
Optimizing Language Models for Polarity

Classification

Michael Wiegand and Dietrich Klakow

Spoken Language Systems, Saarland University, Germany,
{Michael.Wiegand|Dietrich.Klakow}@lsv.uni-saarland.de

Abstract. This paper investigates the usage of various types of lan-
guage models on polarity text classification – a subtask in opinion mining
which deals with distinguishing between positive and negative opinions
in natural language. We focus on the intrinsic benefit of different types
of language models. This means that we try to find the optimal settings
of a language model by examining different types of normalization, their
interaction with smoothing and the benefit of class-based modeling.

1 Introduction

There has been an increasing interest in opinion mining in recent years, in partic-
ular, in polarity text classification. Though Bayesian methods have been widely
explored in this context, for example in [1], less attention has been drawn to
the impact of language modeling on this classification task. This paper discusses
various aspects of language modeling, such as normalization, its interaction with
smoothing and class-based modeling.

2 Bayesian Classification and Language Modeling

The Bayesian classifier estimates the optimal class ĉ given a sequence of words
w1 . . . wn where n is the length of the observation (i.e. a document to be classi-
fied) by the prior P (c) and the likelihood P (w1 · · ·wn|c):

ĉ = arg max
i

P (w1 . . . wn|ci) · P (ci) (1)

We model the likelihood as a Markov Chain:

P (w1 . . . wn|c) =
n∏

i=1

P (wi|wi−m+1 . . . wi−1, c) (2)

Each word wi is considered with respect to some short history of preceding
content wi−m+1 . . . wi−1 where m is the size of the sequence to be modeled. We
refer to this as an m-gram. The likelihood is estimated by different language
models. Smoothing is essential in Bayesian classification since, otherwise, any
unseen event would turn Equation 2 to zero. We experimented with the most
common smoothing techniques in IR, as presented in [2], and discovered that
absolute discounting works best in polarity classification which is why we used
it in all subsequent experiments.



3 Methods

3.1 Normalization

In text classification, one usually applies some form of normalization in order
to reduce the data sparseness. Typically, one resorts to stemming – which is
a simple algorithmic approach, where suffixes are removed from words – or to
lemmatization – in which a base form is looked up in a dictionary. Due to its
complexity, lemmatization is less preferred, though it is by far more linguistically
accurate. In our experiments, we used Porter stemming and lemmatization as
done in WordNet1.
In order to remove noise, we also examined the effect of omitting singletons and
stopwords being a small set of function words. Moreover, we restricted the vo-
cabulary to the polarity expressions in General Inquirer (GI)2 which is a list of
polar adjectives, such as brilliant or horrible, and verbs, such as adore or hate,
comprising 3440 different words in total. We assume that these polar words are
highly discriminative for polar text classification.
In order to investigate the usefulness of negation handling in polar text classifica-
tion, we examined the impact of two negation models which differ in complexity:

1. Each subsequent token of a negation marker, e.g. not, didn’t or cannot, is
marked with prefix NOT until the first occurrence of a punctuation mark.
This method has been proposed in [3].

2. With the help of regular expressions we disambiguate (potential) negation
markers3. For this task we have written a small set of regular expressions.
Unlike [3] only the negated word is marked with NOT . We identify those
words by part-of-speech information. Not only is this linguistically more
accurate, but it should also cause less data-sparsity4.

3.2 Class-based Language Models

Unlike [1] who attempt to create more generalizing models by manually con-
structed rules replacing specific words with their respective part-of-speech tags,
we try to generalize our training data by applying class-based language models.
A mapping k : V → K is learned where V is the vocabulary and K is the set of
unlabeled classes whose number has to be specified in advance. Unlike [1], this
approach is completely unsupervised and does not require any form of expensive
pre-processing, such as part-of-speech tagging. The objective function of the
class-induction is the maximization of the Likelihood. The class-based language
model is defined by:

1 http://wordnet.princeton.edu/
2 http://www.wjh.harvard.edu/∼inquirer
3 We observed that, frequently, negation markers do not express negations in certain

contexts, e.g. not just . . . but . . . or why not . . .

4 Consider that each time a prefix NOT is added to a word, a new word is created
which is different to the unnegated expression.



P (wi|wi−(m+1) . . . wi−1) = P (wi|k(wi)) · P (k(wi)|k(wi−(m+1)) . . . k(wi−1)) (3)

The first factor is called emission probability and the second is called transition
probability. We use the O(V · K2) algorithm as presented in [4] to learn the
mapping from words to classes.

4 The Data

All our experiments were performed on the movie review data set [3]. We chose
this dataset since it is commonly regarded as the benchmark dataset for polar-
ity text classification. The dataset comprises 1000 positive and 1000 negative
reviews. The classes to be predicted are positive and negative reviews. We ran-
domly partitioned the dataset into a training set containing 936 documents, a
development set for optimizing the language models and a test set both com-
prising 468 documents5.

5 Results of the Experiments

We evaluated our experiments on the basis of accuracy. Every model has been op-
timally smoothed on a separate development set. We performed four-fold cross-
validation meaning that the we generated four different partitions of the dataset
as described in Section 4 in order to obtain representative numbers.

5.1 Results of Normalization Experiments

Table 1 displays the performance of the different types of normalizations. On
the test set, only lemmatization and porter stemming perform marginally better
than the plain unigram model. The remaining models, including both negation
models, are worse than the plain unigram model though mostly only marginally.
It is also striking that the two worst performing models, the GI model and the
singleton model, are exactly those models from which the greatest amount of
data has been removed. Apparently, it is fairly impossible to remove noise from
the dataset we are using without also omitting meaningful information.

5.2 Interaction between Smoothing and Normalization

Figure 1 illustrates the interaction between optimizing the smoothing parameter
δ and the performance of some normalized models. If a suboptimal smoothing
parameter has been chosen, e.g. δ = 0.1, the GI model, which is the second
worst performing model when optimized models are compared (see previous sec-
tion), significantly outperforms the standard unigram model. Further iterating

5 These numbers have been chosen to be consistent with [3]. They use 1400 documents
per class, using two thirds for training and one third for testing.



Table 1. Performance of different types of normalizations on unigram models.

Model Test Devel

Plain 80.4 80.9

Porter Stemming 80.6 80.0

Lemmatization 81.1 81.0

Singletons Removed 64.6 64.0

Stopwords Removed 80.2 81.0

GI-Lexicon 78.7 80.6

Negation I 79.6 80.2

Negation II 79.7 81.0

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0  0.2  0.4  0.6  0.8  1

A
cc

ur
ac

y

δ

unprocessed tokens
vocabulary from GI lexicon

stemming using Porter

Fig. 1. Iterative optimization of smoothing parameters on unigram models on devel-
opment set.

the smoothing parameter hardly improves the GI model but immensely improves
the plain unigram model. The optimally smoothed plain model (δ = 0.95) is,
however, not only on a par with the optimal GI model on the development set
but also better than the GI model on the test set. We observed a similar but
less striking behavior between the model using stemming and the plain model.
We conclude from these observations that expensive pre-processing, such as fil-
tering the vocabulary with a manually built task-specific lexicon, does not offer
a better performance than a properly smoothed plain unigram model, which is
also far cheaper to obtain.

5.3 Results of Class-Based Language Models

In our experiments we found that trigram models work best as transition prob-
abilities. We tested models with 500, 600 and 700 classes. Table 2 displays the
results of the different class-based language models we built. For comparison,
we also included the performance of different word-based m-gram models. No



normalization was done on any of the models. On the test set, all class-based

Table 2. Performance of class-based language models.

Model Test Devel

Unigram 80.4 80.9

Bigram 80.9 81.7

Trigram 81.3 81.5

500 Classes 81.7 82.2

600 Classes 82.4 81.7

700 Classes 82.3 82.8

models performed better than the word-based models, though the improvement
is only limited. The class-based model trained on 600 classes with an accuracy
of 82.4% is the best model we could generate in our experiments. Considering
the error-bars on the results of our experiments at approximately ±1.0% this
performance is comparable with SVMs at 82.9 which is the best performance
reported in [3].

6 Conclusion

In this paper, we have stated our results on polar text classification using various
types of language models. Properly smoothed plain unigram models offer similar
performance to normalized models. Pre-processing is only beneficial if one uses
insufficiently smoothed models. Removing noise often harms the performance.
Class-based language models produce the best Bayesian classifier, though the
gap to word-based higher-order m-gram models is small. Since our results are
comparable to discriminative methods, such as optimized SVMs, we presume
that the inherent noise in the data set does not allow much more room for
improvement for Bayesian Classification and presumably any other standard
machine learning algorithm.

References

1. Salvetti, F., Reichenbach, C., Lewis, S.: Impact of Lexical Filtering on Overall Opin-
ion Polarity Identification. In: Proc. of the AAAI Symposium on Exploring Attitude
and Affect in Text: Theories & Applications, Dordrecht, Netherlands (2004)

2. Zhai, C., Lafferty, J.: A Study of Smoothing Methods for Language Models Applied
to Ad Hoc Information Retrieval. In: Proc. of SIGIR, New Orleans, USA (2001)

3. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment Classification Using
Machine Learning Techniques. In: Proc. of EMNLP, Philadelphia, USA (2002)

4. Brown, P., Pietra, V.D., deSouza, P., Lai, J., Mercer, R.: Class-Based n-gram Models
of Natural Language. Computational Linguistics 18(4) (1992) 467–479


