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Abstract. In this paper, we explore the effectiveness of bootstrap-
ping supervised machine-learning polarity classifiers using the out-
put of domain-independent rule-based classifiers. The benefit of this
method is that no labeled training data are required. Still,this method
allows to capture in-domain knowledge by training the supervised
classifier on in-domain features, such as bag of words.

We investigate how important the quality of the rule-based classi-
fier is and what features are useful for the supervised classifier. The
former addresses the issue in how far relevant constructions for polar-
ity classification, such as word sense disambiguation, negation mod-
eling, or intensification, are important for this self-training approach.
We not only compare how this method relates to conventional semi-
supervised learning but also examine how it performs under more
difficult settings in which classes are not balanced and mixed reviews
are included in the dataset.

1 Introduction

Recent years have seen a growing interest in the automatic text anal-
ysis of opinionated content. One of the most popular subtasks in this
area is polarity classification which is the task of distinguishing be-
tween positive utterances (Sentence 1) and negative utterances (Sen-
tence 2).

1. The new iPhone looksgreatand iseasyto handle.
2. London isawful; it’s crime-ridden, dirty and full of rudepeople.

Various supervised classification approaches, in particular classifiers
using bag of words, are heavily domain-dependent [2], i.e.,they usu-
ally generalize fairly badly across different domains. Yetthe costs to
label data for any possible domain are prohibitively expensive.

Semi-supervised learning tries to solve this issue by reducing the
size of the labeled dataset. The lack of labeled training data is com-
pensated by a large unlabeled dataset of the target domain. The latter
is much cheaper to obtain.

Rule-based classification does not require any labeled training
data. In polarity classification, the rule-based classifierrelies on
domain-independent polar expressions. Polar expressionsare words
containing a prior polarity, such asgreat and awful. One typically
counts the number of positive and negative polar expressions in a test
instance and assigns it the polarity type with the majority of polar ex-
pressions. Since the classifier is restricted to domain-independent po-
lar expressions, it lacks the knowledge to recognize domain-specific
polar expressions, such ascrunchy+ in the food domain orbuggy−

in the computer domain.
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In this paper, we explore the effectiveness of an alternative,
which like most semi-supervised learning algorithms is based on
self-training, i.e., the process of labeling the unlabeled data with a
preliminary classifier and then training another (more robust) clas-
sifier by using the expanded annotated dataset. Unlike traditional
semi-supervised learning, we do not use an initial classifier trained
on a small labeled dataset but the output of a domain-independent
rule-based classifier. (For reasons of simplicity, we will often refer
to this specific version as plainself-training in the following sec-
tions.) While the rule-based classifier is restricted to theknowledge
of (domain-independent) polar expressions, the supervised classi-
fier trained on in-domain data labeled by the rule-based classifier
can make use of domain-specific features, such as bag of words.
Hopefully, the supervised classifier can effectively use this domain-
specific knowledge and thus outperform the rule-based classifier.

Though this kind of self-training has already been applied to tasks
in opinion mining, including polarity classification, there are certain
aspects of this method which have not yet been fully examined:

Firstly, what are good features for the (pseudo-)supervised polar-
ity classifier which is trained on the data labeled by the rule-based
classifier? Do the insights hold from common supervised learning or
semi-supervised learning?

Secondly, what is the impact of the robustness of the rule-based
classifier on the final classifiers, i.e., does the supervisedclassifier
improve when the rule-based classifier improves? This addresses the
issue of in how far relevant constructions for polarity classification
that can be incorporated into a rule-based classifier, such as word
disambiguation, negation modeling, or intensification, are important
for this kind of self-training approach.

Thirdly, how does this type of self-training compare to state-of-
the-art semi-supervised learning algorithms?

Finally, does this method work in realistic settings in which – in
addition to definite polar reviews – also mixed polar reviewsare part
of the dataset and the distribution of the classes is imbalanced?

2 Related Work

There has been much work on document-level polarity classification
using supervised machine learning methods. Various classifiers and
feature sets have been explored [10, 11]. Support Vector Machines
(SVMs) [5] usually provide best results [11]. Unigram and bigram
features outperform complex linguistic features [10].

Rule-based polarity classification usually requires an open-domain
polarity lexicon with polar expressions. One typically counts the
number of positive and negative polar expressions occurring in a test
document and assigns it the polarity type with most polar expres-
sions. This method can be enhanced by disambiguating polar expres-
sions in their respective contexts. A framework in which scores are



heuristically assigned to polar expressions depending on their indi-
vidual contexts is proposed in [12]. The contextual modeling mainly
focuses onnegationandintensification. Implementations inspired by
that formalism have been empirically proven effective [7, 8, 9].

Semi-supervised learning for polarity classification has been
shown to be effective on inducing polarity lexicons from lexical re-
sources [3, 14] but on text classification, the effectiveness is heavily
dependent on the parameter settings. Significant improvement over
supervised classification can usually only be achieved in presence
of few labeled training data and a predictive feature set, such as in-
domain adjectives or polar expressions from a polarity lexicon [17].
Another effective semi-supervised approach suggests to apply unsu-
pervised learning (i.e., clustering) to classify unambiguous data in-
stances and restrict manual annotation to hard data instances [4].

Bootstrapping supervised machine-learning classifiers with the
help of rule-based classification has already been effectively applied
to subjectivity detection of sentences [16]. The method hasalso
been applied to polarity classification, but so far only on Chinese
data [13, 15]. While the performance with out-of-domain supervised
classifiers is compared in [15], this method is embedded intoa com-
plex bootstrapping system which also extends the vocabulary (or fea-
ture set) of the rule-based classifier in [13]. Neither of these works
examine the impact of the rule-based classifier on the final result,
the relation towards semi-supervised learning, nor discusses various
settings of the self-training algorithm, in particular, different feature
sets for the supervised classifier.

3 Data

In this paper, we use both the dataset ofIMDb movie reviews [11]
and reviews extracted fromRate-It-All2. We evaluate on the former
because it is considered a benchmark dataset for polarity classifica-
tion. The additional data are used to show that our findings are valid
throughout different domains. Moreover, they have also been used
in prior work on semi-supervised learning [17] which we alsomake
use of in our experiments. Table 1 lists the properties of thecorpora
from the different domains. Note that on theRate-It-Alldatasets we
labeled1 and2 star reviews asnegativeand4 and5 star reviews as
positive. 3 star reviews are labeledmixed. The actual class of these
reviews is unknown. Usually a3 star review should be neutral in the
sense that it equally enumerates both positive and negativeaspects
about a certain topic, so that a definite verdict in favor or against it
is not possible. That is also why we cannot assign these instances
to either of the other two groups previously mentioned, i.e., positive
andnegative. During a manual inspection of some randomly chosen
instances, however, we also found definite positive and negative re-
views among3 star reviews. For this work, we leave these instances
in the category of mixed reviews.

4 Method

4.1 Rule-based Classifier

In the following, we describe how a polarity lexicon is converted
to a rule-based polarity classifier. The polarity lexicon, the list of
other important word classes being intensifiers, negation expressions
(including the rules to disambiguate them) and polarity shifters are
taken from theMPQAproject [18].

2 http://www.rateitall.com

4.1.1 Feature Extraction

Any word in a review that is not included in a polarity lexiconis
discarded. Positive words (e.g.,excellent) are assigned the value+1,
negative words (e.g.,awful) −1, respectively.

4.1.2 Basic Word Sense Disambiguation with
Part-of-speech Tags

The polarity lexicon we use has part-of-speech tags attached to po-
lar expressions in order to disambiguate them, e.g., the word like is
either a polar verb or a preposition (in which case it is meaningless
for polarity classification). We identify words as polar expressions
only if their part-of-speech tags also match the specification in the
lexicon. This can be considered as some basic form of word sense
disambiguation. For part-of-speech tagging we use theC&C tagger3.

4.1.3 Negation Modeling

If a polar expression occurs within the scope of a negation, its polar-
ity is reversed (e.g.,[notnice+]−). By scope, we define the five words
immediately preceding the polar expression in the same sentence.
Since some negation words are ambiguous and do not express nega-
tions when used in certain constructions, such asnot in not only. . .

but also, we also apply some rules disambiguating negation words.
In addition to common negation expressions, such asnot, we also

considerpolarity shifters. Polarity shifters are weaker than ordinary
negation expressions in the sense that they only reverse a particular
polarity type. For example, the shifterabateonly modifies negative
polar expressions as in[abate the damage−]+.

4.1.4 Heuristic Weighting

So far, all polar expressions contained in the polarity lexicon are as-
signed the same absolute weight, i.e.,(±)1. This does not reflect
reality. Polar expressions differ in their individual polar intensity or,
in case of ambiguous words, in their likelihood to convey polarity.
Therefore, they should not obtain a uniform weight.

The polarity lexicon we use [18] includes a binary feature express-
ing the prior intensity of a polar expression. It distinguishes between
weakpolar expressions, such asdisordered, andstrongpolar expres-
sions, such aschaotic. Intuitively, strong polar expressions should
obtain a higher weight than weak polar expressions.

When a polar expression is modifed by a so-calledintensifier, such
asveryor extremely, its polar intensity is also increased. An ordinary
weak polar expression has a similar polar intensity when it is mod-
ified by an intensifier as a strong polar expression, e.g.,extremely
disorderedandchaotic.

The part of speech of a polar expression usually sheds light on
the level of ambiguity of the word. If a polar expression is anad-
jective, its prior probability of being polar is much higher than the
one of polar expressions with other parts of speech, such as verbs
or nouns [11, 17]. Therefore, polar adjectives should obtain a larger
weight than polar expressions with other parts of speech.

Since there are no development data in order to adjust the weights
for the previously mentioned properties, we propose to simply double
the value of a polar expression if either of these propertiesapply. If
n of these properties apply for a polar expression, then its value is

3 http://svn.ask.it.usyd.edu.au/trac/
candc



Table 1. Properties of the different domain corpora (†only relates to theRate-It-Alldata).

Domain Source Positive (4 & 5 Stars†) Mixed (3 Stars†) Negative (1 & 2 Stars†) Vocabulary Size

computer Rate-It-All 952 428 1253 15083

products Rate-It-All 2292 554 1342 21975

sports Rate-It-All 4975 725 1348 24811

travel Rate-It-All 9397 1772 3289 38819

movies IMDb 1000 0 1000 50920

doubledn times. For instance, an intensified adjective is assigned
the value of4, i.e.,2 · 2.

The properties considered for heuristic weighting have already
been motivated and proven effective in previous work [7, 11].

4.1.5 Classification

For each data instance thecontextualscores assigned to the indi-
vidual polar expressions are summed. If the sum is positive,then the
instance is classified as positive. It is classified as negative, if the sum
is negative. We assign to all cases in which the sum is0 the polarity
type which gives best performance on that individual dataset (which
is usually negative polarity). Thus, we have a stronger baseline that
is to be beaten by self-training.

Note that the prediction score of a data instance, i.e., the sum of
contextual scores of the polar expressions, can also be interpreted as
a confidence score. This property is vital for effectively using this
rule-based classifier in self-training. Thus, previously mentioned in-
stances with a score of0, for example, are unlikely to occur in the
labeled training set since it only includes instances labeled with a
high confidence score. The sum of contextual scores is normalized
by the overall number of tokens in a test instance. This normaliza-
tion additionally encodes the density of polar expressionswithin the
instance. The greater the density of polar expressions of a particular
type is in a text, the more likely the text conveys that polarity.

Figure 1 summarizes all steps of the rule-based classifier.

1. Lexicon loading, i.e., polar expressions, negation words, and intensifiers
2. Preprocessing:

(i) Stem test instance.

(ii) Apply part-of-speech tagging to test instance.

3. Polar expression marking:

(i) Check whether part-of-speech tag of potential polar expression matches lexical
entry (basic word sense disambiguation).

(ii) Mark strong polar expressions.

4. Negation modeling:

(i) Identify potential negation words (including polarityshifters).

(ii) Disambiguate negation words.

(iii) Reverse polarity of polar expression in scope of (genuine) negation.

5. Intensifier marking
6. Heuristic weighting: double weight in case polar expression is:

(i) a strong polar expression

(ii) an intensified polar expression

(iii) a polar adjective.

7. Classification: assign test instance the polarity type with the largest (normalized)
sum of scores.

Figure 1. Rule-based classifier.

4.1.6 Different Versions of Classifiers

We define four different types of rule-based classifiers. They differ in
complexity. The simplest classifier, i.e., RBPlain, does not contain
word sense disambiguation, negation modeling or heuristicweight-
ing. RBbWSD is like RBPlain but also contains basic word sense
disambiguation. RBNeg is like RBbWSD but also contains negation
modeling. The most complex classifier, i.e., RBWeight, is precisely
the algorithm presented in the previous sections. Table 2 summarizes
the different classifiers with their respective properties.

4.2 Semi-Supervised Learning

Semi-supervised learning is a class of machine learning methods that
makes use of both labeled and unlabeled data for training, usually a
small set of labeled data and large set of unlabeled data. A classifier
using unlabeled and labeled training data can produce better perfor-
mance than a classifier trained on labeled data alone. This isusually
achieved by harnessing correlations between features in labeled and
unlabeled data instances and thus making inferences about the la-
bel of these unlabeled instances. Since labeled data are expensive
to produce, semi-supervised learning is an inexpensive alternative to
supervised learning.

In this paper, we exclusively use Spectral Graph Transduction
(SGT) [6] as a semi-supervised algorithm since it produced consis-
tently better results than other algorithms on polarity classification
in previous work [17]. In SGT, all instances of a collection (i.e., la-
beled and unlabeled) are represented as ak nearest-neighbor graph.
The graph is transformed to a lower-dimensional feature space, i.e.,
its spectrum, and then divided into two clusters by minimizing the
graph cut. The two clusters that are chosen should preserve the high-
est possible connectivity of edges within the graph.

4.3 Self-Training a Polarity Classifier using the
Output of a Rule-based Classifier

The idea of this bootstrapping method is that a domain-independent
rule-based classifier is used to label an unlabeled dataset.Unlike
in semi-supervised learning (Section 4.2), no labeled training data
are used. The only available knowledge is encoded in the rule-
based classifier. The data instances labeled by the rule-based clas-
sifier with a high confidence serve as labeled training data for a
supervised machine-learning classifier. Ideally, the resulting super-
vised classifier is more robust on the domain on which it was trained
than the rule-based classifier. The improvement can be explained
by the fact that the rule-based classifier only comprises domain-
independent knowledge. The supervised classifier, however, makes
use of domain-specific features, i.e., words such ascrunchy+ (food
domain) orbuggy− (computer domain), which are not part of the
rule-based classifier. It may also learn to correct polar expressions
that are specified in the polarity lexicon but have a wrong polarity



Table 2. Properties of the different rule-based classifiers.

Properties RBPlain RBbWSD RBNeg RBWeight

basic word sense disambiguation X X X

negation modeling X X

heuristic weighting X

type on the target domain. A reason for a type mismatch may be
that a polar expression is ambiguous and contains differentpolarity
types throughout the different domains (and common polarity lexi-
cons usually only specify one polarity type per entry). For instance,
in the movie domain the polar expressioncheapis predominantly
negative, as it can be found in expressions, such ascheap films, cheap
special-effectsetc. In the computer domain, however, it is predomi-
nantly positive as it appears in expressions such ascheap price. If
such a polar expression occurs in sufficient documents whichthe
rule-based classifier has labeled correctly, then the supervised learner
may learn the correct polarity type for this ambiguous expression on
that domain despite the fact that the opposed type is specified in the
polarity lexicon.

We argue that using a rule-based classifier is more worthwhile
than using few labeled (in-domain) data instances – as it is the case
in semi-supervised learning – since we thus exploit two different
types of features in self-training being domain-independent polar ex-
pressions and domain-specific bag of words which are known tobe
complementary [1]. The traditional semi-supervised approach usu-
ally just comprises one homogeneous feature set.

Figure 2 illustrates both semi-supervised learning and self-training
using a rule-based classifier for bootstrapping.

4.4 Feature Sets

Table 3 lists the different feature sets we examine for the supervised
classifier (within self-training) and the semi-supervisedclassifiers.
We list the feature sets along their abbreviation with whichthey
will henceforth be addressed. The first three features (i.e., Top2000,
Adj600, and MPQA) have been used in previous work on semi-
supervised learning [17]. They all remove noise contained in the
overall vocabulary of a domain corpus. The last two features(i.e.,
Uni and Uni+Bi) are known to be effective for supervised polarity
classification [10]. Bigrams can be helpful in addition to unigrams
since they take into account some context of polar expressions. Thus,
crucial constructions, such as negation ([not nice]−) or intensifica-
tion ([extremely nice]++), can be captured. Moreover, multiword po-
lar expressions, such as[low tax]+ or [low grades]−, can be repre-
sented as individual features. Unfortunately, bigram features are also
fairly sparse and contain a considerable amount of noise.

Table 3. Description of the different feature sets.

Feature Set Abbrev.
the2000 most frequent non-stopwords in the domain corpus Top2000
the600 most frequent adjectives and adverbs in the domain corpus Adj600
all polar expressions within the polarity lexicon MPQA
all unigrams in the domain corpus Uni
all unigrams and bigrams in the domain corpus Uni+Bi

5 Experiments

For the following experiments – with the exception of those pre-
sented in Section 5.4 – we mainly adhere to the settings of pre-
vious work [17]. We deliberately chose these settings in favor of
semi-supervised learning in order to have a strong baselinefor the
proposed self-training method. We use a balanced subset (randomly
generated) for each domain. TheRate-It-Alldataset consists of1800
data instances per domain, whereas theIMDb dataset consists of
2000 data instances. We just consider (definite) positive and (defi-
nite) negative reviews. The rule-based classifiers and the self-trained
classifiers (bootstrapped with the help of rule-based classification)
are evaluated on the entire domain dataset. The1000 most highly-
ranked data instances (i.e.,500 positive and500 negative instances)
are chosen as training data for the supervised classifier. This setting,
which is similar to the one used for semi-supervised learning [17],
provided good performance in our initial experiments. For the super-
vised classifier, we chose SVMs. As a toolkit, we useSVMLight4.
Feature vectors were always normalized to unit length and addition-
ally weighted withtf-idf scores. All words are stemmed. We report
statistical significance on the basis of a paired t-test using 0.05 as the
significance level.

5.1 Comparison of Different Rule-based Classifiers

Table 4 shows the results of the different rule-based classifiers across
the different domains. On average, the more complex the rule-based
classifier gets, the better it performs. The only notable exceptions
are theproductsdomain (from RBNeg to RBWeight) and thesports
domain (from RBPlain to RBbWSD). On average (i.e., considering
all domains), however, the improvements are statisticallysignificant.

5.2 Self-Training with Different Rule-based
Classifiers and Different Feature Sets

Table 5 compares self-training (SelfTr) using different rule-based
classifiers and different feature sets for the embedded supervised
classifier. In addition to accuracy, we also listed the F(1)-scores of
the two different classes. The results are averaged over alldomains.
With the exception of RBNeg in combination with Top2000 and
MPQA, there is always a significant improvement from a rule-based
classifier to the corresponding self-trained version. If Top2000 or
MPQA is used, there is a drop in performance from RBNeg to SelfTr
in the sportsdomain. Improving a rule-based classifier also results
in an improvement of the self-trained classifier. With exception of
SelfTr(RBPlain) to SelfTr(RBbWSD) this is even significant.

The feature set producing the best results is Uni+Bi. Uni+Biis
statistically significantly better than Uni. This means that, as far as
feature design is concerned, the supervised classifier within self-
training behaves similar to ordinary supervised classification [10].
Unlike in semi-supervised learning [17], a noiseless feature set is
not necessary. Best performance of SelfTr using a large set of polar

4 http://svmlight.joachims.org



Figure 2. Comparison of semi-supervised learning and self-trainingusing a rule-based classifier for bootstrapping.

Table 4. Comparison of accuracy between different rule-based classifiers (RB) and self-trained classifiers (SelfTr) trained onbest feature set (Uni+Bi) on
different domains (for each domain, performance is evaluated on a balanced corpus).

RBP lain RBbW SD RBNeg RBW eight

Domain RB SelfTr RB SelfTr RB SelfTr RB SelfTr

computer 64.11 80.22 70.61 81.72 73.56 83.67 74.28 83.50

products 60.78 70.78 66.06 73.89 71.06 77.00 70.94 77.00

sports 64.33 66.44 64.39 64.94 67.50 68.89 68.89 72.78

travel 64.61 69.56 67.39 69.83 70.72 73.33 72.61 76.89

movies 61.75 72.70 64.80 72.45 67.85 73.55 71.30 77.75

average 63.12 71.94 66.65 72.57 70.14 75.29 71.60 77.58

expressions is reported in [13]. The feature set comprises an open-
domain polarity lexicon and is automatically extended by domain-
specific expressions. Our results suggest a less complex alternative.
Using SelfTr with unigrams and bigrams (i.e., SelfTrUni+Bi) already
provides better classifiers than SelfTr with a polarity lexicon (i.e.,
SelfTrMPQA). The increase is approx.3%.

It is also worth pointing out that the gain in performance that is
achieved by improving a basic rule-based classifier (i.e., RBPlain)
by modeling constructions (i.e., RBWeight) is the same as is gained
by just self-training it with the best feature set (i.e., SelfTrUni+Bi).

The relation between the F-scores of the two different classes dif-
fers between RB and SelfTr. In RB, the score of the positive class is
always significantly better than the score of the negative class. This
is consistent with previous findings [1]. The gap between thetwo
classes, however, varies depending on the complexity of theclassi-
fier. In RBPlain, the gap is17.45%, whereas it is less than6% in
RBNeg and RBWeight. In SelfTr, the F-score of the negative class
is usually better than the score of the positive class5. This relation

5 The only exception where the reverse is always true is SelfTrMPQA. This
does not come as a surprise since this feature set resembles RB most.

between the two classes is typical of learning-based polarity clas-
sifiers [1]. However, it should also be pointed out that the gap is
much smaller (usually not greater than2%). Moreover, the size of
the gap does not bear any relation to the gap in the original RB, i.e.,
though there is a considerable difference in size between the gaps of
RBPlain and RBNeg , the size of the gaps in the self-trained versions
is fairly similar.

We also experimented with a combination of bag of words and the
knowledge encoded in the rule-based classifier, i.e., the two features:
the number of positive and negative polar expressions within a data
instance. The performance of this combination is worse thana classi-
fier trained on bag of words. The correlation between the two class la-
bels and the two polarity features is disproportionately high since the
polarity features essentially encode the prediction of therule-based
classifier. Consequently, the supervised classifiers develop a strong
bias towards these two features and inappropriately downweight the
bag-of-words features.

Table 4 compares rule-based classification and self-training on in-
dividual domains. In some domains self-training does not work. This
is most evident in thesportsdomain using self-training on RBbWSD.



Apparently, the better the rule-based classifier is, the more likely a
notable improvement by self-training can be obtained. Notethat in
thesportsdomain the self-trained classifier using the most complex
rule-based classifier, i.e., SelfTr(RBWeight), achieves the largest im-
provement compared to the rule-based classifier. These observations
are also representative for the remaining feature sets examined but
not displayed in Table 4.

5.3 Self-Training using Rule-based Classifiers
Compared to Semi-Supervised Learning

In the following experiments, we use Spectral Graph Transduction
(SGT) [6] as a semi-supervised classifier, since it providedbest per-
formance in previous work [17]. As a toolkit, we useSGTLight6.
For each configuration (i.e., training and test partition) we randomly
sample20 partitions from the corpus. Labeled training and test data
are always mutually exclusive but the test data (500 positive and500
negative instances) can be identical to the unlabeled training data.

Figure 3 compares self-training bootstrapped on the outputof rule-
based classification (SelfTr) to supervised learning (SL) and semi-
supervised learning (SSL). We compare two variations of SelfTr.
SelfTr-A, as SSL, uses the same 1000 randomly sampled data in-
stances for both unlabeled training and testing7. (Again, we report
the averaged result over 20 samples.) SelfTr-B (like in previous sec-
tions) selects1000 training instances by confidence from the entire
dataset. The test data are, however, the same as in SelfTr-A.Unlike
in previous work in which Top2000 is used for SL [17], we chose
Uni+Bi as a feature set. It produces better results than Top2000 on
classifiers trained on larger training sets (i.e.,≥ 400)8. For SSL, we
consider Uni+Bi and Adj600, which is the feature set with theoverall
best performance using that learning method. For SelfTr, weconsider
the best classifier, i.e., SelfTrUni+Bi.

Though SSL gives a notable improvement on small labeled train-
ing sets (i.e.,≤ 100), it produces much worse performance than SL
on large training sets (i.e.,≥ 200). Adjectives and adverbs are a very
reliable predictor. However, the size of the feature set is fairly small.
Too little structure can be learned on large labeled training sets us-
ing such a small feature set. Using larger (but also noisier)feature
sets for SSL, such as Uni+Bi, improves performance on largerla-
beled training sets. However, even with Uni+Bi SSL does not reach
a performance comparable to SL on large training sets and it is sig-
nificantly worse than Adj600 on small training sets.

Whenever SSL outperforms SL, every variation of SelfTr alsoout-
performs SSL. SelfTr-B is significantly better than SelfTr-A which
means that the quality of labeled instances matters and SelfTr is able
to select more meaningful data instances than are provided by ran-
dom sampling. Unfortunately, SSL-methods, such as SGT, do not in-
corporate such a selection procedure for the unlabeled data. Further
exploratory experiments using theentire dataset as unlabeled data
for SSL produced, on average, results similar to those using1000
instances. This proves that SSL cannot internally identifyas mean-
ingful data as SelfTr-B does. Whereas SSL significantly outperforms
SL on training sets using less than200 training instances, the best
variation of SelfTr, i.e., SelfTr-B, significantly outperforms SL on
training sets using less than400 instances. This difference is, in par-
ticular, remarkable since SelfTr does not use any labeled training data
at all whereas SSL does.

6 http://sgt.joachims.org
7 We use this configuration since it is required bySGTLight.
8 Note that previous work in particular focused on small training sets [17].
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Figure 3. Comparison of self-training and semi-supervised learning
(performance is evaluated on balanced corpus and results are averaged over

all domains).

5.4 Natural Class Imbalance and Mixed Reviews

In this section, we want to investigate what impact natural class im-
balance has on bootstrapping polarity classifiers with a rule-based
classifier since this aspect has only been marginally covered in pre-
vious work [13, 15]. In those works, different class ratios on the test
set are evaluated. However, the same amount of positive and negative
reviews is always selected for training. We assume that the optimal
performance of self-training can be achieved when the classdistribu-
tion of training and test set is identical and we will provideevidence
for that. Moreover, we want to explore what impact differentdistri-
butions between the two sets have on the accuracy of the classifier
and how different class-ratio estimation methods perform.

Previous work dealing with bootstrapping polarity classifiers us-
ing unlabeled data also focuses on datasets exclusively consisting of
definite positive and negative reviews [4, 13, 15, 17]. In this sec-
tion, the unlabeled dataset will also include mixed reviews, i.e., 3
star reviews (see Section 3). Due to the availability of suchdata the
experiments are only carried out on theRate-It-Alldata. We also add
the constraint that the test data must be disjoint from the unlabeled
training data9.

Test data are exclusively (definite) positive reviews (i.e., 4 & 5
star reviews) and (definite) negative reviews (i.e.,1 & 2 star reviews).
From each domain, we randomly sample200 data instances10 times.
We state the results averaged over these different test sets. The class
ratio on each test set corresponds to the distribution of definite polar
reviews, i.e.,3 star reviews are ignored.

The unlabeled training dataset is the dataset of a domain exclud-
ing the test data. As labeled training data for the embedded super-
vised classifier within self-training, we use70% of data instances la-
beled by the rule-based classifier ranked by confidence of prediction
(across all domains/configurations, this size provided best results).
Hopefully, most mixed reviews are among the remaining30%.

9 We can include this restriction in this section since we willnot consider the
semi-supervised learning algorithm SGT in this section.



Table 5. Performance of self-trained classifiers with different feature sets (experiments are carried out on a balanced corpus and results are averaged over all
domains).

RBP lain RBbWSD RBNeg RBWeight

Type F1+ F1− Acc F1+ F1− Acc F1+ F1− Acc F1+ F1− Acc

RB (Baseline) 69.81 52.36 63.12 70.39 61.79 66.65 72.42 67.40 70.14 74.26 68.30 71.60

SelfTrTop2000 70.15 70.88 70.53 70.26 71.55 70.92 72.78 73.88 73.40 74.79 74.18 75.73

SelfTrAdj600 68.94 69.92 69.44 70.08 71.41 70.76 72.46 73.90 73.20 74.34 75.82 75.10

SelfTrMPQA 69.18 67.85 68.55 70.03 69.46 69.75 72.50 72.19 72.15 74.57 75.47 75.04

SelfTrUni 69.82 71.16 70.51 70.53 72.41 71.50 73.17 74.87 74.05 75.73 77.67 76.74

SelfTrUni+Bi 71.14 74.69 71.94 71.41 73.64 72.57 74.39 76.12 75.29 76.43 78.62 77.58

5.4.1 Class Imbalance and Rule-based Classification

In the first experiment, we just focus on class imbalance (i.e., 3 star
reviews are excluded). We examine a self-trained classifierusing the
class-ratio estimate of a rule-based classifier as it is the most obvi-
ous estimate since the rule-based classifier is also used forgenerating
the labeled training data. In particular, we want to explorewhether
there is a systematic relationship between the class distribution, the
class-ratio estimate of the rule-based classifier and the resulting self-
trained classifier. Table 6 lists the actual distribution ofclasses on the
test set, the deviation between the distribution as it is predicted by the
rule-based classifier and the actual distribution along theinformation
towards which class the rule-based classifier is biased. Finally, we
also list the absolute improvement/deterioration of the self-trained
classifier in comparison to the rule-based classifier. We will only
consider the best rule-based classifier, i.e., RBWeight, and for self-
training, we will exclusively consider the best configuration from the
previous experiments, i.e., SelfTrUni+Bi. The table shows that the
quality of class-ratio estimates of rule-based classifiersvaries among
the different domains. The deviation is greatest on thecomputerdo-
main. This is also the only domain in which the majority classare the
negative reviews. With exception of thesportsdomain, the rule-based
classifier always overestimates the amount of positive reviews. This
overestimation is surprising considering that the polarity lexicon we
use contains almost twice as many negative polar expressions as pos-
itive polar expressions. This finding, however, is consistent with our
observation from Section 5.2 that rule-based classifiers have a bias
towards positive reviews, i.e., they achieve a better F-score for pos-
itive reviews than for negative reviews10. Table 6 also clearly shows
that the deviation negatively correlates with the improvement of the
self-trained classifier towards the rule-based classifier.The improve-
ment is greatest on thesportsdomain where the deviation is smallest
and the greatest deterioration is obtained on thecomputerdomain
where the deviation is largest.

In summary, the class distribution of the data has a significant im-
pact on the final self-trained classifier. In case there is a heavy mis-
match between actual and predicted class ratio, the self-training ap-
proach will not improve the rule-based classifier.

5.4.2 Class Imbalance, Class Ratio Estimates and 3 Star
Reviews

In the following experiment we will compare how alternativeclass-
ratio estimates relate to each other when applied to self-training.
We compare the actual distribution (Ratio-Oracle) with thebalanced

10 We also observed that this bias is significantly larger on simple classi-
fiers, such as RBPlain, which is plausible since on this classifier the gap
between F-scores of positive and negative reviews is also largest (see Ta-
ble 5).

class ratio (Ratio-Balanced), the class ratio as predictedby the rule-
based classifier over the entire dataset (Ratio-RB) and estimates
gained from a small amount of randomly sampled data instances
from the dataset. We randomly sample20 (Ratio-20), 50 (Ratio-50)
and100 (Ratio-100) instances. For each configuration (i.e.,20, 50,
and100), we sample10 times, run SelfTr for each sample and re-
port the averaged result. We compare the self-trained classifier with
a classifier always assigning a test instance to the majorityclass
(Majority-Cl) and the rule-based classifier (RBWeight). This time,
we also include the3 star reviews in the unlabeled dataset.

Table 7 displays the results. We also display results of the datasets
without using3 star reviews in brackets. SelfTr using Ratio-Balanced
produces the worst results among the self-training classifiers. This
was the only method used in previous work (in Chinese) [13, 15].
Apparently, English data are more difficult than Chinese and, in En-
glish, SelfTr is more susceptible to deviating class-ratioestimates
since in [13, 15] SelfTr with Ratio-Balanced scores rather well.
Ratio-Oracle produces best results which comes to no surprise since
the class distribution in training and test set is the same. On av-
erage, Ratio-100 produces the second best result as it also gives
fairly reliable class-ratio estimates (the deviation is3.3% on average,
whereas the deviation of Ratio-Balanced is18.16%). Both Ratio-
50 and Ratio-100 produce results which are significantly better than
Majority-Cl and RBWeight.

As Ratio-Oracle, Ratio-Balanced, Ratio-20, Ratio-50, andRatio-
100 suggest, the presence of mixed polar reviews does not produce
significantly different results. It is very striking, however, that the
results of Ratio-RB are better using the3 star reviews which seems
counter-intuitive. We found that this is a corpus artifact.As already
stated in Section 3,3 star reviews do not only contain indefinite polar
reviews but also positive and negative reviews. We also noted that
Ratio-RB has a bias towards predicting too many positive instances.
The bias is stronger if3 star reviews are not included in the ratio-
prediction (deviation of8.5% instead of6%). We, therefore, assume
that among the3 star reviews the proportion of negative-like reviews
is greater than among the remaining part of the dataset and RBwithin
SelfTr detects them as such. Thus, the bias towards positivepolarity
is slightly neutralized.

In summary, using small samples of labeled data instances isthe
most effective way for class ratio estimation enabling SelfTr to con-
sistently outperform Majority-CL and RBWeight. Mixed reviews
only have a marginal impact on the final overall result of SelfTr.

6 Conclusion

In this paper, we examined the effectiveness of bootstrapping a super-
vised polarity classifier with the output of an open-domain rule-based
classifier. The resulting self-trained classifier is usually significantly
better than the open-domain classifier since the supervisedclassifier



Table 6. Class imbalance and its impact on self-training.

Domain Class distribution (+ : −) Deviation of predicted
distribution from actual

distribution

Class towards which
predicted distribution is

biased

Difference in Accuracy between
RB and SelfTr(RB)

computer 43.17 : 56.83 16.30 + −3.60

products 63.07 : 36.93 6.65 + −0.25

sports 78.68 : 21.32 2.10 − +3.15

travel 74.07 : 25.93 3.71 + +1.30

Table 7. Accuracy of different classifiers tested on naturally imbalanced data: for self-trained classifiers the unlabeled dataalso contain3 star reviews;
numbers in brackets state the results on a dataset which excludes3 star reviews.

SelfTr

Domain Majority-Cl RB Weight Ratio-Oracle Ratio-Balanced Ratio-RB Ratio-20 Ratio-50 Ratio-100

computer 56.83 73.80 82.80 (83.35) 83.25(82.95) 75.95 (70.20) 77.36 (77.95) 80.43 (80.91) 80.96 (81.47)

products 63.07 76.00 80.90 (81.70) 75.40 (76.05) 77.50 (75.75) 77.61(78.10) 80.45 (80.86) 80.69(81.27)

sports 78.68 77.35 81.25 (81.10) 62.55 (60.30) 80.75(80.50) 79.10 (79.01) 79.94 (79.94) 80.62 (80.50)

travel 74.07 79.50 81.70 (81.60) 66.95 (66.10) 81.15(80.80) 77.96 (76.59) 80.64 (80.52) 80.76 (80.58)

average 68.16 76.66 81.66 (81.94) 72.04 (71.35) 78.84 (76.81) 78.01(77.91) 80.37 (80.56) 80.76 (80.96)

exploits in-domain features. As far as the choice of the feature set is
concerned, the supervised classifier within self-trainingbehaves very
much like an ordinary supervised classifier. The set of all unigrams
and bigrams performs best.

The type of rule-based classifier has an impact on the performance
of the final classifier. Usually, the more accurate the rule-based clas-
sifier is, the better the resulting self-trained classifier is. Therefore,
modeling open-domain constructions relevant for polarityclassifica-
tion is important for this type of self-training. It also suggests that
further improvement of rule-based polarity classifiers by more ad-
vanced linguistic modeling is likely to improve self-training as well.

In cases in which semi-supervised learning outperforms super-
vised learning, self-training at least also performs as well as the best
semi-supervised classifier. A great advantage of self-training is that
it chooses instances to be added to the labeled training set by using
confidence scores whereas in semi-supervised learning one has to re-
sort to random sampling. The resulting data from self-training are
usually much better.

Self-training also outperforms a rule-based classifier anda
majority-class classifier in more difficult settings in which mixed re-
views are part of the dataset and the class distribution is imbalanced,
provided that the class-ratio estimate does not deviate toomuch from
the actual ratio on the test set. A class-ratio estimate can be obtained
by the output of the rule-based classifier but, on average, using small
samples from the data collection produces more reliable results.

Since this self-training method works under realistic settings, it
is more robust than semi-supervised learning, and its embedded su-
pervised classifier only requires simple features in order to produce
reasonable results, it can be considered an effective method to over-
come the need for many labeled in-domain training data.
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