Chapter 10: Topic Detection and Tracking (TDT)

Some slides from “Overview NIST Topic Detection and Tracking
-Introduction and Overview” by G. Doddington
TDT Task Overview

- **5 R&D Challenges:**
 - Story Segmentation
 - Topic Tracking
 - Topic Detection
 - First-Story Detection
 - Link Detection

- **TDT3 Corpus Characteristics:**
 - Two Types of Sources:
 - Text
 - Speech
 - Two Languages:
 - English: 30,000 stories
 - Mandarin: 10,000 stories
 - 11 Different Sources:
 - English: 8
 - Mandarin: 3
 - ABC, CNN, VOA, PRI, VOA, XIN, NBC, MNB, ZBN, APW, NYT

* see http://www.itl.nist.gov/iaui/894.01/tdt3/tdt3.htm for details
† see http://morph.ldc.upenn.edu/Projects/TDT3/ for details
A **topic** is ...

a seminal **event** or activity, along with all directly related events and activities.

A **story** is ...

a topically cohesive segment of news that includes two or more **DECLARATIVE** independent clauses about a single event.
Title: Mountain Hikers Lost

- **WHAT:** 35 or 40 young Mountain Hikers were lost in an avalanche in France around the 20th of January.
- **WHERE:** Orres, France
- **WHEN:** January 1998
- **RULES OF INTERPRETATION:** 5. Accidents
The Segmentation Task:

To segment the source stream into its constituent stories, for all audio sources.

Transcription: text (words) →

Story:
Non-story:

(for Radio and TV only)
The Topic Tracking Task:

To detect stories that discuss the target topic, in multiple source streams.

• Find all the stories that discuss a given target topic
 • Training: Given N_t sample stories that discuss a given target topic,
 • Test: Find all subsequent stories that discuss the target topic.

training data

not guaranteed to be off-topic

test data

on-topic
unknown
unknown
Topic Tracking Conditions

- **3 Source Conditions:**
 - text sources and manual transcription of the audio sources
 - text sources and ASR transcription of the audio sources
 - text sources and the sampled data signal for audio sources

- **2 Story Boundary Conditions:**
 - Reference story boundaries provided
 - No story boundaries provided
The Topic Detection Task:

To detect topics in terms of the (clusters of) stories that discuss them.

- Unsupervised topic training
- New topics must be detected as the incoming stories are processed.
- Input stories are then associated with one of the topics.
Topic Detection Conditions

• Decision Deferral Conditions:

<table>
<thead>
<tr>
<th>Maximum decision deferral period in # of source files</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>100</td>
</tr>
</tbody>
</table>
The First-Story Detection Task:

To detect the first story that discusses a topic, for all topics.

- There is no supervised topic training (like Topic Detection)
The Link Detection Task

To detect whether a pair of stories discuss the same topic.

- The topic discussed is a free variable.
- Topic definition and annotation is unnecessary.
- The link detection task represents a basic functionality, needed to support all applications (including the TDT applications of topic detection and tracking).
- The link detection task is related to the topic tracking task, with $N_t = 1$.
TDT3 Evaluation Methodology

- All TDT3 tasks are cast as statistical detection (yes-no) tasks.
 - Story Segmentation: Is there a story boundary here?
 - Topic Tracking: Is this story on the given topic?
 - Topic Detection: Is this story in the correct topic-clustered set?
 - First-story Detection: Is this the first story on a topic?
 - Link Detection: Do these two stories discuss the same topic?
- Performance is measured in terms of detection cost, which is a weighted sum of miss and false alarm probabilities:
 \[C_{Det} = C_{Miss} \cdot P_{Miss} + C_{FA} \cdot P_{FA} \]
 (e.g. \(C_{Miss} = 0.2 \), \(C_{FA} = 0.98 \))
- Detection Cost is normalized to lie between 0 and 1:
 \[(C_{Det})_{Norm} = \frac{C_{Det}}{\min\{C_{Miss}, C_{FA}\}} \]
Example Performance Measures:

Tracking Results on Newswire Text (BBN)
1999 TDT3 Tracking Results

Required Evaluation Condition
4 English Training Stories, Multilingual Test Texts,
Newswire Text+Broadcast News ASR, Given ASR Boundaries

Actual Decision Cost
Minimum DET Graph Cost

Normalized Tracking Cost

 normalized cost for BBN1, CMU1, Dragon1, UPenn1, GE1, Ulowa1, U Md1
1999 TDT3 Tracking Results

Required Evaluation Condition
Story Segmentation using Decision Trees

- **tokenizer** → **sentence detection** → **POS tagger**
 - words → **morph table** → **morphs**
 - tags → **feature extraction** → **features**
 - P(seg|context) → **decision tree scoring** → **peak extraction** → **refinement**

Decision Tree

- silence length$>0.56s$
 - yes: P(seg) = 7%
 - no: P(seg) = 16.5%

- new nouns >7
 - yes: P(seg) = 2.6%
 - no: 5%

- right key bigram distance $<=1$
 - yes: 7%
 - no: 30%

- silence length$>0.32s$
 - yes: 5.3%
 - no: 19%

- right key bigram distance $<=15$
 - yes: 25%
 - no: 55%

Story Segmentation and Topic Detection in the Broadcast News Domain

S. Dhareniyangoda M. Ponz J.S. McCreary S. Roukos T. Ward
IBM T.J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598
Using Maximum Entropy Language Models

Idea: compare perplexities of adaptive trigram with general English trigram

Relative position in segment
Results

<table>
<thead>
<tr>
<th>segmentation model</th>
<th>P_k</th>
<th>miss probability</th>
<th>false alarm probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>exponential model</td>
<td>13.2%</td>
<td>16.0%</td>
<td>10.9%</td>
</tr>
<tr>
<td>decision tree</td>
<td>15.2%</td>
<td>19.3%</td>
<td>11.9%</td>
</tr>
<tr>
<td>interpolated (exp + dtree) models</td>
<td>11.8%</td>
<td>14.2%</td>
<td>9.8%</td>
</tr>
<tr>
<td>cue-word and $s = t$ trigger features</td>
<td>13.4%</td>
<td>16.9%</td>
<td>10.5%</td>
</tr>
<tr>
<td>cue-word and $s \neq t$ trigger features</td>
<td>13.6%</td>
<td>17.8%</td>
<td>10.1%</td>
</tr>
<tr>
<td>cue-word features only</td>
<td>18.3%</td>
<td>21.6%</td>
<td>15.5%</td>
</tr>
<tr>
<td>topicality features only</td>
<td>37.3%</td>
<td>42.1%</td>
<td>33.3%</td>
</tr>
<tr>
<td>TextTiling</td>
<td>34.6%</td>
<td>57.1%</td>
<td>18.6%</td>
</tr>
</tbody>
</table>
Relevance Models and Link Detection

• Given two stories A and B
 • Determine if topic(A)=topic(B)

• Estimate topics models of A and B
 • e.g. language models

• Measure distance between the models
 • e.g. Kullback-Leibler
Generating Queries

• Suppose you have some source of queries
• You have generated several queries $q_1 \ldots q_n$ from this source
• What is $P(q_{N+1} \mid q_1 \ldots q_{N-1})$?
Universe of Models

\[P(q_{N+1} | q_1...q_N) = \sum_{i=1}^{k} P(q_{N+1} | M_i) P(M_i | q_1...q_N) \]
Using Relevance Models in Link Detection

• Question:
 • Are stories S_1 and S_2 linked?

• Approach
 • Create a relevance model for S_1 and S_2
 • Measure the distance between the models
Building Relevance Models as Topic Models

- S_1:
 - Generate queries from it
 - Retrieve documents from the collection
 - Estimate

\[
P(w \mid D) = \lambda \frac{tf_{w,D}}{|D|} + (1 - \lambda) \frac{cf_w}{\text{Coll.Size}}
\]

\[
P(w \mid S_1) = P(w \mid q_1...q_N)
\]

\[
= \sum_{D \in R} P(w \mid D)P(D \mid q_1...q_N)
\]
Measuring Distances

Kullback-Leibler Distance

\[D(S_1 \parallel S_2) = \sum_w P(w \mid S_1) \log \frac{P(w \mid S_1)}{P(w \mid S_2)} \]

Symmetric Kullback-Leibler Distance

\[D_{sym}(S_1 \parallel S_2) = \frac{1}{2} \left(D(S_1 \parallel S_2) + D(S_2 \parallel S_1) \right) \]

Kullback-Leibler Distance with “Clarity”

\[D_{Cl}(S_1 \parallel S_2) = \sum_w P(w \mid S_1) \log \frac{P(w \mid S_2)}{P(w \mid GE)} \]

(GE : general english)
Comparison on Training Data

![Comparison on Training Data Graph](image)

- **Best Cosine + TF.IDF** (min. cost: 0.09)
- **Best Relevance Model** (min. cost: 0.07)
Comparison on Evaluation Data

Random
Cosine (TF.IDF) (min: 0.27)
Relevance Model (min: 0.24)
Confidence Intervals
Sym. KL distance + clarity is not only the best method but also is robust against changes in the smoothing.
Summary

- TDT:
 - International Benchmark
 - Various sub tasks
- Link detection