoOHs are common nouns they should
occur sufficiently often in a large text corpus in
order to gain knowledge for OH extraction. We
examine different ways of harnessing mentions of
protoOHs for OH extraction. We compare their
usage as labeled training data for supervised learn-
ing with a rule-based classifier that relies on a lex-
icon of predictive predicates that have been ex-
tracted from the contexts of protoOHs. Moreover,
we investigate in how far the knowledge gained
from these contexts can compensate the lack of
large amounts of actually labeled training data in
supervised classification by considering various
amounts of labeled training sets.

2 Related Work

There has been much research on supervised
learning for OH extraction. Choi et al. (2005)
explore OH extraction using CRFs with several
manually defined linguistic features and automat-
ically learnt surface patterns. The linguistic fea-
tures focus on named-entity information and syn-
tactic relations to opinion words. Kim and Hovy
(2006) and Bethard et al. (2004) examine the use-
fulness of semantic roles provided by FrameNet1

for both OH and opinion target extraction. More
recently, Wiegand and Klakow (2010) explored
convolution kernels for OH extraction and found
that tree kernels outperform all other kernel types.
In (Johansson and Moschitti, 2010), a re-ranking
approach modeling complex relations between
multiple opinions in a sentence is presented.
Rule-based OH extraction heavily relies on lexical
cues. Bloom et al. (2007), for example, use a list
of manually compiled communication verbs.

1framenet.icsi.berkeley.edu



3 Data

As a large unlabeled (training) corpus, we chose
the North American News Text Corpus. As a la-
beled (test) corpus, we use the MPQA corpus.2

We use the definition of OHs as described in (Wie-
gand and Klakow, 2010). The instance space are
all noun phrases (NP) in that corpus.

4 Method

In this paper, we propose to leverage contextual in-
formation from prototypical opinion holders (pro-
toOHs) by which we mean common nouns denot-
ing particular groups of people whose profession
or occupation it is to form and express opinions
towards specific items. The set of protoOHs that
we use are listed in Table 1. It has been created
ad-hoc. We neither claim completeness nor have
made any attempts to tune it to our data.

Though mentions of protoOHs are likely to
present OHs, not every mention is an OH:

3. Canada offered to make some civilianexperts available.

We try to solve this problem by exclusively look-
ing at contexts in which the protoOH is anagent
of some predicate. Bethard et al. (2004) state that
90% of the OHs are realized as agents on their
dataset. This heuristic would exclude Sentence 3
assome civilian experts should be considered the
patient of make available rather than its agent.

We use grammatical dependencies from a syn-
tactic parser rather than the output of a semantic
parser for the detection of agents as in our ini-
tial experiments with semantic parsers the detec-
tion of agents of predicate adjectives and nouns
was deemed less reliable. The grammatical de-
pendency relations that we consider implying an
agent are illustrated in the left half of Table 2.
We consider two different methods for extracting
an OH from the contexts of protoOHs: supervised
learning and rule-based classification.

4.1 Supervised Learning

The simplest way of using the contexts of agentive
protoOHs is by using supervised learning. This
means that on our unlabeled training corpus we
consider each NP with the head being an agen-
tive protoOH as a positive data instance and all
the remaining NPs occurring in those sentences as
negative instances. With this definition we train

2www.cs.pitt.edu/mpqa/databaserelease

advocate, agitator, analyst, censor, consultant, critic,de-
fender, demonstrator, examiner, expert, inspector, mar-
keter, observer, opponent, optimist, pessimist, proponent,
referee, respondent, reviewer, supporter, surveyor

Table 1: ProtoOHs considered in the experiments.

a supervised classifier based onconvolution ker-
nels (Collins and Duffy, 2001) as this method has
been shown to be quite effective for OH extrac-
tion (Wiegand and Klakow, 2010). Convolution
kernels derive features automatically from com-
plex discrete structures, such as syntactic parse
trees or part-of-speech sequences, that are directly
provided to the learner. Thus a classifier can be
built without the taking the burden of implement-
ing an explicit feature extraction. We chose the
best performing set of tree kernels (Collins and
Duffy, 2001; Moschitti, 2006) from that work. It
comprises two tree kernels based on constituency
parse trees and a tree kernel based on semantic role
trees. Apart from a set of sequence kernels (Taylor
and Christianini, 2004), this method also largely
outperforms a traditional vector kernel using a set
of features that were found predictive in previous
work. We exclude sequence and vector kernels in
this work not only for reasons of simplicity but
also since their addition to tree kernels only re-
sults in a marginal improvement. Moreover, the
features in the vector kernel heavily rely on task-
specific resources, e.g. a sentiment lexicon, which
are deliberately avoided in our low-resource clas-
sifier as our method should be applicable to any
language (and for many languages sentiment re-
sources are either sparse or do not exist at all).

In addition to Wiegand and Klakow (2010), we
have to discard the content of candidate NPs (e.g.
the candidate opinion holder NP[NPCand[NNS

advocates]] is reduced to[NPCand]), the reason
for this being that in our automatically generated
training set, OHs will always be protoOHs. Re-
taining them in the training data would cause the
learner to develop a detrimental bias towards these
nouns (our resulting classifier should detect any
OH and not only protoOHs).

4.2 Rule-based Classifier

Instead of training a supervised classifier, we can
also construct a rule-based classifier on the basis
of the agentive protoOHs. The classifier is built
on the insight that the most predictive cues for OH
extraction are predicates (Wiegand and Klakow,



Learning/Extraction Phase Rule-Based Classification

Pattern Example Pattern Example

protoOH<NSUBJ> verb Experts criticizedPREDV

the proposal.
NP<NSUBJ> extracted verb Clinton criticizedPREDV

Chavez.

protoOH<NSUBJ> adj Experts are criticalPREDA

of the proposal.
NP<NSUBJ> extracted adj Clinton is criticalPREDA

of Chavez.

protoOH<by-OBJ> verb The proposal was
criticizedPREDV

by
experts.

NP<by-OBJ> extracted verb Chavez was
criticizedPREDV

by
Clinton.

protoOH<by-OBJ> noun They faced
criticismPREDN

by
experts.

NP<by-OBJ> extracted noun Chavez ignored the
criticismPREDN

by
Clinton.

protoOH<POSS> noun The experts’
criticismPREDN

...
NP<POSS> extracted noun Chavez ignoredClinton’s

criticismPREDN
.

Table 2: Agentive patterns for finding predictive predicates (left half) and for classification (right half).

2010). We, therefore, mine the contexts of agen-
tive protoOHs (left half of Table 2) for discrimi-
nant predicates (i.e. verbs, nouns, and adjectives).
That is, we rank every predicate according to its
correlation, i.e. we usePointwise Mutual Infor-
mation, of having agentive protoOHs as an argu-
ment. The highly ranked predicates are used as
predictive cues. The resulting rule-based classifier
always classifies an NP as an OH if its head is an
agent of a highly ranked discriminative predicate
(as illustrated in the right half of Table 2).

The supervised kernel-based classifier from
§4.1 learns from a rich set of features. In a previ-
ous study on reverse engineering making implicit
features within convolution kernels visible (Pighin
and Moschitti, 2009), it has been shown that the
learnt features are usually fairly small subtrees.
There are plenty of structures which just contain
one or two leaf nodes, i.e. sparse lexical informa-
tion, coupled with some further structural nodes
from the parse tree. These structures are fairly
similar to low-level features, such as bag of words
or bag of ngrams, in the sense that they are weak
predictors and that there are plenty of them. For
such types of features, it has been shown in both
subjectivity detection (Lambov et al., 2009) and
polarity classification (Andreevskaia and Bergler,
2008) that they generalize poorly across different
domains. On the other hand, very few high-level
features describing the presence of certain seman-
tic classes or opinion words perform consistently
well across different domains. These features
can either be incorporated within a supervised
learner (Lambov et al., 2009) or a lexicon-based
rule-based classifier (Andreevskaia and Bergler,
2008). We assume that our rule-based classifier

based on discriminant predicates (they can also be
considered as some kind of semantic class) used in
combination with very common grammatical re-
lations will have a similar impact as those high-
level features used in the related tasks mentioned
above. Domain-independence is also an important
issue in our setting, since our training and test data
originate from two different corpora (which can be
considered two different domains).

4.2.1 Self-training

A shortcoming of the rule-based classifier is that
it incorporates no (or hardly any) domain knowl-
edge. In other related sentiment classification
tasks, i.e. subjectivity detection and polarity clas-
sification, it has been shown that by applying self-
training, i.e. learning a model with a supervised
classifier trained on low-level features (usually
bag of words) using the domain-specific instances
labeled by a rule-based classifier, more in-domain
knowledge can be captured. Thus, one can outper-
form the rule-based classifier (Wiebe and Riloff,
2005; Tan et al., 2008).

Assuming that the same can be achieved in OH
extraction, we train a classifier with convolution
kernels (=low level features) on the output of the
rule-based classifier run on our target corpus. The
set of labeled data instances is derived from the
sentences of the MPQA corpus in which the rule-
based classifier predicts at least one OH, i.e. the
instances the classifier labels as OHs are used as
positive instances while the remaining NPs are la-
beled as negative. Unlike§4.1 we do not dis-
card the content of the candidate NPs. In these
labeled training data, OHs are not restricted to
protoOHs. We, therefore, assume that among the



domain-specific features the supervised classifier
may learn could be useful prior weights towards
some of these domain-specific NPs as to whether
they might be an OH or not.

4.2.2 Generalization with Clustering and
Knowledge Basis

We also examine in how far the coverage of the
discriminant predicates can be increased with the
usage of clustering. Turian et al. (2010) have
shown that in semi-supervised learning for named-
entity recognition, i.e. a task which bears some
resemblance to the present task, features referring
to the clusters corresponding to groups of specific
words with similar properties (induced in an unsu-
pervised manner) help to improve performance.

In the context of our rule-based classifier, we
augment the set of discriminant predicates by all
words which are also contained in the cluster as-
sociated with these discriminant predicates. Hope-
fully, due to the strong similarity among the words
within the same cluster, the additional words will
have a similar predictiveness as the discriminant
predicates. Unlike our extraction phase for OH
extraction in which only the correlation between
predicates and protoOHs are considered (Table 2),
we may find additional predicates as the clustering
is induced from completely unrestricted text.

The extension of discriminant predicates can
also be done by taking into account manually built
general-purpose lexical resources, such as Word-
Net.3 One simply adds the entire set of synonyms
of each of the predicates.

4.3 Incorporation into Supervised Classifiers
with Actually Labeled Data

We also want to investigate the effectiveness of the
knowledge from our rule-based classifier that has
been learned on the unlabeled corpus (§4.2) in su-
pervised learning using actually labeled training
data from our target corpus, i.e. the MPQA cor-
pus. In particular, we will examine in how far this
knowledge (when used as a feature in supervised
learning) can compensate the lack of a sufficiently
large labeled training set. For that experiment the
labeled corpus, i.e. MPQA corpus, will be split
into a training set and a test set.

Again, we use the supervised learner based on
tree kernels (§4.1). We also augment the tree
kernels themselves with additional information by

3wordnet.princeton.edu

following Wiegand and Klakow (2010) who add
for each word that belongs to a predictive seman-
tic class another node that directly dominates the
pertaining leaf node and assign it a label denot-
ing that class. While Wiegand and Klakow (2010)
made use of manually built lexicons, we use our
predictive predicates extracted from contexts of
protoOHs. For instance, ifdoubt is such a pred-
icate, we would replace the subtree[V BP doubt]
by [V BP [PREDOH doubt]]. Moreover, we de-
vise a simple vector kernel incorporating the pre-
diction of the rule-based classifier. All kernels are
combined by plain summation.

5 Experiments

The documents were parsed using the Stanford
Parser.4 Semantic roles were obtained by using
the parser by Zhang et al. (2008).

5.1 Supervised Learning

All experiments using convolution kernels were
done with theSVM-Light-TK toolkit.5 We test two
versions of the supervised classifier. The first con-
siders any mention of a protoOH as an OH, while
the second is restricted to only those mentions of
a protoOH which are an agent of some predicate.
We also experimented with different amounts of
(pseudo-)labeled training data from our unlabeled
corpus varying from12500 to 150000 instances.
We found that from25000 instances onwards the
classifier does not notably improve when further
training data are added. The results of the clas-
sifier (using150000 data instances) are listed in
Table 3. The restriction of protoOHs to agents in-
creases performance as expected (see§4).

5.2 The Different Rule-based Classifiers

In order to build a rule-based classifier, we first
need to determine how many of the ranked pred-
icates are to be used. This process is done sepa-
rately for verbs, nouns, and adjectives. For verbs,
F-Score reaches its maximum at approximately
250 which is the value we chose in our subsequent
experiments. In a similar fashion, we determined
100 for both nouns and adjectives.

Table 4 lists the most highly ranked verbs that
are extracted.6 As an indication of the intrinsic

4nlp.stanford.edu/software/
lex-parser.shtml

5disi.unitn.it/moschitti
6The ranked predicates are available at:

www.lsv.uni-saarland.de/ranlp/data.tgz



Classifier Prec Rec F1 Prec Rec F1

Supervised all contexts agentive contexts

27.62 15.36 19.75 41.45 28.75 33.95

Rule-based without heuristics with heuristics

AL 40.18 33.32 36.43 46.04 30.94 37.00

SL 35.21 34.90 35.05 49.64 31.66 38.66

AL+SL 35.00 55.36 42.89 45.16 50.65 47.75

V250 39.75 51.24 44.77 46.25 46.94 46.60

V250+A100 39.88 53.43 45.67 46.56 48.89 47.70

V250+N100 39.18 54.08 45.44 45.40 49.62 47.42

V250+A100
+N100

39.31 55.93 46.17 45.71 51.57 48.47

Table 3: Performance of the different classifiers.

quality of the extracted words, we mark the words
which can also be found in task-specific resources,
i.e. communication verbs from the Appraisal Lex-
icon (AL) (Bloom et al., 2007) and opinion words
from the Subjectivity Lexicon (SL) (Wilson et al.,
2005). Both resources have been found predictive
for OH extraction (Bloom et al., 2007; Wiegand
and Klakow, 2010).

Table 3 (lower part) shows the performance of
the rule-based classifiers based on protoOHs us-
ing different parts of speech. As hard baselines,
the table also shows other rule-based classifiers
using the same dependency relations as our rule-
based classifier (see Table 2) but employing dif-
ferent predicates. As lexical resources for these
predicates, we again use AL and SL. The table also
compares two different versions of the rule-based
classifier being the classifier as presented in§4.2
(left half of Table 3) and a classifier additionally
incorporating the twoheuristics (right half):

• If the candidate NP followsaccording to, then it is la-
beled as an OH.

• The candidate NP can only be an OH if it represents a
person or a group of persons.

These are commonly accepted heuristics which
have already been used in previous work as fea-
tures (Choi et al., 2005; Wiegand and Klakow,
2010). The latter rule requires the output of
a named-entity recognizer7 for checking proper
nouns and WordNet for common nouns.

As far as the classifier built with the help of pro-
toOHs is concerned, adding highly ranked adjec-
tives and nouns consistently improves the perfor-
mance (mostly recall) when added to the set of

7We use the Stanford tagger:
nlp.stanford.edu/software/CRF-NER.shtml

say†

expect∗

believe†∗

predict∗

agree∗

argue∗

call
estimate
warn†

note†

think†∗

suggest†∗

see†

question
contend∗

speculate∗

point
fear†∗

worry∗

charge
forecast
find†

doubt∗

caution†

wonder∗

complain†∗

consider∗

accuse∗

praise†∗

describe†

claim†∗

tell
change
cite†

anticipate
try∗

recommend†∗

view†∗

concede∗

attribute
acknowledge∗

testify
hope∗

disagree∗

conclude
look∗

write
criticize∗

Table 4: List of verbs most highly correlating with
protoOHs;†: included in AL;∗: included in SL.

highly ranked verbs. The heuristics further im-
prove the rule-based classifier which is achieved
by notably increasing precision.

None of the baselines is as robust as the
best rule-based classifier using protoOHs (i.e.
V250+A100+N100). Considering our discussion
in §4.2, it comes as no surprise that the best
(pseudo-)supervised classifier does not perform as
well as our best rule-based classifier (induced by
protoOHs). The fact that, in addition to that,
our proposed method also largely outperforms the
rule-based classifier relying on both AL and SL
when no heuristics are used and is still slightly bet-
ter when they are incorporated supports the effec-
tiveness of our method.

5.2.1 Performance of Subsets of ProtoOHs

In the previous section, we evaluated predicates
often co-occurring with the entire set of protoOHs
(Table 1). Therefore, we should also check how
individual protoOHs or special subsets perform in
order to find out whether the simple approach of
considering the entire set is the optimal setting.
For these experiments we use the configuration:
V250+N100+A100 without heuristics.

We found that the performance of individual
protoOHs varies and that the performance can-
not be fully ascribed to the frequency of a pro-
toOH with agentive contexts. For example, though
proponent anddemonstrator occur similarly often
with those contexts, we obtain an F-Score of44.75
when we use the predicates from the context of the
former while we only obtain an F-Score of32.70
when we consider the predicates of the latter.

We also checked whether it would be more ef-
fective to use only a subset of protoOHs and com-
pared the performance produced by the five best
protoOHs, the five most frequent protoOHs, and



without heuristics with heuristics

Type Prec Rec F1 Prec Rec F1

Baseline 39.31 55.93 46.17 45.71 51.57 48.47

+Clus 35.87 63.23 45.78 44.17 58.01 50.15

+WN 37.52 59.46 46.01 44.35 54.42 48.87

+SelfTr 39.14 62.71 48.20 44.38 59.61 50.88

Table 5: Performance of extended rule-based clas-
sifiers.

the entire set of protoOHs. The performance of the
different subsets is very similar (i.e.46.44, 46.28,
and46.17), so we may conclude that the config-
uration that we proposed, namely to consider all
protoOHs, is more or less the optimal configura-
tion for this method.

5.2.2 Self-training and Generalization

Table 5 shows the performance of our method
when extended by either self-training (SelfTr)
or generalization. For generalization by cluster-
ing (Clus), we chose Brown clustering (Brown
et al., 1992) which is the best performing algo-
rithm in (Turian et al., 2010). The clusters are
induced on our unlabeled corpus (see§3). We
induced 1000 clusters (optimal size). For the
knowledge-based generalization (WN), we used
synonyms from WordNet 3. For both Clus and
WN, we display the results extending only the
most highly ranked V100+N50+A50 since it pro-
vided notably better results than extending all
predicates, i.e. V250+N100+A100 (our baseline).
The table shows that only self-training consis-
tently improves the results. The impact of gen-
eralization is less advantageous since by increas-
ing recall precision drops more dramatically. Only
Clus in conjunction with the heuristics manages to
preserve sufficient precision.

5.3 Incorporating Knowledge from
ProtoOHs into Supervised Learning

As a maximum amount of labeled training data we
chose60000 instances (i.e. NPs) which is even
a bit more than used in (Wiegand and Klakow,
2010). In addition, we also test1%, 5%, 10%,
25% and50% of the training set. From the remain-
ing data instances, we use25000 instances as test
data. In order to deliver generalizing results, we
randomly sample the training and test partitions
five times and report the averaged results.

We compare four different classifiers, a plain
classifier using only the convolution kernel config-

uration from previous experiments (TKPlain), the
augmented convolution kernels (TKAug) where
additional nodes are added indicating the pres-
ence of an OH predicate (§4.3), the augmented
convolution kernels with the vector kernel en-
coding the prediction of the best rule-based clas-
sifier (induced by protoOHs) without heuristics
(TKAug+VK) and the classifier incorporating
those heuristics (TKAug+VK[heur]). Instead of
just using one feature encoding the overall predic-
tion we use several binary features representing
the occurrence of the individual groups of pred-
icates (i.e. verbs, nouns, or adjectives) and pre-
diction types (direct predicate or predicate from
cluster extension). We also include the prediction
of the self-trained classifier. The performance of
these different classifiers is listed in Table 6. Re-
call from §4.1 that we want to examine cases in
which no task-specific resources and no or few la-
beled training data are available. This is why the
different classifiers presented should primarily be
compared to our own baseline (TKPlain) and not
the numbers presented in previous work as they al-
ways use the maximal size of labeled training data
and additionally task-specific resources (e.g. sen-
timent lexicons).

The results show that using the information ex-
tracted from the unlabeled data can be usefully
combined with the labeled training data. Tree aug-
mentation causes both precision and recall to rise.
This observation is consistent with (Wiegand and
Klakow, 2010) where, however, AL and SL are
considered for augmentation. When the vector
kernel with the prediction of the rule-based clas-
sifier is also included, precision drops slightly but
recall is notably boosted resulting in an even more
increased F-Score. The results also show that for
the setting that we have in focus, i.e. using only
few labeled training data, our proposed method is
particularly useful. For example, when TKPlain is
as good as the best classifier exclusively built from
unlabeled data (50.88% in Table 5), i.e. at 10%,
there is a very notable increase in F-Score when
the additional knowledge is added, i.e. the F-Score
of TKAug+VK[heur] is increased by approx. 4%
points. The degree of improvement towards TK-
Plain decreases the more labeled training data are
used. However, when 100% of the labeled data are
used, all of the other classifiers using additional in-
formation still outperform TKPlain.8

8The improvement is statistically significant using pair-



TKPlain (Baseline) TKAug TKAug + VK TKAug + VK[heur]

Training Size Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

600 (1%) 52.14 31.49 38.63 54.18 34.44 41.52 49.60 46.74 47.38 51.47 46.63 48.20

3000 (5%) 51.69 43.80 47.39 53.17 45.92 49.27 50.68 54.48 52.50 51.40 56.84 53.97

6000 (10%) 53.31 50.39 51.78 54.22 51.91 52.99 51.13 58.33 54.46 52.14 59.55 55.57

15000 (25%) 54.75 57.96 56.31 55.52 59.08 57.24 52.96 63.76 57.86 53.02 64.46 58.18

30000 (50%) 55.14 62.69 58.66 55.82 64.06 59.65 53.40 66.89 59.38 53.02 67.75 59.91

60000 (100%) 55.94 66.80 60.88 56.68 68.56 62.05 54.60 70.30 61.46 54.92 71.30 62.04

Table 6: Performance of supervised classifiers incorporating the prediction of the rule-based classifier.

6 Conclusion

We proposed to harness contextual information
from prototypical opinion holders for opinion
holder extraction. We showed that mentions of
such nouns when they are agents of a predicate are
a useful source for automatically building a rule-
based classifier. The resulting classifier performs
at least as well as classifiers depending on task-
specific lexical resources and can also be extended
by self-training. We also demonstrated that this
knowledge can be incorporated into supervised
classifiers and thus improve performance, in par-
ticular, if only few labeled training data are used.
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