6. Nonparametric techniques
Motivation

Problem:
how to decide on a suitable model
(e.g. which type of Gaussian)

Idea:
just use the original data
(lazy learning)
Idea 1: each data point represents a piece of probability

a Parzen Window Method
Idea 2: ignore probabilities just measure distance to training data

- Consider two class problem

k-nearest neighbor classifier
Idea 2:
ignore probabilities
just measure distance to training data

• Consider two class problem

k-nearest neighbor classifier
6.1. Density Estimation
Goal

- Determine probability density $P(\bar{x})$
- Given: training data $\bar{x}_1, \bar{x}_2, \ldots, \bar{x}_n$
- Consider region \mathcal{R}

Q: should I continue from here as a white board lecture?
Estimate probability P inside a region

• Probability of x being in \mathbb{R}

$$P = \int_{\mathbb{R}} P(\vec{x}) d\vec{x}$$

• Suppose k training vectors are inside \mathbb{R} from a total of n training vectors

$$P \approx \frac{k}{n}$$

What's an estimate for P?
Limit of infinite number of training samples

Consider $n \to \infty$

Sequences V_n (volume of region) and k_n

Resulting sequence of probabilities:

$$P_n(x) = \frac{k_n}{nV_n}$$
Expanding Number of Samples/Shrinking Volume in k-Nearest-Neighbour Estimation

$k_n = \sqrt{n}$

From: Duda+Hart: Pattern Classification
Necessary conditions for convergence

Convergence means $P_n(x) \to P(x)$ for $n \to \infty$

$P(x)$ is local property: $V_n \to 0$ for $n \to \infty$

Reliability of estimate: $k_n \to \infty$ for $n \to \infty$

$\frac{k_n}{n} \to 0$ for $n \to \infty$: otherwise volume cannot shrink to zero
Possible choice for k_n

$$k_n = \sqrt{n}$$

and pick V_n such that it include exactly k_n samples
Expanding Number of Samples/Shrinking Volume in k-Nearest-Neighbour Estimation

From: Duda+Hart: Pattern Classification
6.2. Parzen Windows
Introduction

• Each piece of training contributes its own bit of probability distribution

• Possible choice:
 • Cubes
 • Sphere
 • Normal distribution

For the beginning start with cubes
Volume of d-dimensional cubes

- Length of edge h_n
- Volume of cube

$$V_n = h_n^d$$

d: dimension of features space

“Home work”: volume of a d-dimensional sphere?
Introduce Window Function

- Goal: generalize and formalize method

\[\varphi(\vec{x}) = \begin{cases}
1 & \text{if } |x^j| \leq \frac{1}{2} \text{ for all } j = 1 \ldots d \\
0 & \text{else}
\end{cases} \]

\(x^j \): j-th component of \(\vec{x} \)

Unit cube centered at origin

Draw a unit cube for \(d=1 \) and \(d=2 \)
Shift and scale the unit cube

What is the window function for a cube centered at \mathbf{x}_i
with length of edge h_n???

$$\varphi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h_n}\right)$$
Number of Samples at a point inside the volume V_n:

Express number of data points \tilde{x}_i that contribute in terms of window functions

$$\varphi\left(\frac{\tilde{x} - \tilde{x}_i}{h_n}\right)$$

If $\varphi\left(\frac{\tilde{x} - \tilde{x}_i}{h_n}\right) = 1$ then \tilde{x}_i is in the volume V_n and hence contributes to k_n

$$k_n(x) = \sum_{i=1}^{n} \varphi\left(\frac{\tilde{x} - \tilde{x}_i}{h_n}\right)$$
Estimate of probability using section 6.1

\[P_n(x) = \frac{k_n(x)}{nV_n} \]

\[\sum_{i=1}^{n} \phi \left(\frac{\bar{x} - \bar{x}_i}{h_n} \right) = \frac{1}{nV_n} \sum_{i=1}^{n} \phi \left(\frac{\bar{x} - \bar{x}_i}{h_n} \right) \]

This formula also works for other window functions
Other Window Functions

- Normal (Gaussian) distribution (covariance matrix is unit matrix)

\[\varphi(\bar{x}) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2} \bar{x}' \cdot \bar{x}} \]

- Sphere

\[\varphi(\bar{x}) = \begin{cases}
1 & \text{if } |\bar{x}| \leq 1 \\
0 & \text{else}
\end{cases} \]
Gaussian Parzen Window 1 d

\[h_1 = 1 \quad h_1 = 0.5 \quad h_1 = 0.1 \]

\[h_n = h_1 / \sqrt{n} \]
Gaussian Parzen Window 2 d

$h_i=2$

$h_i=1$

$h_i=0.5$

$n=1$

$n=10$
Gaussian Parzen Window 2 d

Converges for all h_n
Gaussian Parzen Window 1 d

$h_i = 1$

$n = 1$

$h_i = 0.5$

$n = 16$

$h_i = 0.2$

$n = 256$

$n = \infty$
In classifiers based on Parzen-window estimation:

- Estimate probability density using a given window
- Pick suitable h_n
- Classify using Bayes decision rule
Classification example

Small h_n

Large h_n
6.3. k_n-nearest Neighbor Estimation
Basic idea

Find k most similar cases to test sample x and claim that x is like majority of these cases.
Other names for similar/related methods

- Instance-Based Methods (IBM), or Instance Based Learning (IBL)
- Memory-Based Methods (MBM),
- Case-Based Methods (CBM),
- Case-Based Reasoning (CBR),
- Memory-Based Reasoning (MBR),
- Similarity-Based Reasoning (SBR),
- Similarity-Based Methods (SBM)
Estimate probability in nearest neighbor case

\[x_1, x_2, x_3: \text{training data} \]
\[x: \text{point where we want probability } P(x) \]

\[V = 2|x-x_2| \]

\[P(x) = \frac{1}{2|x-x_2|} \]
kNN-Estimation in 1 Dimension

From: Duda+Hart: Pattern Classification
Estimating the Posterior $P(\omega_i | x)$

V : volume under consideration

k : total number of samples in V

k_i : number of samples of class ω_i in V

$$k = \sum_{i=1}^{c} k_i$$

$$P_n(x, \omega_i) = \frac{k_i}{nV}$$

$$P_n(x) = \sum_{i=1}^{c} P_n(x, \omega_i) = \sum_{i=1}^{c} \frac{k_i}{nV} = \frac{k}{nV}$$

$$P_n(\omega_i | x) = \frac{P_n(x, \omega_i)}{P_n(x)} = \frac{k_i}{\frac{nV}{k}} = \frac{k_i}{k}$$
6.4. Nearest-Neighbor Rule
Voronoi-Tessellation

- See white board
Voronoi Cells in 2 Dimensions

From: Duda+Hart: Pattern Classification
Decision Boundary for a nearest-neighbour classifier in a Simulation (Probability Distribution given)

From: Hastie et al.: Statistical Learning
Voronoi Cells in 3 Dimensions

From: Duda+Hart: Pattern Classification
6.5. Error of Nearest Neighbor Rule
Error of Nearest-Neighbour-Classifier (NN)

NN-Classifier:
- Can be as good as Bayes
- In worst case twice as bad

From: Duda+Hart: Pattern Classification
k-Nearest-Neighbour-Classifier

From: Duda+Hart: Pattern Classification
Error of k-Nearest-Neighbour-Classifier

From: Duda+Hart: Pattern Classification
Missclassification vs. Number of Neighbours

From: Hastie et al.: Statistical Learning
Decision Boundary for a nearest-neighbour classifier in a Simulation (Probability Distribution given)

From: Hastie et al.: Statistical Learning
Decision Boundary for a k-nearest-neighbour classifier in a Simulation (Probability Distribution given)

$k=15$

From: Hastie et al.: Statistical Learning
Decision Boundaries of Bayes Classifier for the known Probabilities

From: Hastie et al.: Statistical Learning
Other Popular distance functions

L_α distance from 0:

\[D(X,0)^\alpha = \sum_{i=1}^{d} |X_i|^\alpha \]

Manhattan distance or
L_1 norm:

\[D(X,Y) = \sum_{i=1}^{d} |X_i - Y_i| \]

Euclidean distance or
L_2 norm:

\[D(X,Y)^2 = \sum_{i=1}^{d} |X_i - Y_i|^2 \]

$\alpha = 1/2, 1, 2, \text{ and } 10$
Summary

• k-Nearest Neighbour classifier
• Voronoi tessellation