9a. Neural Networks

New lectures
Didn’t change the canonical numbering yet
Biological Neural Nets

- Pigeons as art experts (Watanabe et al. 1995)

 - Experiment:
 - Pigeon in Skinner box
 - Present paintings of two different artists (e.g. Chagall / Van Gogh)
 - Reward for pecking when presented a particular artist (e.g. Van Gogh)

This section is based on slides by Torsten Reil
• Pigeons were able to discriminate between Van Gogh and Chagall with 95% accuracy (when presented with pictures they had been trained on)

• Discrimination still 85% successful for previously unseen paintings of the artists

• Pigeons do not simply memorise the pictures
• They can extract and recognise patterns (the ‘style’)
• They generalise from the already seen to make predictions

• This is what neural networks (biological and artificial) are good at (unlike conventional computer)
Feed-forward Network Functions

also know as multilayer perceptrons (MLP)
Warning

• Some type of NNs try to model biological systems
• But: biological realism imposes unnecessary constraints
• We want to model data!

Airplanes don’t flap their wings!
• Neuron vs. Node
Formalization of a “neuron”

Linear combination of D inputs x_i

$$a_j = \sum_{i=1}^{D} w_{ji} x_i + w_{j0}$$

w_{ji}: weights

w_{j0}: biases

Activation function

$$z_j = h(a_j)$$
Popular activation functions

“tanh”-function

\[y_k = \tanh(a_k) \]

Logistic sigmoid function

\[y_k = \frac{1}{1+\exp(a_k)} \]

Step (heaviside) function

\[y_k = \text{Heaviside}(a_k) \]
Exercise: what does this NN do?
Which type of decision boundary do we get?

Classify as C1 or C2
Rule: classify as C2 if \(z > 0 \)
Two layer feed forward network
Feeding data through the net:

\[(1 \times 0.25) + (0.5 \times (-1.5)) = 0.25 + (-0.75) = -0.5\]

Squashing: \[
\frac{1}{1 + e^{0.5}} = 0.3775
\]
Example for a general feed forward neural network
Example of classification problems

Green: “true decision boundary
Red: neural network
• 2 layers
• 2 hidden units
• tanh-activation on hidden layer
• Log-sig-activation on output
Expressive Power of multi-layer Networks

Question: Can every decision be implemented by a three-layer network?

Answer: Yes (due to A. Kolmogorov)

“All continuous function from input to output can be implemented in a three-layer net, given sufficient number of hidden units \(nH \), proper nonlinearities, and weights.”

Unfortunately: Kolmogorov’s theorem tells us very little about how to find the nonlinear functions based on data; this is the central problem in network-based pattern recognition.
Network Training
Objective function for training

Let

\[t_n \] be the n-th target (or desired) output and
\[y(x_n, w) \] be the n-th computed output with
\[n = 1, \ldots, N \] and
\[w \] represents all the weights of the network

The training error:

\[E(w) = \frac{1}{2} \sum_{n=1}^{N} (y(x_n, w) - t_n)^2 \]
Key Idea: Gradient Descent

Backpropagation

- Requires training set (input / output pairs)
- Starts with small random weights
- Error is used to adjust weights (supervised learning)

\[\nabla \to \text{Gradient descent on error landscape} \]
Is there a unique set of parameters?

Suppose you have the optimal solution. Is there a second equivalent one?
Gradient Descent

Learning rule is based on gradient descent

- The weights are initialized with pseudo-random values and are changed in a direction that will reduce the error:

\[w^{(\tau+1)} = w^{(\tau)} + \Delta w^{(\tau)} \]

\[\Delta w^{(\tau)} = -\eta \frac{\partial E(w^{(\tau)})}{\partial w^{(\tau)}} \]

Problem: how to calculate the gradient
Calculating the Gradient 1: Finite Differences

Asymmetric difference

\[
\frac{\partial E(w_{ji})}{\partial w_{ji}} = \frac{E(w_{ji} + \varepsilon) - E(w_{ji})}{\varepsilon} + O(\varepsilon)
\]

Symmetric central difference

\[
\frac{\partial E(w_{ji})}{\partial w_{ji}} = \frac{E(w_{ji} + \varepsilon) - E(w_{ji} - \varepsilon)}{2\varepsilon} + O(\varepsilon^2)
\]

Use a sufficiently small \(\varepsilon \)
But: there can be issue with numerical stability
Effort!
Back Propagation

- Propagates the error back to each node
- Exact calculation of the derivative
- Complexity: linear in number of weights
Example application of a feed forward network: ALVINN

Wikipedia:

Mobile robot
Milestones: 1995

Semi-autonomous ALVINN steered a car coast-to-coast under computer control for all but about 50 of the 2850 miles. Throttle and brakes, however, were controlled by a human driver.
Hopfield Networks

- Sub-type of recurrent neural nets
 - Fully recurrent
 - Weights are symmetric
 - Nodes can only be on or off
 - Random updating

- Learning: **Hebb rule**
- Can recall a memory, if presented with a corrupt or incomplete version

→ auto-associative or content-addressable memory
Elman Nets

- *Elman nets* are feed forward networks with partial recurrency

- Unlike feed forward nets, Elman nets have a *memory* or *sense of time*
Classic experiment on language acquisition and

• **Task**
 – Elman net to predict successive letters in sentences.

• **Data**
 – Suite of sentences, e.g.
 • “The boy catches the ball.”
 • “The girl eats an apple.”
 – Letters are input one at a time

• **Representation**
 – Binary representation for each letter, e.g.
 • 0-1-1-0 for “m”

• **Training method**
 – Backpropagation
Summary

- Simplified neurons
- Feed forward networks
 - Can model any decision boundary in principle
 - Training: back propagation
- Other networks
 - Hopfield
 - Elman