The **Rayleigh** probability density function is defined as:

\[p(x|\theta) = 2\theta x \exp(-x^2\theta) \quad (1) \]

with \(\theta > 0 \). What is the maximum likelihood estimate for the parameter \(\theta \) of this distribution? Given a sample \(D \) of \(n \) independent and identically distributed training examples \(x_0..x_n \) drawn from this distribution, the likelihood of \(\theta \) with respect to \(D \) is:

\[p(D|\theta) = \prod_{k=1}^{n} p(x_k|\theta). \quad (2) \]

Remember that maximizing the **log likelihood** also maximizes the likelihood.

Please send your solutions to gchrupala@lsv.uni-saarland.de by Thursday Dec 18.