6. Nonparametric techniques
Motivation

Problem:
how to decide on a suitable model
(e.g. which type of Gaussian)

Idea:
just use the original data
(lazy learning)
Idea 1: each data point represents a piece of probability

\[P(x) \]

a Parzen Window Method
Idea 2: ignore probabilities just measure distance to training data

- Consider two class problem

k-nearest neighbor classifier
Idea 2:
ignore probabilities
just measure distance to training data

• Consider two class problem

k-nearest neighbor classifier
6.1. Density Estimation
Goal

• Determine probability density $P(x)$

• Given: training data $x_1, x_2, ..., x_n$

• Consider region R

Q: should I continue from here as a white board lecture?
Estimate probability P inside a region

- Probability of x being in R

\[
P = \int_{R} P(x)dx
\]

- Suppose k training vectors are inside R from a total of n training vectors

\[
P \approx \frac{k}{n}
\]

What's an estimate for P?
Consider \(n \rightarrow \infty \)

Sequences \(V_n \) (volume of region) and \(k_n \)

Resulting sequence of probabilities:

\[
P_n(x) = \frac{k_n}{nV_n}
\]
Expanding Number of Samples/Shrinking Volume in k-Nearest-Neighbour Estimation

\[k_n = \sqrt{n} \]

From: Duda+Hart: Pattern Classification
Necessary conditions for convergence

Convergence means \(P_n(x) \to P(x) \) for \(n \to \infty \)

\(P(x) \) is local property: \(V_n \to 0 \) for \(n \to \infty \)

Reliability of estimate: \(k_n \to \infty \) for \(n \to \infty \)

\(\frac{k_n}{n} \to 0 \) for \(n \to \infty \): otherwise volume cannot shrink to zero
Possible choice for k_n

\[k_n = \sqrt{n} \]

and pick V_n such that is include exactly k_n samples
Expanding Number of Samples/Shrinking Volume in k-Nearest-Neighbour Estimation

$k_n = \sqrt{n}$

From: Duda+Hart: Pattern Classification
6.2. Parzen Windows
Introduction

• Each piece of training contributes its own bit of probability distribution

• Possible choice:
 • Cubes
 • Sphere
 • Normal distribution

For the beginning start with cubes
Volume of d-dimensional cubes

- Length of edge h_n

- Volume of cube

\[V_n = h_n^d \]

d: dimension of features space

“Home work”: volume of a d-dimensional sphere?
Introduce Window Function

• **Goal:** generalize and formalize method

\[
\varphi(x) = \begin{cases}
1 & \text{if } |x^j| \leq \frac{1}{2} \text{ for all } j = 1 \ldots d \\
0 & \text{else}
\end{cases}
\]

\[x^j : \text{j-th component of } x\]

Unit cube centered at origin

Draw a unit cube

for d=1 and d=2
Shift and scale the unit cube

What is the window function for a cube centered at x_i
with length of edge h_n???

$$\varphi\left(\frac{x - x_i}{h_n}\right)$$
Number of Samples at a point inside the volume V_n

Express number of data points x_i that contribute in terms of window functions

$$\varphi\left(\frac{x - x_i}{h_n}\right)$$

If $\varphi\left(\frac{x - x_i}{h_n}\right) = 1$ then x_i is in the volume V_n and hence contributes to k_n

$$k_n(x) = \sum_{i=1}^{n} \varphi\left(\frac{x - x_i}{h_n}\right)$$
Estimate of probability using section 6.1

\[P_n(x) = \frac{k_n(x)}{nV_n} \]

\[\sum_{i=1}^{n} \varphi\left(\frac{x - x_i}{h_n}\right) = \frac{nV_n}{nV_n} \]

\[P_n(x) = \frac{1}{nV_n} \sum_{i=1}^{n} \varphi\left(\frac{x - x_i}{h_n}\right) \]

This formula also works for other window functions
Other Window Functions

• Normal (Gaussian) distribution (covariance matrix is unit matrix)

\[\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2} \vec{x}^T \vec{x}} \]

• Sphere

\[\varphi(x) = \begin{cases} 1 & \text{if } |x| \leq 1 \\ 0 & \text{else} \end{cases} \]
Gaussian Parzen Window 1 d

\[h_1 = 1 \quad h_1 = 0.5 \quad h_1 = 0.1 \]

\[n = 100 \]

\[n = \infty \]

\[h_n = h_1 / \sqrt{n} \]
Gaussian Parzen Window 2 d

$h_1=2$

$h_1=1$

$h_1=0.5$

$n=1$

$n=10$
Gaussian Parzen Window 2 d

Converges for all h_n
Gaussian Parzen Window 1 d
In classifiers based on Parzen-window estimation:

- Estimate probability density using a given window
- Pick suitable h_n
- Classify using Bayes decision rule
Classification example

Small h_n

Large h_n
6.3. k_n-nearest Neighbor Estimation
Basic idea

Find k most similar cases to test sample x and claim that x is like majority of these cases.
Other names for similar/related methods

• Instance-Based Methods (IBM), or Instance Based Learning (IBL)
• Memory-Based Methods (MBM),
• Case-Based Methods (CBM),
• Case-Based Reasoning (CBR),
• Memory-Based Reasoning (MBR),
• Similarity-Based Reasoning (SBR),
• Similarity-Based Methods (SBM)
Estimate probability in nearest neighbor case

x_1, x_2, x_3: training data
x: point where we want probability $P(x)$

$V = 2 |x - x_2|$

$$P(x) = \frac{1}{2 |x - x_2|}$$
kNN-Estimation in 1 Dimension

From Duda+Hart: Pattern Classification
Estimating the Posterior $P(\omega_i | x)$

V : volume under consideration

k : total number of samples in V

k_i : number of samples of class ω_i in V

$$k = \sum_{i=1}^{c} k_i$$

$$P_n(x, \omega_i) = \frac{k_i}{nV}$$

$$P_n(x) = \sum_{i=1}^{c} P_n(x, \omega_i) = \sum_{i=1}^{c} \frac{k_i}{nV} = \frac{k}{nV}$$

$$P_n(\omega_i | x) = \frac{P_n(x, \omega_i)}{P_n(x)} = \frac{\frac{k_i}{nV}}{\frac{k}{nV}} = \frac{k_i}{k}$$

$$P_n(\omega_i | x) = \frac{k_i}{k}$$
6.4. Nearest-Neighbor Rule
Voroni-Tessellation

• See white board
Voronoi Cells in 2 Dimensions

From Duda+Hart: Pattern Classification
Decision Boundary for a nearest-neighbour classifier in a Simulation
(Probability Distribution given)

From Hastie et al.: Statistical Learning
Voronoi Cells in 3 Dimensions

From Duda+Hart: Pattern Classification
6.5. Error of Nearest Neighbor Rule
Error of Nearest-Neighbour-Classifier (NN)

NN-Classifier:
• Can be as good as Bayes
• In worst case twice as bad

From: Duda+Hart: Pattern Classification
k-Nearest-Neighbour-Classifier

From Duda+Hart: Pattern Classification
Error of k-Nearest-Neighbour-Classifier

From Duda+Hart: Pattern Classification
Missclassification vs. Number of Neighbours

Classification Error Rate

k

From: Hastie et al.: Statistical Learning
Decision Boundary for a nearest-neighbour classifier in a Simulation
(Probability Distribution given)

From Hastie et al.: Statistical Learning
Decision Boundary for a k-nearest-neighbour classifier in a Simulation (Probability Distribution given)

From: Hastie et al.: Statistical Learning
Decision Boundaries of Bayes Classifier for the known Probabilities

From: Hastie et al.: Statistical Learning
Other Popular distance functions

L_α distance from 0:

$$D(\mathbf{X}, 0)^\alpha = \left(\sum_{i=1}^{d} |X_i|^\alpha \right)^{1/\alpha}$$

Manhattan distance or L_1 norm:

$$D(\mathbf{X}, \mathbf{Y}) = \sum_{i=1}^{d} |X_i - Y_i|$$

Euclidean distance or L_2 norm:

$$D(\mathbf{X}, \mathbf{Y})^2 = \sum_{i=1}^{d} (X_i - Y_i)^2$$

$\alpha = 1/2, 1, 2, \text{ and } 10$
Summary

• Parzen method
• k-Nearest Neighbour classifier