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Abstract.
ping supervised machine-learning polarity classifieragishe out-
put of domain-independent rule-based classifiers. Thefiberfi¢his
method is that no labeled training data are required. 8tifi, nethod
allows to capture in-domain knowledge by training the suised
classifier on in-domain features, such as bag of words.

We investigate how important the quality of the rule-badedsi-
fier is and what features are useful for the supervised Glassihe
former addresses the issue in how far relevant constrictasmpolar-
ity classification, such as word sense disambiguation,tieegmod-
eling, or intensification, are important for this self-trizig approach.
We not only compare how this method relates to conventiograii-s
supervised learning but also examine how it performs undaem
difficult settings in which classes are not balanced and dhiggiews
are included in the dataset.

1 Introduction

Recent years have seen a growing interest in the automastiartel-

ysis of opinionated content. One of the most popular subtasthis

area is polarity classification which is the task of distiisping be-

tween positive utterances (Sentence 1) and negative n¢eEsgSen-
tence 2).

1. The new iPhone lookgreatand iseasyto handle.
2. London isawful; it's crime-ridden dirty and full ofrude people.

Various supervised classification approaches, in pagiaiassifiers
using bag of words, are heavily domain-dependent [2],they usu-
ally generalize fairly badly across different domains. et costs to
label data for any possible domain are prohibitively expens

Semi-supervised learning tries to solve this issue by rieduthe
size of the labeled dataset. The lack of labeled training datom-
pensated by a large unlabeled dataset of the target dontaerafter
is much cheaper to obtain.

Rule-based classification does not require any labeleditigi
data. In polarity classification, the rule-based classifies on
domain-independent polar expressions. Polar expresaienaords
containing a prior polarity, such ageat and awful. One typically
counts the number of positive and negative polar expressioa test
instance and assigns it the polarity type with the majorfityaar ex-
pressions. Since the classifier is restricted to domaiegaddent po-
lar expressions, it lacks the knowledge to recognize dorspétific
polar expressions, such aginchy" in the food domain obuggy”
in the computer domain.
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In this paper, we explore the effectiveness of bootstrap-

In this paper, we explore the effectiveness of an alteraativ
which like most semi-supervised learning algorithms isellaen
self-training i.e., the process of labeling the unlabeled data with a
preliminary classifier and then training another (more stpualas-
sifier by using the expanded annotated dataset. Unliketivadl
semi-supervised learning, we do not use an initial classif&ned
on a small labeled dataset but the output of a domain-indkgren
rule-based classifier. (For reasons of simplicity, we witen refer
to this specific version as plaigelf-trainingin the following sec-
tions.) While the rule-based classifier is restricted tokhewledge
of (domain-independent) polar expressions, the supehisassi-
fier trained on in-domain data labeled by the rule-basedsitias
can make use of domain-specific features, such as bag of words
Hopefully, the supervised classifier can effectively use ttomain-
specific knowledge and thus outperform the rule-basedifierss

Though this kind of self-training has already been appl@Ethsks
in opinion mining, including polarity classification, tteeare certain
aspects of this method which have not yet been fully examined

Firstly, what are good features for the (pseudo-)supedvigsar-
ity classifier which is trained on the data labeled by the-hdsed
classifier? Do the insights hold from common supervisechiegror
semi-supervised learning?

Secondly, what is the impact of the robustness of the ruseda
classifier on the final classifiers, i.e., does the supervisaskifier
improve when the rule-based classifier improves? This addeethe
issue of in how far relevant constructions for polarity sifisation
that can be incorporated into a rule-based classifier, sacoad
disambiguation, negation modeling, or intensificatioe, iamportant
for this kind of self-training approach.

Thirdly, how does this type of self-training compare to staf-
the-art semi-supervised learning algorithms?

Finally, does this method work in realistic settings in whiein
addition to definite polar reviews — also mixed polar revianes part
of the dataset and the distribution of the classes is imbatih

2 Related Work

There has been much work on document-level polarity classifin
using supervised machine learning methods. Various @lexssand
feature sets have been explored [10, 11]. Support VectohMas
(SVMs) [5] usually provide best results [11]. Unigram andraim
features outperform complex linguistic features [10].
Rule-based polarity classification usually requires amegimain

polarity lexicon with polar expressions. One typically ot the
number of positive and negative polar expressions ocquimia test
document and assigns it the polarity type with most polaresp
sions. This method can be enhanced by disambiguating pglees
sions in their respective contexts. A framework in whichrescare



heuristically assigned to polar expressions dependindein indi-
vidual contexts is proposed in [12]. The contextual modgfimainly
focuses omegationandintensification Implementations inspired by
that formalism have been empirically proven effective ;OB

Semi-supervised learning for polarity classification haerb
shown to be effective on inducing polarity lexicons fromiézt re-
sources [3, 14] but on text classification, the effectivarisseavily
dependent on the parameter settings. Significant improveower
supervised classification can usually only be achieved @sqnce
of few labeled training data and a predictive feature sethss in-
domain adjectives or polar expressions from a polarityclexi[17].
Another effective semi-supervised approach suggestsply apsu-
pervised learning (i.e., clustering) to classify unambiggi data in-
stances and restrict manual annotation to hard data iretdAt

Bootstrapping supervised machine-learning classifiets wie
help of rule-based classification has already been eftdygtapplied
to subjectivity detection of sentences [16]. The method &las
been applied to polarity classification, but so far only orinéke
data [13, 15]. While the performance with out-of-domainewsed
classifiers is compared in [15], this method is embeddedartom-
plex bootstrapping system which also extends the vocap(dafea-
ture set) of the rule-based classifier in [13]. Neither ostheorks
examine the impact of the rule-based classifier on the firmllte
the relation towards semi-supervised learning, nor dsgsisarious
settings of the self-training algorithm, in particularffeient feature
sets for the supervised classifier.

3 Data

In this paper, we use both the datasetidDb movie reviews [11]
and reviews extracted froMate-It-AlP. We evaluate on the former
because it is considered a benchmark dataset for polaasgifica-
tion. The additional data are used to show that our findingwvalid
throughout different domains. Moreover, they have alsmhesed
in prior work on semi-supervised learning [17] which we atsake
use of in our experiments. Table 1 lists the properties ottirpora
from the different domains. Note that on tRate-It-Alldatasets we
labeledl and2 star reviews asegativeand4 and5 star reviews as
positive 3 star reviews are labeledixed The actual class of these
reviews is unknown. Usually & star review should be neutral in the
sense that it equally enumerates both positive and negadpects
about a certain topic, so that a definite verdict in favor ciasf it
is not possible. That is also why we cannot assign thesenicssa
to either of the other two groups previously mentioned, pesitive

4.1.1 Feature Extraction

Any word in a review that is not included in a polarity lexican
discarded. Positive words (e.gxcellen) are assigned the valuel,
negative words (e.gawful) —1, respectively.

4.1.2 Basic Word Sense Disambiguation with
Part-of-speech Tags

The polarity lexicon we use has part-of-speech tags attathpo-
lar expressions in order to disambiguate them, e.g., thel \ilag is
either a polar verb or a preposition (in which case it is megleiss
for polarity classification). We identify words as polar exgsions
only if their part-of-speech tags also match the specificain the
lexicon. This can be considered as some basic form of worgesen
disambiguation. For part-of-speech tagging we us€®&€ tagger.

4.1.3 Negation Modeling

If a polar expression occurs within the scope of a negattemalar-
ity is reversed (e.g[notnice™] 7). By scope, we define the five words
immediately preceding the polar expression in the samesseat
Since some negation words are ambiguous and do not exprgss ne
tions when used in certain constructions, suchatsn not only. . .
but alsq we also apply some rules disambiguating negation words.
In addition to common negation expressions, suchaswe also
considerpolarity shifters Polarity shifters are weaker than ordinary
negation expressions in the sense that they only reverssiauper
polarity type. For example, the shiftabateonly modifies negative
polar expressions as [abate the damagd ™.

4.1.4 Heuristic Weighting

So far, all polar expressions contained in the polarityderiare as-
signed the same absolute weight, ifet)1. This does not reflect
reality. Polar expressions differ in their individual polatensity or,
in case of ambiguous words, in their likelihood to conveyapity.
Therefore, they should not obtain a uniform weight.

The polarity lexicon we use [18] includes a binary featungress-
ing the prior intensity of a polar expression. It distindugs between
weakpolar expressions, such dsordered andstrongpolar expres-
sions, such ashaotic Intuitively, strong polar expressions should
obtain a higher weight than weak polar expressions.

When a polar expression is modifed by a so-cailheensifier such

andnegative During a manual inspection of some randomly chosenasveryor extremelyits polar intensity is also increased. An ordinary

instances, however, we also found definite positive andtivegee-

weak polar expression has a similar polar intensity whes iihod-

views amongd star reviews. For this work, we leave these instancesfied by an intensifier as a strong polar expression, exremely

in the category of mixed reviews.

4 Method
4.1 Rule-based Classifier

In the following, we describe how a polarity lexicon is corteel
to a rule-based polarity classifier. The polarity lexicdme fist of
other important word classes being intensifiers, negatipressions
(including the rules to disambiguate them) and polaritftels are
taken from theMIPQA project [18].

2http://ww. rateitall.com

disorderedandchaotic

The part of speech of a polar expression usually sheds light o
the level of ambiguity of the word. If a polar expression isaf
jective its prior probability of being polar is much higher than the
one of polar expressions with other parts of speech, suclerdss v
or nouns [11, 17]. Therefore, polar adjectives should obsaiarger
weight than polar expressions with other parts of speech.

Since there are no development data in order to adjust trghiegei
for the previously mentioned properties, we propose to sirdpuble
the value of a polar expression if either of these propesejmsy. If
n of these properties apply for a polar expression, then iisevis

Shttp://svn.ask.it.usyd. edu. au/trac/
candc



Table 1. Properties of the different domain corpoi@fly relates to th&Rate-It-All data).

Domain Source Positive (4 & 5 Star$)  Mixed (3 Stars’)  Negative (1 & 2 Star§)  Vocabulary Size
computer  Rate-It-All 952 428 1253 15083
products Rate-It-All 2292 554 1342 21975
sports Rate-It-All 4975 725 1348 24811
travel Rate-It-All 9397 1772 3289 38819
movies IMDb 1000 0 1000 50920

doubledn times. For instance, an intensified adjective is assignedt.1.6 Different VVersions of Classifiers

the value o#4, i.e.,2 - 2.
The properties considered for heuristic weighting haveaaly
been motivated and proven effective in previous work [7, 11]

4.1.5 Classification

For each data instance tlwentextualscores assigned to the indi-
vidual polar expressions are summed. If the sum is positie the
instance is classified as positive. It is classified as negjafithe sum
is negative. We assign to all cases in which the sufmtfge polarity
type which gives best performance on that individual dat@sleich

is usually negative polarity). Thus, we have a stronger Ibas¢hat
is to be beaten by self-training.

Note that the prediction score of a data instance, i.e., the &f
contextual scores of the polar expressions, can also bgieted as
a confidence score. This property is vital for effectivelyngsthis
rule-based classifier in self-training. Thus, previouskmntioned in-
stances with a score of for example, are unlikely to occur in the
labeled training set since it only includes instances kdbelith a
high confidence score. The sum of contextual scores is nizeaal
by the overall number of tokens in a test instance. This nbzaa
tion additionally encodes the density of polar expressiuitisin the
instance. The greater the density of polar expressions aftacplar
type is in a text, the more likely the text conveys that poyari

Figure 1 summarizes all steps of the rule-based classifier.

1. Lexicon loading, i.e., polar expressions, negation wpathd intensifiers
2. Preprocessing:

(i) Stem testinstance.
(ii) Apply part-of-speech tagging to test instance.
3. Polar expression marking:

(i) Check whether part-of-speech tag of potential polaression matches lexical
entry (asic word sense disambiguatjon

(ii) Mark strong polar expressions.
4. Negation modeling:
(i) Identify potential negation words (including polarghifters).
(ii) Disambiguate negation words.
(iii) Reverse polarity of polar expression in scope of (geeynegation.

5. Intensifier marking
6. Heuristic weighting: double weight in case polar expi@sss:

(i) astrong polar expression
(ii) anintensified polar expression
(iii) a polar adjective.

7. Classification: assign test instance the polarity typé tie largest (normalized)
sum of scores.

Figure 1. Rule-based classifier.

We define four different types of rule-based classifiersyTdiffer in
complexity. The simplest classifier, i.e., RBi», does not contain
word sense disambiguation, negation modeling or heungtight-
ing. RBywsp is like RBp4in but also contains basic word sense
disambiguation. RR., is like RB,wsp but also contains negation
modeling. The most complex classifier, i.e., RBgn:, iS precisely
the algorithm presented in the previous sections. Tablerarizes
the different classifiers with their respective propetties

4.2 Semi-Supervised Learning

Semi-supervised learning is a class of machine learninpaodstthat
makes use of both labeled and unlabeled data for trainingliysa
small set of labeled data and large set of unlabeled dateagsitler
using unlabeled and labeled training data can producerpetéor-
mance than a classifier trained on labeled data alone. Th&uelly
achieved by harnessing correlations between feature®ébed and
unlabeled data instances and thus making inferences afeua-t
bel of these unlabeled instances. Since labeled data aemsxp
to produce, semi-supervised learning is an inexpensieengtive to
supervised learning.

In this paper, we exclusively use Spectral Graph Transomcti
(SGT) [6] as a semi-supervised algorithm since it producathis-
tently better results than other algorithms on polarityssification
in previous work [17]. In SGT, all instances of a collectior la-
beled and unlabeled) are represented Asyaarest-neighbor graph.
The graph is transformed to a lower-dimensional featureespee.,
its spectrum, and then divided into two clusters by minimizthe
graph cut. The two clusters that are chosen should predss\ddgh-
est possible connectivity of edges within the graph.

4.3 Self-Training a Polarity Classifier using the
Output of a Rule-based Classifier

The idea of this bootstrapping method is that a domain-iaddpnt
rule-based classifier is used to label an unlabeled datdsdke

in semi-supervised learning (Section 4.2), no labeledingi data
are used. The only available knowledge is encoded in the rule
based classifier. The data instances labeled by the rubstbEas-
sifier with a high confidence serve as labeled training dataafo
supervised machine-learning classifier. Ideally, the ltegsusuper-
vised classifier is more robust on the domain on which it waiaéd
than the rule-based classifier. The improvement can be iegpla
by the fact that the rule-based classifier only comprises aifom
independent knowledge. The supervised classifier, howavakes
use of domain-specific features, i.e., words sucbraachy" (food
domain) orbuggy  (computer domain), which are not part of the
rule-based classifier. It may also learn to correct polaresgions
that are specified in the polarity lexicon but have a wrongaptl



Table 2. Properties of the different rule-based classifiers.

Properties RBpigin

basic word sense disambiguation
negation modeling
heuristic weighting

RBywsp  RBney RBweignt
v v v
v v
v

type on the target domain. A reason for a type mismatch may b& Experiments

that a polar expression is ambiguous and contains diffgrelatrity
types throughout the different domains (and common pgléeiti-
cons usually only specify one polarity type per entry). Fatance,
in the movie domain the polar expressioneapis predominantly
negative, as it can be found in expressions, suainaap filmscheap
special-effectgtc. In the computer domain, however, it is predomi-
nantly positive as it appears in expressions suchhasp price If
such a polar expression occurs in sufficient documents witieh
rule-based classifier has labeled correctly, then the sigeetlearner
may learn the correct polarity type for this ambiguous esgie on
that domain despite the fact that the opposed type is spe:aifithne
polarity lexicon.

We argue that using a rule-based classifier is more wortlewhil
than using few labeled (in-domain) data instances — as litecase
in semi-supervised learning — since we thus exploit twoedéft
types of features in self-training being domain-indepengelar ex-
pressions and domain-specific bag of words which are knovieto
complementary [1]. The traditional semi-supervised apphousu-
ally just comprises one homogeneous feature set.

Figure 2 illustrates both semi-supervised learning arfetsghing
using a rule-based classifier for bootstrapping.

4.4 Feature Sets

Table 3 lists the different feature sets we examine for tipesased
classifier (within self-training) and the semi-supervisgassifiers.
We list the feature sets along their abbreviation with whikhy
will henceforth be addressed. The first three features Tigp2000,

For the following experiments — with the exception of those-p
sented in Section 5.4 — we mainly adhere to the settings of pre
vious work [17]. We deliberately chose these settings irorfaaf
semi-supervised learning in order to have a strong bastdinthe
proposed self-training method. We use a balanced subsetofray
generated) for each domain. TRate-It-Alldataset consists a800
data instances per domain, whereas lti®b dataset consists of
2000 data instances. We just consider (definite) positive anfi-(de
nite) negative reviews. The rule-based classifiers andeffi¢rained
classifiers (bootstrapped with the help of rule-based ifieaton)
are evaluated on the entire domain dataset. T most highly-
ranked data instances (i.600 positive and500 negative instances)
are chosen as training data for the supervised classifies.sEfting,
which is similar to the one used for semi-supervised leariity],
provided good performance in our initial experiments. Fersuper-
vised classifier, we chose SVMs. As a toolkit, we @éMLighf.
Feature vectors were always normalized to unit length aditiad-
ally weighted withtf-idf scores. All words are stemmed. We report
statistical significance on the basis of a paired t-testg&iob as the
significance level.

5.1 Comparison of Different Rule-based Classifiers

Table 4 shows the results of the different rule-based dlassacross
the different domains. On average, the more complex thehated
classifier gets, the better it performs. The only notablesptions
are theproductsdomain (from RBye, t0 RByycign:) and thesports
domain (from RB>4., t0 RBywsp). On average (i.e., considering
all domains), however, the improvements are statisticadjgificant.

Adj600, and MPQA) have been used in previous work on semi-

supervised learning [17]. They all remove noise containedhe
overall vocabulary of a domain corpus. The last two feat(res,
Uni and Uni+Bi) are known to be effective for supervised pitya
classification [10]. Bigrams can be helpful in addition tagrams
since they take into account some context of polar expressikhus,
crucial constructions, such as negatifmof nice]~) or intensifica-
tion ([extremely nicef ™), can be captured. Moreover, multiword po-
lar expressions, such fisw tax]™ or [low grades], can be repre-
sented as individual features. Unfortunately, bigramuiest are also
fairly sparse and contain a considerable amount of noise.

Table 3. Description of the different feature sets.

Feature Set Abbrev.
the 2000 most frequent non-stopwords in the domain corpus Top2000
the 600 most frequent adjectives and adverbs in the domain corpus j608d

all polar expressions within the polarity lexicon MPQA
all unigrams in the domain corpus Uni
all unigrams and bigrams in the domain corpus Uni+Bi

5.2 Self-Training with Different Rule-based
Classifiers and Different Feature Sets

Table 5 compares self-training (SelfTr) using differenterbased
classifiers and different feature sets for the embeddedrespd
classifier. In addition to accuracy, we also listed the Bdgres of
the two different classes. The results are averaged ovdpaihins.
With the exception of RR., in combination with Top2000 and
MPQA, there is always a significant improvement from a ruisédu
classifier to the corresponding self-trained version. 1pZ@00 or
MPQA is used, there is a drop in performance fromRBto SelfTr
in the sportsdomain. Improving a rule-based classifier also results
in an improvement of the self-trained classifier. With exa®p of
SelfTr(RBpia:n) to SelfTr(RBw s p) this is even significant.

The feature set producing the best results is Uni+Bi. UniisBi
statistically significantly better than Uni. This meanstttes far as
feature design is concerned, the supervised classifielnnblf-
training behaves similar to ordinary supervised clasgifioa[10].
Unlike in semi-supervised learning [17], a noiseless featet is
not necessary. Best performance of SelfTr using a largef swilar

4http://svmight.joachins.org
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Figure 2. Comparison of semi-supervised learning and self-trainisigg a rule-based classifier for bootstrapping.

Table 4. Comparison of accuracy between different rule-baseditilrss(RB) and self-trained classifiers (SelfTr) trainedbast feature set (Uni+Bi) on
different domains (for each domain, performance is evathian a balanced corpus).

RBPiain RByw s D RBneg RBw cight

Domain RB SelfTr RB SelfTr RB SelfTr RB SelfTr

computer  64.11 80.22 70.61 81.72 73.56 83.67 74.28 83.50
products 60.78 70.78 66.06 73.89 71.06 77.00 70.94 77.00
sports 64.33 66.44 64.39 64.94 67.50 68.89 68.89 72.78
travel 64.61 69.56 67.39 69.83 70.72 73.33 72.61 76.89
movies 61.75 72.70 64.80 72.45 67.85 73.55 71.30 77.75
average 63.12 71.94 66.65 72.57 70.14 75.29 71.60 77.58

expressions is reported in [13]. The feature set comprisezpan-
domain polarity lexicon and is automatically extended byndm-
specific expressions. Our results suggest a less compxaiive.
Using SelfTr with unigrams and bigrams (i.e., Sefffr g;) already
provides better classifiers than SelfTr with a polarity ¢exi (i.e.,
SelfTrspga). The increase is appro’%.

It is also worth pointing out that the gain in performancet tisa
achieved by improving a basic rule-based classifier (i.BrR:»)
by modeling constructions (i.e., RR.ig4r¢) is the same as is gained
by just self-training it with the best feature set (i.e.,f%ab i+ 5:)-

The relation between the F-scores of the two different elaskf-
fers between RB and SelfTr. In RB, the score of the positiss<is
always significantly better than the score of the negatise<cI This
is consistent with previous findings [1]. The gap betweentthe
classes, however, varies depending on the complexity ofltesi-
fier. In RBpj4in, the gap is17.45%, whereas it is less thaé% in
RBneg and RByeignt. In SelfTr, the F-score of the negative class
is usually better than the score of the positive clag#is relation

5 The only exception where the reverse is always true is SgiH® 4. This
does not come as a surprise since this feature set resenblen&.

between the two classes is typical of learning-based pylatas-
sifiers [1]. However, it should also be pointed out that the ga
much smaller (usually not greater thaf). Moreover, the size of
the gap does not bear any relation to the gap in the originalieB
though there is a considerable difference in size betweegdps of
RBpiqin and RBveg, the size of the gaps in the self-trained versions
is fairly similar.

We also experimented with a combination of bag of words aad th
knowledge encoded in the rule-based classifier, i.e., todaatures:
the number of positive and negative polar expressions mwitdata
instance. The performance of this combination is worse éhaassi-
fier trained on bag of words. The correlation between the tassda-
bels and the two polarity features is disproportionateghtsince the
polarity features essentially encode the prediction ofrthe-based
classifier. Consequently, the supervised classifiers dpwlstrong
bias towards these two features and inappropriately dovghvéhe
bag-of-words features.

Table 4 compares rule-based classification and self-trgion in-
dividual domains. In some domains self-training does nakwbhis
is most evident in theportsdomain using self-training on RB s p.



Apparently, the better the rule-based classifier is, theenlikely a
notable improvement by self-training can be obtained. Nio#e in 85 . . . . .

the sportsdomain the self-trained classifier using the most complex Semi-supervisen ieaming (SoL) ih 1op 600 Adeaives and scuerbe.
rule-based classifier, i.e., SelfTr(RBi,n:), achieves the largest im- oAl wih 1000 Tardomiy Seleciod incianees oA
provement compared to the rule-based classifier. Thesevalisss
are also representative for the remaining feature setsiaranbut
not displayed in Table 4.

T T

Self-training with 1000 randomly selected instances (SelfTr-A)
Self-training with 1000 training instances selected by confidence (SelfTr-B) ----

5.3 Self-Training using Rule-based Classifiers
Compared to Semi-Supervised Learning

In the following experiments, we use Spectral Graph Tracsoo
(SGT) [6] as a semi-supervised classifier, since it provioest per-
formance in previous work [17]. As a toolkit, we uSSTLight.

For each configuration (i.e., training and test partitioe)nandomly

Accuracy (classifier trained on 1000 unlabeled documents)

sample20 partitions from the corpus. Labeled training and test data 00 260 300 200 500 500 700 200
are always mutually exclusive but the test d&@0(positive ands00 Number of labeled documents for training
negative instances) can be identical to the unlabelednigoata.

Figure 3 compares self-training bootstrapped on the owtpute- Figure 3. Comparison of self-training and semi-supervised learning
based classification (SelfTr) to supervised learning (Sig semi- (performance is evaluated on balanced corpus and resel&varaged over
supervised learning (SSL). We compare two variations ofTgel all domains).

SelfTr-A, as SSL, uses the same 1000 randomly sampled data in

stances for both unlabeled training and testi@gain, we report

the averaged result over 20 samples.) SelfTr-B (like iniprevsec-

tions) selects000 training instances by confidence from the entire 5.4 Natural Class Imbalance and Mixed Reviews
dataset. The test data are, however, the same as in SelfInlke

in previous work in which Top2000 is used for SL [17], we chose | this section, we want to investigate what impact natutassim-
Uni+Bi as a feature set. It produces better resulgs thand@Pdn  pajance has on bootstrapping polarity classifiers with e-baised
classifiers trained on larger training sets (i2.400)°. For SSL, we classifier since this aspect has only been marginally cavierere-
consider Uni+Bi and Adj600, which is the feature set withdkerall ;4,5 work [13, 15]. In those works, different class ratiostbe test
best performa_n_ce gsing that learning method. For SelfTcamsider gt are evaluated. However, the same amount of positiveegative
the best classifier, i.e., Selffsi+ 5. _ reviews is always selected for training. We assume that phienal

_ Though SSL gives a notable improvement on small labeled-trai e rformance of self-training can be achieved when the diassbu-
ing sets (i.e.< 100), it produces much worse performance than S ijon of training and test set is identical and we will provigiédence

on_large train_ing sets (i.e3 200). Adjectives and advert_)_s are aVvery for that. Moreover, we want to explore what impact differeistri-
reliable predictor. However, the size of the feature seaiidyf small. butions between the two sets have on the accuracy of theifidass
Too little structure can be learned on large labeled trgiisiets us- 544 how different class-ratio estimation methods perform.

ing such a small feature set. Using larger (but also noiseure Previous work dealing with bootstrapping polarity clags#ius-

sets for SSL, such as Uni+Bi, improves performance on la@er jng ynjabeled data also focuses on datasets exclusivesjstiony of
beled training sets. However, even with Uni+Bi SSL does path definite positive and negative reviews [4, 13, 15, 17]. Irs théc-

a performance comparable to SL on large training sets as®igt  ion, the unlabeled dataset will also include mixed revieins, 3
nificantly worse than Adj600 on small training sets. star reviews (see Section 3). Due to the availability of stata the
Whenever SSL outperforms SL, every variation of SelfTr @it oyneriments are only carried out on fRate-lt-Alldata. We also add

performs SSL. SelfTr-B is significantly better than Selfwhich ¢ constraint that the test data must be disjoint from tHehated
means that the quality of labeled instances matters and@rSgkible training datd.

to select more meaningful data instances than are provigedrb Test data are exclusively (definite) positive reviews (ie& 5

dom sampling. Unfortunately, SSL-methods, such as SGTolmA ¢4 reviews) and (definite) negative reviews (il 2 star reviews).
corporate such a selection procedure for the unlabeled Batther  F.5m each domain. we randomly sampl® data instances times.
exploratory experiments using tiemtire dataset as unlabeled data \y giate the results averaged over these different tesfiémslass

for SSL produced, on average, results similar to those usi9 a1 on each test set corresponds to the distribution ofidefpolar
instances. This proves that SSL cannot internally ider@#fymean-  (aviews i.e.3 star reviews are ignored.

ingful data as SelfTr-B does. Whereas SSL significantly exiggms The unlabeled training dataset is the dataset of a domaindexc

SL on training sets using less thafo training instances, the best jng the test data. As labeled training data for the embeddpérs
variation of SelfTr, i.e., SelfTr-B, significantly outperims SL on  \iseq classifier within self-training, we uge% of data instances la-

t_raining sets using Ie_ss thano instances. This differenc_e_is, inpar- peled by the rule-based classifier ranked by confidence dfgtien
ticular, remarkable since SelfTr does not use any labetdifig data  (;cross all domains/configurations, this size provided beslts).

at all whereas SSL does. Hopefully, most mixed reviews are among the remairiagy.

Shttp://sgt.joachins.org
7 We use this configuration since it is required 9@ TLight 9 We can include this restriction in this section since we wiit consider the
8 Note that previous work in particular focused on small irairsets [17]. semi-supervised learning algorithm SGT in this section.




Table 5. Performance of self-trained classifiers with differentdiea sets (experiments are carried out on a balanced conpugsults are averaged over all

domains).
RBpiain RBywsp RBNeg RBweignt
Type F1+ F1— Acc F1+ F1— Acc F1+ F1— Acc F1+ F1— Acc
RB (Baseline) 69.81 52.36 63.12 70.39 61.79 66.65 7242 67.40 70.14 74.28.306 71.60
SelfTrrop2000  70.15 70.88 70.53 70.26 7155 70.92 7278 73.88 7340 74.794.187 75.73
SelfTr 445600 68.94 69.92 69.44 70.08 7141 70.76 7246 7390 73.20 74.34.827 75.10
SelfTrarpga 69.18 67.85 68.55 70.03 69.46 69.75 7250 7219 7215 745B.477 75.04
SelfTry 69.82 71.16 70.51 7053 7241 7150 73.17 7487 74.05 75.73.677 76.74
SelfTfruni+n: 7114 7469 7194 7141 7364 7257 7439 76.12 7529 76.48.627 77.58

5.4.1 Class Imbalance and Rule-based Classification

In the first experiment, we just focus on class imbalance, d.star
reviews are excluded). We examine a self-trained classi$ieig the
class-ratio estimate of a rule-based classifier as it is tbst wbvi-
ous estimate since the rule-based classifier is also usgefierating
the labeled training data. In particular, we want to explatesther
there is a systematic relationship between the class llisivn, the
class-ratio estimate of the rule-based classifier and thétieg self-
trained classifier. Table 6 lists the actual distributiolagses on the
test set, the deviation between the distribution as it idipted by the
rule-based classifier and the actual distribution alongrtfoemation
towards which class the rule-based classifier is biaseallfzinve
also list the absolute improvement/deterioration of thétsained
classifier in comparison to the rule-based classifier. Wé avily
consider the best rule-based classifier, i.e.sRBx¢, and for self-
training, we will exclusively consider the best configuoatfrom the
previous experiments, i.e., Selffy;+ ;. The table shows that the
quality of class-ratio estimates of rule-based classifiarees among
the different domains. The deviation is greatest onciraputerdo-
main. This is also the only domain in which the majority classthe
negative reviews. With exception of taportsdomain, the rule-based
classifier always overestimates the amount of positiveevewi This
overestimation is surprising considering that the pojdekicon we
use contains almost twice as many negative polar expresa©pos-
itive polar expressions. This finding, however, is consisteith our
observation from Section 5.2 that rule-based classifieve habias
towards positive reviews, i.e., they achieve a better Festar pos-
itive reviews than for negative revieWs Table 6 also clearly shows
that the deviation negatively correlates with the improgatof the
self-trained classifier towards the rule-based classifige.improve-
ment is greatest on tteportsdomain where the deviation is smallest
and the greatest deterioration is obtained ondbeputerdomain
where the deviation is largest.

In summary, the class distribution of the data has a sigmifica-
pact on the final self-trained classifier. In case there isaanhenis-
match between actual and predicted class ratio, the sétfiig ap-
proach will not improve the rule-based classifier.

5.4.2 Class Imbalance, Class Ratio Estimates and 3 Star
Reviews

In the following experiment we will compare how alternatslass-
ratio estimates relate to each other when applied to saHitrg.
We compare the actual distribution (Ratio-Oracle) withllhé&anced

10 We also observed that this bias is significantly larger onpgintlassi-
fiers, such as RB;.i,, Which is plausible since on this classifier the gap
between F-scores of positive and negative reviews is atgesa(see Ta-
ble 5).

class ratio (Ratio-Balanced), the class ratio as predioyetthe rule-
based classifier over the entire dataset (Ratio-RB) andnatds
gained from a small amount of randomly sampled data inst&ance
from the dataset. We randomly sample (Ratio20), 50 (Ratio-50)

and 100 (Ratio-100) instances. For each configuration (i.20, 50,

and 100), we samplel0 times, run SelfTr for each sample and re-
port the averaged result. We compare the self-trainedit@ssith

a classifier always assigning a test instance to the majoliys
(Majority-Cl) and the rule-based classifier (RB;gn:). This time,

we also include tha star reviews in the unlabeled dataset.

Table 7 displays the results. We also display results of étasets
without using3 star reviews in brackets. SelfTr using Ratio-Balanced
produces the worst results among the self-training classifiThis
was the only method used in previous work (in Chinese) [13, 15
Apparently, English data are more difficult than Chinese, &mé&n-
glish, SelfTr is more susceptible to deviating class-rastimates
since in [13, 15] SelfTr with Ratio-Balanced scores ratheilw
Ratio-Oracle produces best results which comes to no serpiice
the class distribution in training and test set is the same.a®
erage, Ratiot00 produces the second best result as it also gives
fairly reliable class-ratio estimates (the deviatiofi.i¥% on average,
whereas the deviation of Ratio-Balancedl&16%). Both Ratio-
50 and Ratio100 produce results which are significantly better than
Majority-Cl and RBycighe.

As Ratio-Oracle, Ratio-Balanced, Ratio-20, Ratio-50, Riadio-
100 suggest, the presence of mixed polar reviews does ndtgeo
significantly different results. It is very striking, howay that the
results of Ratio-RB are better using thestar reviews which seems
counter-intuitive. We found that this is a corpus artifés. already
stated in Section 3 star reviews do not only contain indefinite polar
reviews but also positive and negative reviews. We alsochtitat
Ratio-RB has a bias towards predicting too many positiveaies.
The bias is stronger i3 star reviews are not included in the ratio-
prediction (deviation 08.5% instead 0f6%). We, therefore, assume
that among th8 star reviews the proportion of negative-like reviews
is greater than among the remaining part of the dataset anifRB
SelfTr detects them as such. Thus, the bias towards popibiazity
is slightly neutralized.

In summary, using small samples of labeled data instanci® is
most effective way for class ratio estimation enabling Beib con-
sistently outperform Majority-CL and RBeign:. Mixed reviews
only have a marginal impact on the final overall result of Belf

6 Conclusion

In this paper, we examined the effectiveness of bootstrappsuper-
vised polarity classifier with the output of an open-domaiiehased
classifier. The resulting self-trained classifier is ugusignificantly
better than the open-domain classifier since the superciasdifier



Table 6. Class imbalance and its impact on self-training.

Domain Class distribution (4 : —) Deviation of predicted Class towards which Difference in Accuracy between
distribution from actual predicted distribution is RB and SelfTr(RB)
distribution biased
computer 43.17 : 56.83 16.30 + —3.60
products 63.07 : 36.93 6.65 + —0.25
sports 78.68 : 21.32 2.10 — +3.15
travel 74.07 : 25.93 3.71 + +1.30

Table 7. Accuracy of different classifiers tested on naturally inalngled data: for self-trained classifiers the unlabeled @latacontair3 star reviews;
numbers in brackets state the results on a dataset whichdess star reviews.

SelfTr
Domain Majority-Cl RB weight Ratio-Oracle  Ratio-Balanced Ratio-RB Ratio-20 Ratio-50 Rtio-100
computer 56.83 73.80 82.80 (83.35) 83.25(82.95 75.95(70.20) 77.36(77.95) 80.43(80.91) 80.96 (81.47)
products 63.07 76.00 80.90 (81.70) 75.40 (76.05) 77.50 (75.75) 7@8B10) 80.45(80.86) 80.69(81.27)
sports 78.68 77.35 81.25 (81.10) 62.55 (60.30) 80.75(80.50  79.10(79.01) 79.94(79.94)  80.620.50
travel 74.07 79.50 81.70 (81.60) 66.95 (66.10) 81.15(80.80  77.96 (76.59)  80.64 (80.52)  80.76 (80.58)
average 68.16 76.66 81.66 (81.94) 72.04 (71.35) 78.84(76.81) 7@W0MO1) 80.37(80.56) 80.76 (80.96)

exploits in-domain features. As far as the choice of theufeaset is
concerned, the supervised classifier within self-traitielgaves very
much like an ordinary supervised classifier. The set of atjnams

and bigrams performs best.

The type of rule-based classifier has an impact on the pesiocen
of the final classifier. Usually, the more accurate the riased clas-
sifier is, the better the resulting self-trained classifgerTiherefore,
modeling open-domain constructions relevant for polasi@gsifica-
tion is important for this type of self-training. It also gests that
further improvement of rule-based polarity classifiers byrenad-
vanced linguistic modeling is likely to improve self-traig as well.

In cases in which semi-supervised learning outperform®rsup
vised learning, self-training at least also performs ad asthe best
semi-supervised classifier. A great advantage of selfitrgiis that
it chooses instances to be added to the labeled trainingysetibg
confidence scores whereas in semi-supervised learningase he-
sort to random sampling. The resulting data from self-tr@jrare
usually much better.

Self-training also outperforms a rule-based classifier and
majority-class classifier in more difficult settings in whimixed re-
views are part of the dataset and the class distributionbsiamced,
provided that the class-ratio estimate does not deviatentazh from
the actual ratio on the test set. A class-ratio estimate easbtained
by the output of the rule-based classifier but, on averageg ssall
samples from the data collection produces more reliabldtees

Since this self-training method works under realisticisgt, it
is more robust than semi-supervised learning, and its edsukedu-
pervised classifier only requires simple features in ordgsrbduce
reasonable results, it can be considered an effective méthover-
come the need for many labeled in-domain training data.
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