Note: This exercise comes with an additional file for the second part.

Mathematical Basics

1. Use set theory and the definition of probability functions to show that:
 \[P(A \cup B) = P(A) + P(B) - P(A \cap B) \]

2. Suppose we are interested in a test to detect a disease which affects one in
 \(\frac{1}{100000} \) people on average. A lab has developed a test which works but is
 not perfect. If a person has the disease, it will give a positive result with probability 0.97; if they do not, the test will be positive with probability 0.007. You took the test, and it gave a positive result. What is the
 probability that you actually have the disease?

3. Are \(X \) and \(Y \), as defined in the following table, independently distributed?
 How did you check?

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>(p(X = x, Y = y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.32</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0.08</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0.48</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Kullback Leibler Divergence and Cross-Entropy

To compare two probability distributions, Kullback Leibler divergence and Cross Entropy can be used. The Kullback Leibler divergence \(D(p||q) \) of two probability distributions \(p \) and \(q \) is defined as:

\[
D(p||q) = \sum_{x \in X} p(x) \cdot \log \left(\frac{p(x)}{q(x)} \right)
\]

The Cross Entropy \(H(p, q) \) of two discrete probability distributions \(p \) and \(q \) is defined as:

\[
H(p, q) = H(p) + D(p||q) = -\sum_{x \in X} p(x) \cdot \log (q(x))
\]
1. For each of the two given texts, determine the respective probability distribution p or q of characters.

2. For each of the two probability distributions p or q, calculate the entropy $H(p)$ or $H(q)$.

3. For the two probability distributions p and q, calculate the Kullback-Leibler divergences $D(p||q)$ and $D(q||p)$. Does it hold that $D(p||q) = D(q||p)$?

4. For the two probability distributions p and q, calculate the cross entropies $H(p, q)$ and $H(q, p)$. How do you interpret the results?

Note on Submission Please use PDF as a document format. If you need to compress files, use ZIP or GZIP.

If you attend the **mon. tutorial**, the **deadline** is **Friday 16th May, 23:59**. In that case send the solutions to *s9tsback@student.uni-saarland.de*.

If you attend the **wed. tutorial**, the **deadline** is **Sunday 18th May, 23:59**. In that case send the solutions to *kalofoli@ceid.upatras.gr*.

2